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Abstract

This study investigates the unbalanced solid transportation problem in a fuzzy environ-
ment by looking at the importance of solid transportation problem over classical trans-
portation where the supply of sources and the capacity of vehicles are less than the demand
for destinations. The solution of such problems obtained by the existing methods involves
a dummy source/dummy vehicle or both, but in reality the dummy source or dummy
vehicle has no physical significance and the quantity transported either by the dummy
source or by the dummy vehicle is not actually transported. In these situations, the de-
mand for some of the destinations remains unfulfilled and the problem is still unsolved in
terms of real-life applications. So, the main question is to find the availability of which
of the existing sources and the capacity of which vehicle should be increased to fulfill the
total destination requirements with the minimum transportation cost possible. To our
knowledge, no existing method in the literature could provide us this information. There-
fore, a new method has been proposed to fill this gap. By analyzing the optimal solution
obtained through the proposed method, we can identify the availability of which sources
and the capacity of which vehicles should be increased to fully satisfy demand. Due to the
uncertainty occurring in evaluating the parameters of the real-life problem, the data have
been considered as triangular fuzzy numbers, and a fuzzy optimal solution is obtained for
the same. Finally, a real-life unbalanced solid transport problem is solved to demonstrate
the applicability of the suggested methodology.
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1. Introduction
Transportation plays a crucial role in the process of globalization and is particularly

significant in the context of the expansion of global trade. The transportation problem is a
special kind of linear programming problem which was initially introduced by [20] in 1941.
The transportation problem is mainly concerned with efficiently delivering goods from a
source to a destination while minimizing the total cost, while satisfying supply and demand
constraints. For many companies, transportation costs are a significant component of
their expenses, with millions of dollars spent on transporting goods from suppliers to
customers. Consequently, proper planning for the transportation of products from sources
to destinations is crucial. Therefore, various approaches [3, 4, 10, 21, 23, 39, 41] have been
proposed in the literature to find the optimal planning of the transport of resources.

The traditional formulation of the transportation problem is considered with only two
constraints: supply constraints and demand constraints, assuming that a single mode of
transportation is sufficient to supply the product from sources to destinations. However, in
real life, there are multiple transport facilities available such that per unit transportation
cost, transporting time, fuel consumption rate, etc. varies with these facilities. Therefore,
in a classical transportation framework, if more than one transport facility is considered for
transportation, then the extended problem is referred to as a solid transportation problem
(STP) [19]. In STP, in addition to supply and demand constraints, other constraints
known as vehicle loading capacity constraints are also included.

The parameters such as transportation cost, supply, demand, vehicle loading capacity,
etc. may not be precisely defined due to lack of evidence, incomplete information, or
instability of the financial market to solve the real-life transportation problem. To deal
with this imprecision, Zadeh [44] developed fuzzy set theory in which the uncertainty of
the parameters is determined by their membership value ∈ [0, 1]. Numerous researchers
[1,6,8,14,22,34,35,42] have used fuzzy set theory to cope with uncertainty or imprecision
in real-life transportation problems. For the fuzzy transportation problem, Ebrahimnejad
[14] suggested a two-step technique in which all parameters are considered triangular fuzzy
numbers. Bagheri et al. [6] developed the DEA approach for the fuzzy transportation
problem with parameters in the form of triangular fuzzy numbers. Using parabolic fuzzy
numbers, Adhami and Ahmad [1] captured the uncertainty of the transportation problem
with multiple objectives. Singh et al. [40] formulated a bilevel transportation problem
with neutrosophic numbers. Garg and Rizk-Allah [16] proposed a novel approach to obtain
the solution to the rough multi-objective transportation problem. To present the demand
and supply aspects in multi-objective multimodal transportation planning problem, Zhang
et al. [45] incorporated the fuzzy set theory. Roy et al. [33] the model of the fixed-charge
solid-transport problem where the coefficients of the objective functions and constraints
are represented by fuzzy rough variables.

The uncertainty in the parameters of the STP is also handled by fuzzy set theory in
various studies, such as Kocken and Sivri [25] proposed an approach to generate all optimal
solutions of the fuzzy STP parametrically. Das et al. [12] developed the fixed-charge STP
model considering the safety arrangements for transporting items. Samanta et al. [38]
investigated profit maximization STP in fuzzy environment and solved it by the Genetic
Algorithm. To solve transportation problems, various researchers [11,28,29,29,32,37] have
employed intuitionistic fuzzy set theory/neutrosophic set theory, both of which extend
fuzzy set theory. Roy and Midya [32] introduced the concept of product blending in fixed-
charge STP under an intuitionistic fuzzy environment. Recently, in a green supply chain
network, Midya et al. [28] studied multistage STP with intuitionistic fuzzy parameters.
To solve the multi-objective STP, Chhibber et al. [11] developed an intuitionistic fuzzy
approach that incorporates non-linear membership and non-membership functions. Gupta
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et al. [18] utilized neutrosophic set theory to introduce neutrosophic goal programming
as a solution for the multi-objective model of transportation problems.

In the aforementioned articles, researchers primarily focused on obtaining crisp solu-
tions to problems with fuzzy parameters. The fuzzy solution holds more information than
the crisp solution and hence provides better insight of the solution so obtained. Due to
this characteristic of fuzzy solution, Numerous researchers [5, 12, 13, 17, 43] paid more at-
tention to obtaining a fuzzy solution for the fuzzy problem rather than crisp solutions, and
thus the problems were named a full fuzzy transportation problem (FFTP). Dhanasekar
et al. [13] developed the fuzzy Hungarian MODI method to solve FFTP with triangu-
lar and trapezoidal fuzzy numbers. Ghosh et al. [17] obtained the fully intuitionistic
fuzzy solution to the multi-objective fixed-charge solid transportation problem. To solve
FFTP, Bagheri et al. [5] proposed a fuzzy DEA-based methodology. These approaches
are helpful in finding the fully fuzzy solution to balanced transportation problems. How-
ever, very few strategies have been proposed to obtain a fully fuzzy solution to unbalanced
transportation problems. for instance, Chakraborty and Jana [9] proposed extensions of
the existing approaches such as Vogel’s approximation method, least cost method, and
modified distribution method to solve the unbalanced FFTP. Muthuperumal [30] pro-
posed a novel method for an unbalanced transportation problem with fuzzy triangular
parameters. Rani and Gulati [31] applied the fuzzy programming technique to solve an
unbalanced multiproduct transportation problem with trapezoidal fuzzy numbers. For an
unbalanced fully fuzzy solid transportation problem (FFSTP), Kaur et al. [24] developed
a new methodology with dummy facilities.

In this paper, an unbalanced transportation problem in which the total supply of sources
and the total loading capacity of the vehicles is less than the total demand of destinations
has been studied. In all existing methods to solve such an unbalanced FFSTP, generally
a dummy source and dummy vehicles are introduced to balance the problem. But these
fictitious sources and vehicles have no existence in reality. So, any supply from a fictitious
source is not transported in actuality, and hence the demand for some of the destinations
remains unfulfilled. This drawback of the existing approaches has inspired us to propose
such a method for an unbalanced FFSTP that can give a solution which does not involve
the dummy source/destination/vehicle in the final solution. Furthermore, the proposed
method gives us insight into which source(s) and vehicle(s) should increase capacity to
meet the destination’s demand at the minimum possible transportation cost.

