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ON THE FINITENESS OF SOME p-DIVISIBLE SETS
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Abstract. For any positive integer n, let Hn denote the nth harmonic num-

ber. Given a prime number p, it is not known whether the set of integers
J(p) = {n ∈ N : p | Hn} is finite. In this paper, we first investigate a variant

of this set, namely, we work on the divisibility properties of the differences of

harmonic numbers. For any prime p and a positive integer w, we define the
set D(p, w) as {n ∈ N : p | Hn − Hw} and work on the structure of this set.

We present some finiteness results on D(p, w) and obtain upper bounds for
the number of elements in the set. Next, we consider the differences of gener-

alized harmonic numbers and present an upper bound for the corresponding

counting function. Moreover, under some plausible conditions, we prove that
the difference set of generalized harmonic numbers is finite. Finally, we point

out some directions to pursue.

1. Introduction

The nth harmonic number Hn is defined as the sum
n∑

k=1

1

k

for any positive integer n. These numbers have been investigated in different as-
pects, where one of the paths is to work on their integerness and related properties,
such as divisibilities. It is known that these numbers are non-integers except for
the case n = 1. Moreover, the difference of two harmonic numbers

Hn −Hm

is also not an integer whenever n > m ≥ 1 by [23]. However, we focus on the
divisibility properties of these differences as they come with intriguing features.
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Let p be a prime number. We use the notation p | a
b ∈ Q to mean that p divides

the numerator of a
b in its lowest terms. In 1991, the set Jp = J(p) = {n ∈ N : p |

Hn} was presented in [16]. Some conjectures were also given in the paper and one
of the conjectures was that the set is finite for any prime number p. They showed
that Jp is finite for the prime numbers {2, 3, 5, 7}. Later on, the finiteness of the
set was obtained for primes p up to 547, except for {83, 127, 397}, in [10], but the
problem is still open.

However, there are some asymptotic results on the set. Let Jp(x) count the
number of elements in J(p) that are less than x, for any positive real number x.

Then, it is known by [27] that Jp(x) < 129p
2