The key motivations for this proposed work are as follows: Akbari et al. [2] addressed
the STP by considering all parameters as crisp numbers. However, in real-life applications,
data related to the problem may not be available in crisp numbers due to various economic
and environmental factors. To address this uncertainty, our study uses fuzzy numbers.
The methods proposed by Srinivasan et al. [43], Ghosh et al. [17] aim to find optimal
solutions for FFSTP or fully intuitionistic fuzzy STP, but these methods are not applicable
to unbalanced FFSTP. In contrast, our proposed method efficiently handles unbalanced
FFSTP. The existing solutions for the unbalanced FFSTP such as those proposed by Kaur
et al. [24] and Rani and Gulati [31] involve the use of dummy sources, destinations, or
vehicles. However, in real-life applications, these dummy facilities are of no significance
and the quantities supposed to be supplied by dummy sources or vehicles are not actually
provided to the destinations. Hence, in this study, we propose a novel method to solve
the unbalanced FFSTP, ensuring that the destination requirements are fulfilled without
the involvement of dummy facilities. Chakraborty and Jana [9] and Mahmoodirad et al.
[27] solved the FFTP considering a single mode of transport. However, practical problems
often involve multiple transport facilities with varying transportation costs and times.
Our proposed method simultaneously handles multiple transport facilities. Samanta et al.
[36] proposed the Vogel approximation method to obtain the crisp optimal solution of the
STP with fuzzy parameters. However, the solution represented by fuzzy numbers provides
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more informative and realistic results compared to the crisp solution. In this study, a new
method is proposed to calculate the optimal fuzzy solution of the fuzzy problem, which
enhances the realism and accuracy of the solution obtained.

This study proposes the following main contributions to effectively address the issues
highlighted in the motivation section. The model of an unbalanced FFSTP is formulated,
where all the parameters and decision variables are considered as triangular fuzzy numbers.
A new methodology is proposed to find the optimal solution of an unbalanced FFSTP in
terms of original sources, destinations, and vehicles only and does not involve any dummies
in the final solution. The validation of the proposed methodology is done by solving a case
study of a rice transport company, and the results are compared with existing / traditional
techniques.

The remaining sections of the paper are summarized as follows: Section 2 provides
fundamental definitions and concepts related to fuzzy set theory. In Section 3, the math-
ematical model of an unbalanced FFSTP is formulated. The proposed solution procedure
and the related theorems are proved in Section 4. In Section 5, a real-life application of
the transportation problem is solved to illustrate the effectiveness and practicality of the
proposed approach. The validation and discussions of the results obtained are given in
Section 6. Finally, Section 7 presents the conclusions drawn from the study and discusses
the potential avenues for future research and development in this area.

2. Preliminaries
In this section, the fundamental definitions related to fuzzy set theory are given.

Definition 2.1. Let X be a non-empty set, then the fuzzy set C̃ in X is defined as:
C̃ = {(x, µ

C̃
(x)) : x ∈ X}, where µ

C̃
(x) : X → [0, 1] represents the membership function

with 0 ≤ µ
C̃

(x) ≤ 1, ∀ x ∈ X.

Definition 2.2. For a fuzzy set C̃ defined in a nonempty set X, the support is denoted
supp(C̃) and is defined as the set of elements in X for which the membership value is
greater than or equal to 0, i.e.,

supp(C̃) = {x ∈ X : µ
C̃

(x) > 0}

Definition 2.3. For a fuzzy set C̃ defined on a non-empty set X, the α-cut is denoted
and is defined as the set of elements in X for which the membership value is greater than
or equal to α, i.e.,

C̃(α) = {x ∈ X : µ
C̃

(x) ≥ α}, α ∈ [0, 1]

Definition 2.4. A fuzzy set C̃ defined on a non-empty set X is said to be a fuzzy number
if it satisfies the following properties:

(i) C̃ is a normal fuzzy set, i.e, there exist at least one element x ∈ X such that
µ

C̃
(x) = 1.

(ii) C̃ is a convex fuzzy set, i.e., ∀ x1, x2 ∈ X there exist δ ∈ [0, 1] such that
µ

C̃
[δx1 + (1 − δ)x2] ≥ min [µ

C̃
(x1), µ

C̃
(x2)],

(iii) The membership function of C̃, i.e, µ
C̃

(x) is piecewise continuous in R.

Definition 2.5. The triangular fuzzy number is represented as C̃ = (l, m, n) where l ≤
m ≤ n are real numbers and its membership function (µ

C̃
(x)) is defined asµ

C̃
(x) =

x−l
m−l , if l ≤ x < m
n−x
n−m , if m ≤ x ≤ n

0, otherwise

The graphic representation of the triangular fuzzy number is shown in Figure 1.
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Figure 1. The graphical representation of triangular fuzzy number

Remark 2.6. A triangular fuzzy number C̃ = (0, 0, 0) is said to be a zero triangular fuzzy
number.

Definition 2.7. Let C̃ = (l1, m1, n1) and D̃ = (l2, m2, n2) be two triangular fuzzy num-
bers. Then

(i) C̃ ⊕ D̃ = (l1 + l2, m1 + m2, n1 + n2),
(ii) C̃ ⊖ D̃ = (l1 − n2, m1 − m2, n1 − l2),

(iii) kC̃ =
{

(kl1, km1, kn1), if k ≥ 0
(kn1, km1, kl1), if k < 0,

(iv) C̃ ⊗ D̃ =
(
min(l1l2, l1n2, n1l2, n1n2), m1m2, max(l1l2, l1n2, n1l2, n1n2)

)
.

Definition 2.8. The left and right integrals for a fuzzy number C̃ are defined as

Left integral IL(C̃) =
∫ 1

0
(µl

C̃
)−1(α)dα

Right integral IR(C̃) =
∫ 1

0
(µr

C̃
)−1(α)dα

where (µl
C̃

)−1(α) and (µr
C̃

)−1(α) are the inverse functions of the left and right membership
functions (µl

C̃
)(x) and (µr

C̃
)(x), respectively.

Definition 2.9. The total γ-integral (Iγ
T ) of a fuzzy number C̃ is defined as:

Iγ
T = γIR(C̃) + (1 − γ)IL(C̃),

where γ ∈ [0, 1] indicates the level of optimism of a decision maker.

A larger value of γ represents higher degree of optimism. γ = 0, Iγ
T represents the pes-

simistic viewpoint of decision maker, γ = 1, represents the optimistic viewpoint of decision
maker and γ = 0.5 indicates the moderate viewpoint of decision maker.

For the triangular fuzzy number C̃ = (l, m, n), we have (µl
C̃

)−1(α) = l + α(m − l) and
(µr

C̃
)−1(α) = n + α(m − n).

Therefore,

IL(C̃) = l + m

2
and IR(C̃) = m + n

2
.
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Hence for a moderate decision maker, the total γ-integral of triangular fuzzy number C̃
also called the ranking function R, is defined in Definition 9.

Definition 2.10. Let C̃ = (l, m, n) be a triangular fuzzy number. Then its ranking
function R : F (R) → R, where F (R) is a set of fuzzy numbers defined on a set of real
numbers R is defined as

R(C̃) = l + 2m + n

4
Remark 2.11. A triangular fuzzy number C̃ = (l, m, n) is said to be a non-negative
triangular fuzzy number if and only if R(C̃) ≥ 0̃.

Definition 2.12. Let C̃ = (l1, m1, n1) and D̃ = (l2, m2, n2) be two triangular fuzzy
numbers. Then

(i) C̃ ≤ D̃ if R(C̃) ≤ R(D̃),
(ii) C̃ ≥ D̃ if R(C̃) ≥ R(D̃).

3. Mathematical model
To formulate the mathematical model of the proposed unbalanced FFSTP, the following

notation and assumptions are used.

Notations : Meaning
g : index for sources (g = 1, 2, ..., l)
h : index for destinations (h = 1, 2, ..., m)
k : index for vehicles (k = 1, 2, ..., n)
(S1, S2, ..., Sl) : set of l sources
(D1, D2, ..., Dm) : set of m destinations
(V1, V2, ..., Vk) : set of k vehicles
χ̃ghk : fuzzy per unit transportation cost of the product from gth source to hth destination through kth vehicle ($/ton)
α̃g : fuzzy availability of the product at gth source (in tonnes)
β̃h : fuzzy demand of the product at hth destination (in tonnes)
γ̃k : fuzzy loading capacity of the kth vehicle (in tonnes)
ξ̃ghk : fuzzy units of product transported from gth source to hth destination through kth vehicle (in tonnes)

Assumptions:
(i) All the parameters (transportation cost, availability, demand, vehicle’s loading

capacity) as well as decision variables (transported amount) are considered as
triangular fuzzy numbers.

(ii) α̃g, β̃h, γ̃k, χ̃ghk, ξ̃ghk ≥ 0 ∀ g, h, k.
(iii)

∑l
g=1 α̃g <

∑m
h=1 β̃h,

∑n
k=1 γ̃k <

∑m
h=1 β̃h

In this section, we propose a model for an unbalanced FFSTP, where the total demand
at the destinations is not equal to the total supply from the sources and the total loading
capacity of the vehicles. The product is transported from l sources (Sg, 1 ≤ g ≤ l) to
m destinations (Dh, 1 ≤ h ≤ m) through n vehicles (Vk, 1 ≤ k ≤ n). The transport
network with two sources (g = 2), two destinations (h = 2), two vehicles (k = 2) is shown
in Figure 2.
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Source-1 Source-2

Destination-1

Destination-2

Vehicle-1

Vehicle-2

Figure 2. Network representation of STP

In the proposed model to address uncertainty, all parameters as well as decision vari-
ables are considered as triangular fuzzy numbers. The transportation cost per unit of
product on each route from the gth source to the hth destination by kth conveyance is
denoted by χ̃ghk. Each gth source has a supply of α̃g, each hth destination has a demand
of β̃h, and each kth conveyance has a capacity of γ̃k. The main objective of the proposed
unbalanced FFSTP model is to determine the amount of product to be transported from
the gth source to the hth destination by kth conveyance in a way that minimizes the total
transportation cost while fully satisfying the demand at each destination, without intro-
ducing any dummy facilities. The objective function is defined as follows:

Minimize the total transportation cost:

Minimize Z̃ =
l∑

g=1

m∑
h=1

n∑
k=1

χ̃ghk ⊗ ξ̃ghk (3.1)

Demand constraints:

Since β̃h denotes the demand for the destination hth (h = 1, , ..., m) and the feasibility
condition of the transportation problem is that the demand for each destination should be
fully satisfied. So, the constraint (3.2) represents that the amount of product transported
to hth destination must be equal to the demand of the product at the same destination.

l∑
g=1

n∑
k=1

ξ̃ghk = β̃h, h = 1, 2, ..., m, (3.2)

Supply constraints:

The proposed transportation problem model is unbalanced in that the total availability
of the product at the sources is less than the total demand at the destination points,
i.e.,

∑l
g=1 α̃g <

∑m
h=1 β̃h. From constraint (3.2),

∑l
g=1

∑n
k=1 ξ̃ghk ≥ β̃h, h = 1, 2, ..., m,.

Therefore, the supply constraint becomes the following.
m∑

h=1

n∑
k=1

ξ̃ghk ≥ α̃g, g = 1, 2, ..., l, (3.3)
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The constraint (3.3) shows that each gth source supply atleast α̃g units of product to the
destinations and it may also increase to meet the demand of the destinations.

Loading capacity constraints:

The other unbalanced condition of the model is that the total loading capacity of the
vehicle is less than the total demand at the destination points, i.e.,

∑n
k=1 γ̃k <

∑m
h=1 β̃h.

From constraint (3.2),
∑l

g=1
∑n

k=1 ξ̃ghk ≥ β̃h, h = 1, 2, ..., m,. Therefore, the loading
capacity constraints becomes

l∑
g=1

m∑
h=1

ξ̃ghk ≥ γ̃k, k = 1, 2, ..., n, (3.4)

The constraint (3.4) shows that each kth vehicle loads at least α̃g units of product to the
destinations and it can also increase to meet the demand of the destinations.

Non-negative constraints:
The non-negativity constraints in transportation problems ensure that the quantity trans-
ported from sources to destinations (decision variables) is a non-negative value, reflecting
the practical reality that negative shipments are neither feasible nor meaningful. These
constraints are essential in formulating realistic and implementable transportation op-
timization models. For the proposed model, the non-negative integral constraints are
represented as follows:

ξ̃ghk ≥ 0̃, ∀ g, h, k, (3.5)

Therefore, considering the above objective function (3.1) and constraints (3.2−3.5), the
proposed model of an unbalanced FFSTP is formulated as follows:

Minimize Z̃ =
l∑

g=1

m∑
h=1

n∑
k=1

χ̃ghk ⊗ ξ̃ghk (3.6)

subject to
m∑

h=1

n∑
k=1

ξ̃ghk ≥ α̃g, g = 1, 2, ..., l, (3.7)

l∑
g=1

n∑
k=1

ξ̃ghk = β̃h, h = 1, 2, ..., m, (3.8)

l∑
g=1

m∑
h=1

ξ̃ghk ≥ γ̃k, k = 1, 2, ..., n, (3.9)

ξ̃ghk ≥ 0̃, ∀ g, h, k. (3.10)

The dual of (P1) can be written as (DP1).

(DP1) Maximize
l∑

g=1
α̃gũg +

m∑
h=1

β̃hṽh +
n∑

k=1
γ̃kw̃k (3.11)

subject to
ũg + ṽh + w̃k ≤ χ̃ghk for 1 ≤ g ≤ l, 1 ≤ h ≤ m, 1 ≤ k ≤ n (3.12)
ṽh is unrestricted in sign for 1 ≤ h ≤ m

and ũg, w̃k ≥ 0 for 1 ≤ g ≤ l, 1 ≤ k ≤ n. (3.13)
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Here, ũg, ṽh, w̃k are the dual variables corresponding to the availability, demand and
vehicle’s loading capacity constraints, respectively.

4. The proposed method
In this section, a new method is proposed to solve the unbalanced FFSTP (P1). To

facilitate the solution process, we prove the following theorem, for which we first formulate
the balanced model of (P1) and the corresponding dual problem as follows:

Let (P2) represent the balanced FFSTP derived from (P1) by incorporating a dummy
source Sl+1 and a dummy vehicle Vn+1, with a unit fuzzy transportation cost χ̃(l+1)hk =
min

1≤g≤l
χ̃ghk; 1 ≤ h ≤ m, 1 ≤ k ≤ n and χ̃gh(n+1) = min

1≤k≤n
χ̃ghk; 1 ≤ g ≤ l+1, 1 ≤ h ≤ m

respectively.

Minimize Z̃ =
l+1∑
g=1

m∑
h=1

n+1∑
k=1

χ̃ghk ⊗ ξ̃ghk (4.1)

subject to
m∑

h=1

n+1∑
k=1

ξ̃ghk = α̃g, g = 1, 2, . . . , l + 1, (4.2)

l+1∑
g=1

n+1∑
k=1

ξ̃ghk = β̃h, h = 1, 2, . . . , m, (4.3)

l+1∑
g=1

m∑
h=1

ξ̃ghk = γ̃k, k = 1, 2, . . . , n + 1, (4.4)

ξ̃ghk ≥ 0̃ ∀ g, h, k (4.5)

where
l∑

g=1
α̃g + α̃l+1 =

m∑
h=1

β̃h and
n∑

k=1
γ̃k + γ̃n+1 =

m∑
h=1

β̃h.

The dual of (P2) with dual variables ũ′
g, ṽ′

h and w̃′
k can be written as (DP2).

(DP2) Maximize
l+1∑
g=1

α̃gũ′
g +

m∑
h=1

β̃hṽ′
h +

n+1∑
k=1

γ̃kw̃′
k (4.6)

subject to
ũ′

g + ṽ′
h + w̃′

k ≤ χ̃ghk, 1 ≤ g ≤ l + 1, 1 ≤ h ≤ m, 1 ≤ k ≤ n + 1 (4.7)
ũ′

g, ṽ′
h, w̃′

k are unrestricted in sign,
for 1 ≤ g ≤ l + 1, 1 ≤ h ≤ m, 1 ≤ k ≤ n + 1.

Theorem 4.1. If (ũ, ṽ, w̃) and (ũ′, ṽ′, w̃′) are the optimal solutions of (DP1) and (DP2),
respectively, where (ũ, ṽ, w̃) = (ũ1, ũ2, ..., ũl, ṽ1, ṽ2, ..., ṽm, w̃1, w̃2, ..., w̃n) and (ũ′, ṽ′, w̃′) =
(ũ′

1, ũ′
2, ..., ũ′

l+1, ṽ′
1, ṽ′

2, ..., ṽ′
m, w̃′

1, w̃′
2, ..., w̃′

n+1), then ũg = ũ′
g, 1 ≤ g ≤ l, ṽh = ṽ′

h, 1 ≤
h ≤ m and w̃k = w̃′

k, 1 ≤ k ≤ n provided ũ′
l+1 = 0̃, w̃′

n+1 = 0̃.

Proof. To show that ũg = ũ′
g, 1 ≤ g ≤ l, ṽh = ṽ′

h, 1 ≤ h ≤ m and w̃k = w̃′
k, 1 ≤ k ≤ n

provided ũ′
l+1 = 0̃, w̃′

n+1 = 0̃, we have to prove that (ũ′, ṽ′, w̃′) is also an optimal solution
of (DP1). For this, it is sufficient to prove that:

(i) ũ′
g + ṽ′

h + w̃′
k ≤ χ̃ghk, ∀ 1 ≤ g ≤ l, 1 ≤ h ≤ m, 1 ≤ k ≤ n and

(ii) ũ′
g, w̃′

k ≥ 0̃, ∀ 1 ≤ g ≤ l, 1 ≤ k ≤ n
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(i) Since (ũ′, ṽ′, w̃′) is an optimal solution of (DP2). So,

ũ′
g + ṽ′

h + w̃′
k ≤ χ̃ghk, ∀ 1 ≤ g ≤ l + 1, 1 ≤ h ≤ m, 1 ≤ k ≤ n + 1. (4.8)

Therefore, ũ′
g + ṽ′

h + w̃′
k ≤ χ̃ghk, ∀ 1 ≤ g ≤ l, 1 ≤ h ≤ m, 1 ≤ k ≤ n.

(ii) Let if possible ũ′
g < 0 (1 ≤ g ≤ l)

Now, for g = l + 1, 1 ≤ h ≤ m, 1 ≤ k ≤ n, the inequality (4.8) can be written as

ũ′
l+1 + ṽ′

h + w̃′
k ≤ χ̃(l+1)hk, ∀ 1 ≤ h ≤ m, 1 ≤ k ≤ n.

Since ũ′
l+1 = 0̃

⇒ ṽ′
h + w̃′

k ≤ χ̃(l+1)hk ∀ 1 ≤ h ≤ m, 1 ≤ k ≤ n

⇒ ṽ′
h + w̃′

k ≤ χ̃ghk (∵ χ̃(l+1)hk = min
1≤g≤l

χ̃ghk; 1 ≤ h ≤ m, 1 ≤ k ≤ n) (4.9)

Since for each g (1 ≤ g ≤ l) there must exist some q (1 ≤ q ≤ m) and r (1 ≤ r ≤ n) such
that the cell (g, q, r) is a basic cell.
Therefore, the relation ũ′

g + ṽ′
q + w̃′

r = χ̃gqr must hold for the basic cell (g, q, r). Also
χ̃gqr ≥ 0 and u′

g < 0 (as per assumption)
Which gives, ṽ′

q + w̃′
r > χ̃gqr which is contradiction to (4.9). Hence, our supposition is

wrong. So, ũ′
g ≥ 0 ∀ 1 ≤ g ≤ l.

Now let if possible w̃′
k < 0 (1 ≤ k ≤ n)

Also for k = n + 1, 1 ≤ g ≤ l + 1, 1 ≤ h ≤ m, the inequality (4.8) can be written as

ũ′
g + ṽ′

h + w̃′
n+1 ≤ χ̃gh(n+1), ∀ 1 ≤ g ≤ l + 1, 1 ≤ h ≤ m.

Since w̃′
n+1 = 0̃

⇒ ũ′
g + ṽ′

h ≤ χ̃gh(n+1) ∀ 1 ≤ g ≤ l + 1, 1 ≤ h ≤ m

⇒ ũ′
g + ṽ′

h ≤ χ̃ghk (∵ χ̃gh(n+1) = min
1≤k≤n

χ̃ghk; 1 ≤ g ≤ l + 1, 1 ≤ h ≤ m)(4.10)

Since for each k (1 ≤ k ≤ n) there must exist some s (1 ≤ s ≤ l) and t (1 ≤ t ≤ m) such
that the cell (s, t, k) is a basic cell.
Therefore, the relation ũ′

s + ṽ′
t + w̃′

k = χ̃stk must hold for the basic cell (s, t, k). Also
χ̃stk ≥ 0 and w′

k < 0 (as per assumption)
Which gives, ũ′

s + ṽ′
t > χ̃stk which is contradiction to (4.10). Hence our supposition is

wrong. So, w̃′
k ≥ 0 ∀ 1 ≤ k ≤ n.

□

Solution methodology:
The proposed method has five main steps, namely

(i) Balancing the given problem
(ii) Finding the basic feasible solution
(iii) Checking the optimality of the obtained basic feasible solution.
(iv) Getting the optimal solution
(v) Finding the optimal solution in terms of the original sources and vehicles
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4.1. Balancing the given problem:
Balance the given unbalanced FFSTP problem as P2 by adding a dummy source Sl+1 and
a dummy vehicle Vn+1 with the unit fuzzy transportation cost χ̃(l+1)hk = min

1≤g≤l
χ̃ghk; 1 ≤

h ≤ m, 1 ≤ k ≤ n and χ̃gh(n+1) = min
1≤k≤n

χ̃ghk; 1 ≤ g ≤ l + 1, 1 ≤ h ≤ m,, respectively.

4.2. Finding the basic feasible solution:
Step 4.2.1: Identify the minimum transportation cost in each source, subtract it from the
next minimum transportation cost, and write their difference called penalty, along with
the corresponding source of the table. In a similar way, calculate the penalties for each
destination and vehicle.
Step 4.2.2: Identify the maximum penalty. Find out the corresponding source/destination
/vehicle and mark the smallest fuzzy cost in it. Let it be χ̃abc. Find the minimum of α̃a,
β̃b, γ̃c. The following cases may arise:
Case 1: If min(α̃a, β̃b, γ̃c) = α̃a, then allocate ξ̃abc = α̃a. Discard the ath source to obtain
the new FFSTP. Find β̃′

b, γ̃′
c such that β̃′

b + α̃a = β̃b and γ̃′
c + α̃a = γ̃c. Replace β̃b and γ̃c

by β̃′
b and γ̃′

c,, respectively, in the obtained FFSTP. Go to Step 4.2.3.
Case 2: If min(α̃a, β̃b, γ̃c) = β̃b, then allocate ξ̃abc = β̃b. Discard the bth destination to
obtain the new FFSTP. Find α̃′

a, γ̃′
c such that α̃′

a + β̃b = α̃a and γ̃′
c + β̃b = γ̃c. Replace α̃a

and γ̃c by α̃′
a and γ̃′

c,, respectively, in the obtained FFSTP. Go to Step 4.2.3.
Case 3: If min(α̃a, β̃b, γ̃c) = γ̃c, then allocate ξ̃abc = γ̃c. Discard the cth vehicle to obtain
the new FFSTP. Find α̃′

a, β̃′
b such that α̃′

a + γ̃c = α̃a and β̃′
b + γ̃c = β̃b. Replace α̃a and β̃b

by α̃′
a and β̃′

b,, respectively, in the obtained FFSTP. Go to Step 4.2.3.
Case 4: If α̃a = β̃b = γ̃c, then randomly choose any of the ath source, bth destination,
and cth vehicles and follow the corresponding case mentioned above. We call the newly
obtained FFSTP reduced FFSTP.
Step 4.2.3: Calculate the new penalties of the reduced FFSTP as per Step 4.2.1. Repeat
Step 4.2.2 until all resources are utilized.
Step 4.2.4: Allocate all the obtained values of ξ̃ghk in the (g, h, k)th cell of the given
FFSTP.

4.3. Checking the optimality of the obtained basic feasible solution:
Step 4.3.1: Using the condition ũg + ṽh + w̃k = χ̃ghk for all l + m + n − 2 basic cells and
by taking the value of any of two fuzzy dual variables equal to zero, calculate the rest of
the fuzzy dual variables.
Step 4.3.2: Compute δ̃ghk = χ̃ghk − (ũg + ṽh + w̃k) for all non-basic cells and conclude
that
(i) If δ̃ghk ≥ 0̃, ∀ g, h, k,, then the initial feasible basic solution obtained is an optimal
solution.
(ii) If at least one δ̃ghk < 0̃, then solution is not optimal.

4.4. Getting the optimal solution:
Step 4.4.1: Choose the cell with the lowest negative δ̃ghk and make an allocation t̃ghk

to this cell and to all basic cells (g, h, k). For the solution to be feasible, the following
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condition must be satisfied.
l+1∑
g=1

m∑
h=1

t̃ghk = 0̃, k = 1, 2, ..., n + 1,

m∑
h=1

n+1∑
k=1

t̃ghk = 0̃, g = 1, 2, ..., l + 1,

l+1∑
g=1

n+1∑
k=1

t̃ghk = 0̃, h = 1, 2, ..., m,

Solve these equations to obtain the new basic feasible solution by allocating as much value
as possible to the t̃ghk corresponding to the cell with the most negative δ̃ghk. Check the
optimality of the newly obtained basic feasible solution by following the whole procedure
in Step 4.3.
Step 4.4.2: Repeat the above step to get the optimal solution until δ̃ghk ≥ 0̃, ∀ g, h, k.

4.5. Finding the optimal solution in terms of the original sources and
vehicles

Step 4.5.1: Find the dual variables for the fuzzy optimal solution obtained in Step 4.4 by
assuming ũ′

l+1, w̃′
n+1 (fuzzy dual variable corresponding to the dummy source and dummy

vehicle in the FFSTP (P2)) equal to zero triangular fuzzy number.
Step 4.5.2: By Theorem 4.1, the solution of (DP1) is same as that of (DP2). Among all
the dual variables obtained in Step 4.5.1, select those ũg, 1 ≤ g ≤ l whose rank is zero.
By Complementary Slackness Theorem [15], slack/ surplus variable of only these selected
sources can have positive values. Therefore, only the availability of these sources can be
increased. Similarly, select those w̃k, 1 ≤ k ≤ n whose rank is zero and increase the
capacity of those vehicles accordingly.
Step 4.5.3: Obtain the fuzzy optimal solution in terms of the original sources and vehi-
cles using the fuzzy optimal solution obtained in Step 4.4 as per the following cases:
Case 1: Let ξ̃(l+1)qr (1 ≤ q ≤ m) (1 ≤ r ≤ n) is a basic variable, consider the following
two subcases:
Subcase 1a: If g is such that R(ũg) = 0 is unique say p, then increase the value of the
variable ξ̃pqr by ξ̃(l+1)qr.
Subcase 1b: If g is such that R(ũg) = 0 is not unique say g ∈ G, then increase the value
of the variable ξ̃gqr corresponding to the cell (g, q, r) with min

g∈G
χ̃gqr by ξ̃(l+1)qr.

Case 2: Let ξ̃µν(n+1) (1 ≤ µ ≤ l) (1 ≤ ν ≤ m) is a basic variable, consider the following
two subcases:
Subcase 2a: If k is such that R(w̃k) = 0 is unique say ω, then increase the value of the
variable ξ̃µνω by ξ̃µν(n+1).
Subcase 2b: If k is such that ranking of R(w̃k) = 0 is not unique say k ∈ K, then
increase the value of the variable ξ̃µνk corresponding to the cell (µ, ν, k) with min

k∈K
χ̃µνk by

ξ̃µν(n+1).

Case 3: Let ξ̃(l+1)λ(n+1) (1 ≤ λ ≤ m) is a basic variable, consider the following four
subcases:
Subcase 3a: If g such that ranking of R(ũg) = 0 is unique say σ and k such that ranking
of R(w̃k) = 0 is unique say η, then increase the value of the variable ξ̃σλη by ξ̃(l+1)λ(n+1).
Subcase 3b: If g such that ranking of R(ũg) = 0 is not unique say g ∈ G and k such
that ranking of R(w̃k) = 0 is unique say τ , then increase the value of the variable ξ̃gλτ
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corresponding to the of cell (g, λ, τ) with min
g∈G

χ̃gλτ by ξ̃(l+1)λ(n+1).

Subcase 3c: If g such that ranking of R(ũg) = 0 is unique say ρ and k such that ranking
of R(w̃k) = 0 is not unique say k ∈ K, then increase the value of the variable ξ̃ρλk corre-
sponding to the of cell (ρ, λ, k) with min

k∈K
χ̃ρλk by ξ̃(l+1)λ(n+1).

Subcase 3d: If g such that ranking of R(ũg) = 0 is not unique say g ∈ G and k such
that ranking of R(w̃k) = 0 is also not unique say k ∈ K, then increase the value of the
variable ξ̃gλk corresponding to the of cell (g, λ, k) with min

g∈G
min
k∈K

χ̃gλk by ξ̃(l+1)λ(n+1).

A flowchart representing the steps of the proposed method in brief is given as Figure 3.

Start

Is
∑l

g=1 α̃g <∑m
h=1 β̃h and∑n
k=1 γ̃k <

∑m
h=1 β̃h ?

Balance the unbalanced problem by adding a dummy
source and dummy vehicle

Find the basic feasible solution of the balanced problem

Is δ̃ghk = χ̃ghk − (ũg +
ṽh + w̃k) ≥ 0 ?

Find the corresponding optimal
solution

Find the optimal solution in terms of the original
sources/destinations/ vehicles using the concept of du-
ality theory

end

No

Yes

Yes

No

Figure 3. Flow chart of the proposed algorithm
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Advantages of the proposed methodology:
(i) Existing methods to solve an unbalanced FFSTP give an optimal solution that

involves the dummy source/destination/vehicle and therefore are not practical and
useful when applied to a real-life problem. In contrast, the proposed method gives
the final solution without any of these dummies. This is the main contribution
and benefit of the proposed approach in solving an unbalanced FFSTP.

(ii) The proposed technique is specifically designed to address unbalanced solid trans-
portation problems in a fully fuzzy environment. Using fuzzy set theory, it effec-
tively handles the inherent vagueness and impreciseness commonly encountered
in real-life problems. As a result, the modeling of the problem closely resembles
practical situations, enhancing its applicability.

(iii) One of the main advantages of the proposed method is the use of fuzzy numbers to
represent all parameters and decision variables. This realistic modeling approach
provides the decision maker with a broader perspective and better insights into
the solution, as it encompasses a wider range of possibilities.

(iv) The proposed method deals with multiple transport facilities simultaneously.
(v) The proposed approach to solve an unbalanced FFSTP is simple to understand

and easy to apply.

5. A case study
A rice manufacturing company has three rice mills (g = 1, 2, 3) in India. One is located

in Karnal (Mill A), the other is in Ludhiana (Mill B), and the third is in Ghaziabad (Mill
C) from where the rice is distributed to three (h = 1, 2, 3) different wholesale traders
markets at Amritsar (Market M1), Shimla (Market M2) and Pauri Garhwal (Market M3).
Two types of vehicles (k = 1, 2), a 40 ft OPEN-TRAILOR ODC (Vehicle V1) and a 32
ft OPEN-TRAILOR ODC (Vehicle V2) are used to transport rice from the three mills to
three wholesalers. Due to various uncontrollable factors, such as sudden bad weather in
hilly areas and market price fluctuation, the rice company’s manager has a tentative idea
of the cost of transportation between these three supply sites (Karnal, Ludhiana, Ghazi-
abad) and three demand points (Amritsar, Shimla, Pauri Garhwal). In addition to this,
the availability of rice in mills and the demand of wholesalers also continue to fluctuate
for some economic and social reasons. Therefore, a triangular fuzzy number is chosen for
the best representation of the uncertainty inherent in various parameters related to this
problem. The triangular fuzzy value of these parameters such as transportation cost, sup-
ply, demand and loading capacity of the vehicles are given in Table 1. The main objective
of the decision maker is to calculate the amount of rice to be transported from each mill
to each wholesaler at the minimum possible transportation cost while fully satisfying the
demand of all wholesalers.

Table 1. Input data for the case study

Market M1 Market M2 Market M3 Supply
Vehicle V1 Vehicle V2 Vehicle V1 Vehicle V2 Vehicle V1 Vehicle V2

Mill A (17, 19, 21) (12, 14, 17) (6, 9, 12) (6, 8, 12) (8, 11, 14) (6, 9, 12) (11, 13, 15)
Mill B (1.5, 3, 4.5) (1, 2, 3) (7, 10, 12) (5, 7, 10) (18, 22, 26) (16, 20, 24) (9, 11, 13)
Mill C (23, 24, 26) (20, 21, 23) (18, 21, 23) (13, 16, 18) (17, 20, 23) (15, 17, 21) (5, 8, 9)

Loading capacity (15, 18, 21) (10, 12, 15) (15, 18, 21) (10, 12, 15) (15, 18, 21) (10, 12, 15)
Demand (10, 13, 15) (12, 15, 18) (8, 10, 12)

The total availability of rice (
∑3

g=1 α̃g) in three mills is (25, 32, 37) tonnes, total load-
ing capacity (

∑2
k=1 γ̃k) of vehicles is (25, 30, 36) tonnes and the total demand of rice
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(
∑3

h=1 β̃h) at three wholesaler markets is (30, 38, 45) tonnes. So, the problem is an un-
balanced problem, which can not be solved directly. Therefore, to solve this problem, the
proposed methodology is applied as follows:

Step 5.1: Add a dummy rice mill (Mill D) with rice availability (5, 6, 8) tons and a
dummy vehicle (Vehicle V3) with loading capacity (5, 8, 9) tonnes to cover the problem in
a balanced form (Table2). The per unit transportation cost of rice from the dummy mill
(Mill D) to three wholesaler markets (Market M1, Market M2, Market M3) and through
the dummy vehicle (Vehicle V3) is taken as follows:

χ̃411 = min{(17, 19, 21), (1.5, 3, 4.5), (23, 24, 26)} = (1.5, 3, 4.5),
χ̃412 = min{(12, 14, 17), (1, 2, 3), (20, 21, 23)} = (1, 2, 3),
χ̃421 = min{(6, 9, 12), (7, 10, 12), (18, 21, 23)} = (6, 9, 12),
χ̃422 = min{(6, 8, 12), (5, 7, 10), (13, 16, 18)} = (5, 7, 10),
χ̃431 = min{(8, 11, 14), (18, 22, 26), (17, 20, 23)} = (8, 11, 14),
χ̃432 = min{(6, 9, 12), (16, 20, 24), (15, 17, 21)} = (6, 9, 12),

and
χ̃113 = min{(17, 19, 21), (12, 14, 17)} = (12, 14, 17),
χ̃213 = min{(1.5, 3, 4.5), (1, 2, 3)} = (1, 2, 3),
χ̃313 = min{(23, 24, 26), (20, 21, 23)} = (20, 21, 23),
χ̃413 = min{(1.5, 3, 4.5), (1, 2, 3)} = (1, 2, 3),
χ̃123 = min{(6, 9, 12), (6, 8, 12)} = (6, 8, 12),
χ̃223 = min{(7, 10, 12), (5, 7, 10)} = (5, 7, 10),
χ̃323 = min{(18, 21, 23), (13, 16, 18)} = (13, 16, 18),
χ̃423 = min{(6, 9, 12), (5, 7, 10)} = (5, 7, 10),
χ̃133 = min{(8, 11, 14), (6, 9, 12)} = (6, 9, 12),
χ̃233 = min{(18, 22, 26), (16, 20, 24)} = (16, 20, 24),
χ̃333 = min{(17, 20, 23), (15, 17, 21)} = (15, 17, 21),
χ̃433 = min{(8, 11, 14), (6, 9, 12)} = (6, 9, 12).

Table 2. Transformed balanced problem

Market M1 Market M2 Market M3 Supply
Vehicle V1 Vehicle V2 Vehicle V3 Vehicle V1 Vehicle V2 Vehicle V3 Vehicle V1 Vehicle V2 Vehicle V3

Mill A (17, 19, 21) (12, 14, 17) (12, 14, 17) (6, 9, 12) (6, 8, 12) (6, 8, 12) (8, 11, 14) (6, 9, 12) (6, 9, 12) (11, 13, 15)
Mill B (1.5, 3, 4.5) (1, 2, 3) (1, 2, 3) (7, 10, 12) (5, 7, 10) (5, 7, 10) (18, 22, 26) (16, 20, 24) (16, 20, 24) (9, 11, 13)
Mill C (23, 24, 26) (20, 21, 23) (20, 21, 23) (18, 21, 23) (13, 16, 18) (13, 16, 18) (17, 20, 23) (15, 17, 21) (15, 17, 21) (5, 8, 9)
Mill D (1.5, 3, 3.5) (1, 2, 3) (1, 2, 3) (6, 9, 12) (5, 7, 10) (5, 7, 10) (8, 11, 14) (6, 9, 12) (6, 9, 12) (5, 6, 8)

Loading capacity (15, 18, 21) (10, 12, 15) (5, 8, 9) (15, 18, 21) (10, 12, 15) (5, 8, 9) (15, 18, 21) (10, 12, 15) (5, 8, 9)
Demand (10, 13, 15) (12, 15, 18) (8,10,12)

Step 5.2: On solving the transformed balanced problem by applying steps 4.2.1 to 4.2.4,
the fuzzy basic feasible solution is obtained as:

ξ̃121 = (3, 3, 3), ξ̃132 = (8, 10, 12), ξ̃211 = (9, 11, 13), ξ̃322 = (2, 2, 3),
ξ̃323 = (3, 6, 6), ξ̃411 = (1, 2, 2), ξ̃421 = (2, 2, 3), ξ̃423 = (2, 2, 3)
and the remaining ξ̃ghk are zero triangular fuzzy numbers.

Step 5.3 As in Step 4.3, using condition ũg + ṽh + w̃k = χ̃ghk for all the eight basic cells
obtained in Step 5.2 and taking the value of any two fuzzy dual variables equal to zero
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(say ũ4 = 0, w̃3 = 0), the value of the rest of the dual variables is calculated as follows:

ũ1 = (−11, 0, 11), ũ2 = (−3, 0, 3), ũ3 = (3, 9, 13), ṽ1 = (0.5, 1, 2.5), ṽ2 = (5, 7, 10),
ṽ3 = (−15, 9, 33), w̃1 = (−4, 2, 7), w̃2 = (−10, 0, 10)

and the values of δ̃ghk = χ̃ghk − (ũg + ṽh + w̃k) are found to be

δ̃111 = (−3.5, 16, 35.5), δ̃112 = (−11.5, 13, 37.5), δ̃113 = (−0.5, 13, 27.5),

δ̃122 = (−25, 1, 28), δ̃123 = (−15, 1, 18), δ̃131 = (−43, 0, 44),

δ̃133 = (−38, 0, 38), δ̃212 = (−14.5, 1, 15.5), δ̃213 = (−4.5, 1, 5.5),

δ̃221 = (−13, 1, 14), δ̃222 = (−18, 0, 18), δ̃223 = (−8, 0, 8),

δ̃231 = (−25, 11, 48), δ̃232 = (−30, 11, 52), δ̃233 = (−20, 11, 42),

δ̃311 = (0.5, 12, 26.5), δ̃312 = (−5.5, 11, 29.5), δ̃313 = (5.5, 11, 29.5),

δ̃321 = (−12, 3, 19), δ̃331 = (−36, 0, 39), δ̃332 = (−41, −1, 43),

δ̃333 = (−31, −1, 33), δ̃412 = (−11.5, 1, 12.5), δ̃413 = (−1.5, 1, 2.5),

δ̃422 = (−15, 0, 15), δ̃431 = (−32, 0, 33), δ̃432 = (−37, 0, 37),

δ̃433 = (−27, 0, 27).

Since, from Remark 2.11, δ̃ghk ≥ 0, ∀ g, h, k. Therefore, the initial feasible feasible solution
obtained is an optimal solution.

Step 5.4: The solution obtained in the previous step is an optimal solution. However,
this solution involves a dummy mill/ dummy vehicle, which is not acceptable for real-life
applications. Therefore, the optimal solution in terms of the existing original mills and
vehicles is obtained as follows:

Step 5.4.1: As in Step 4.5.1 by assuming the dual variables ũ′
4 = w̃′

3 = (0, 0, 0), the values
of the remaining fuzzy dual variables are obtained as

ũ′
1 = (−11, 0, 11), ũ′

2 = (−3, 0, 3), ũ′
3 = (3, 9, 13), ṽ′

1 = (0.5, 1, 2.5), ṽ′
2 = (5, 7, 10),

ṽ′
3 = (−15, 9, 33), w̃′

1 = (−4, 2, 7), w̃′
2 = (−10, 0, 10).

Remark 5.1. The relation ũ′
g +ṽ′

h+w̃′
k = χ̃ghk holds for the variables occurring in optimal

solution and here the initial basic feasible solution is an optimal solution. Therefore, the
value of dual variables obtained in Step 5.4.1 is the same as that obtained in Step 5.3.

Step 5.4.2: It is found that the fuzzy dual variables ũ′
1, ũ′

2 and w̃′
2 have zero rank, i.e.,

R(ũ′
1) = R(ũ′

2) = R(w̃′
2) = 0. Therefore, the availability of rice in Mill A, in Mill B, and

the loading capacity of Vehicle V2 can be increased to fully meet the demand of the three
wholesalers.

Step 5.4.3: Since R(ũ′
g) = 0 is not unique, i.e., R(ũ′

1) = R(ũ′
2) = 0. Therefore, according

to Section 1b of Step 4.5.3, corresponding to the dummy transport network ξ̃421, increase
the value of the fuzzy basic variable ξ̃121 by ξ̃421 and corresponding to ξ̃411, increase the
value of fuzzy basic variable ξ̃211 by ξ̃411 as ξ̃121 = (3, 3, 3) + (2, 2, 3) = (5, 5, 6), ξ̃211 =
(9, 11, 13) + (1, 2, 2) = (10, 13, 15), respectively.

In addition, R(w̃′
k) = 0 is unique, that is, R(w̃′

2) = 0. Therefore, according to Sec-
tion 2a of Step 4.5.3, increase the value of fuzzy basic variable ξ̃322 by ξ̃323 as ξ̃322 =
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(2, 2, 3) + (3, 6, 6) = (5, 8, 9).

For fuzzy basic variables, ξ̃423, R(ũ′
g) = 0 is not unique but R(w̃′

k) = 0 is unique. There-
fore, according to Section 3b of Step 4.5.2, increase the value of fuzzy basic variable ξ̃222
by ξ̃423 as ξ̃222 = (2, 2, 3).

Hence, the required fuzzy optimal solution in terms of original existing mills and vehicles
is obtained as

ξ̃132 = (8, 10, 12),

ξ̃121 = (5, 5, 6),

ξ̃211 = (10, 13, 15),

ξ̃222 = (2, 2, 3),

ξ̃322 = (5, 8, 9)
and the remaining variables are zero triangular fuzzy numbers.

For this set of solutions, the total transportation cost is obtained as $(168, 316, 475.5)
and is presented graphically in Figure 4.

Figure 4. Fuzzy optimal transportation cost

The following information can be interpreted from the obtained membership function:
(i) The transportation cost is $168 or more but less than $475.5.
(ii) The probability that the transportation cost will be $316, is maximum.
(iii) Satisfaction level of the decision maker for the transportation cost, say (χ) is (µ(χ) ×
100)%,

where

µ(χ) =


χ−168

316−168 , if 168 ≤ χ ≤ 316
475.5−χ

475.5−316 , if 316 ≤ χ ≤ 475.5
0, otherwise

6. Validation of results
The considered problem of rice transportation considered is an unbalanced problem

in which the total availability of rice in the mills and the total loading capacity of the
vehicles are less than the total demand for rice of the wholesaler. To solve such types of
problem, existing techniques [24, 31] use the concept of dummy facilities (mills/vehicles),
which is not acceptable or valid in real-life problems. This is because the decision maker



18 Shivani, D. Rani, A. Ebrahimnejad

has no idea about the location of the dummy mills or the type of dummy vehicle to be
used. Therefore, the concept of dummy facilities does not seem valid for real-life problems.
Unlike existing techniques, the proposed method provides an optimal solution in terms of
the original mills as well as the facilities of the original vehicles.

For the considered case study, the proposed approach tells us that to meet the total de-
mand at a minimum cost, the availability of rice in mill A should be increased by (2, 2, 3)
tonnes, in mill B by (3, 4, 5) tonnes, and the loading capacity of vehicle V2 should be
increased by (5, 8, 9) tonnes. To validate these results, the number of cases is studied by
increasing the amount of deficit supply and loading capacity at different mills and vehicles,
respectively. A total of seven cases are shown in which the amount of deficit in supply
and deficit in loading capacity is increased, respectively, at eachand vehicle one by one
and also at all the facilities equally. The problems are solved with Lingo 20.0 and the
results obtained are as shown in Table 3. The comparison between the solutions obtained
is made based on their ranking and is shown in Figure 5. From Table 3 and Figure 5, it
is concluded that the proposed method gives the minimum possible cost among all.

Table 3. Results

Case Increasing the supply at Increasing the loading capacity of Transportation Cost
1 Mill A Vehicle V1 (187.5, 350, 523.5)
2 Vehicle V2 (180.5, 340, 502)
3 Mill B Vehicle V1 (180, 326, 500.5)
4 Vehicle V2 (171, 319, 475.5)
5 Mill C Vehicle V1 (232.5, 400, 592.5)
6 Vehicle V2 (222.5, 388, 568.5)
7 Equally dividing among all the mills Equally dividing among all the vehicles (186.6, 343.7, 517.3)
8 As suggested by the proposed method As suggested by the proposed method (168, 316, 475.5)

Figure 5. Comparison of the solutions obtained in Table 3

From the optimal solution obtained, it is found that the quantity of rice that is trans-
ported from the dummy mill (mill D) is adjusted to the original mills (Mill A, Mill B) and
the amount that must be transported by the dummy vehicle V3 is adjusted to the original
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vehicle V2. That is, the supply at Mill A, Mill B, and the loading capacity of vehicle
V2 can be increased to meet the entire demand of wholesalers. In addition, the obtained
solution is compared with those obtained by the existing approaches in Table 4.

Table 4. Solution comparison for case study 5
.

Methods Fuzzy optimal transportation cost Transported amount
Kumar and Kaur [26], Chakraborty and Jana [9], Muthuperumal [30] Not applicable −

Rani and Gulati [31], Kaur et al. [24] (75, 138, 219) (20, 24, 28)

Proposed method (168, 316, 475.5) (30, 38, 45)

From Table 4, it can be seen that the fuzzy optimal cost obtained by the proposed method
is higher than the solution obtained by [24, 31]. It is only because the existing methods
[24, 31] obtained the fuzzy optimal solution by incorporating the dummy mills/vehicles
and the cost that has to be calculated by the these existing methods is only to transport
the (20, 24, 28) tons of rice. The remaining amount of rice is transported to wholesalers
through dummy facilities, which is practically not acceptable. In contrast, the proposed
method obtained the fuzzy optimal cost of the unbalanced problem by transporting the
entire amount of rice through the original mills / vehicles, and hence the demand for all the
wholesale markets of rice is fully satisfied. Therefore, by eliminating the need for dummy
facilities, the proposed method identifies which specific sources and vehicle capacities
should be enhanced to meet the entire demand. This realistic approach improves long-
term efficiency by ensuring that all destinations are fully served, thereby reducing delivery
failures. Furthermore, it supports better logistical planning, as it provides actionable
insights on where to invest resources either by increasing supply at certain sources or
enhancing the loading capacity of specific vehicles. In doing so, the model improves
logistical reliability, promotes better resource management, and ultimately contributes to
greater customer satisfaction. Although there is an initial increase in cost, this is offset by
the long-term benefits of operational feasibility, service completeness, and sustainability
making the solution both practical and impactful in the real-world logistics systems.

7. Conclusion
Most of the existing methods for solving unbalanced FFSTP provide the optimal so-

lution involving the dummy source/destination/vehicle. Since these dummies have no
physical relevance and these do not exist in reality, the unbalanced problem is not provid-
ing a solution that can benefit the decision maker while solving the real-world problems.
In order to address this limitation, a novel approach is introduced, whose applicability is
demonstrated by solving a real-life unbalanced solid transportation problem in a fuzzy en-
vironment. The solution obtained by the proposed approach does not involve the dummy
source/dummy vehicle/dummy destination. Although the minimum transportation cost
obtained by the proposed method is more than that obtained by the existing methods,
our cost is when, in actual, the total demand is met. So, the proposed approach may
be more helpful and fruitful in solving real-life transportation problems than the existing
ones. Furthermore, the proposed algorithm offers the advantage of providing a fuzzy solu-
tion to the problem within a fuzzy environment. This sets it apart from existing methods
that provide only crisp solutions to fuzzy problems. Using triangular fuzzy numbers to
represent the vagueness of the real world, the proposed algorithm manages indeterminacy
and impreciseness in a better way. The triangular fuzzy numbers have been used to repre-
sent the real-world vagueness. These numbers are chosen for the easy understanding and
readability of the proposed method. One may choose the fuzzy numbers that best suits
his/her requirement according to the real-world situation. In the future, the interested
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researchers may explore the extension of our proposed approach to address an unbalanced
multi-objective or multi-item solid transportation problem. However, investigating the
applicability of the algorithm in any other uncertain environment is a future challenge. In
addition, the present approach can be extended to solve real-life transportation problems
with fuzzy parameters with hesitant intuitionistic fuzzy parameters with interval values
[7].
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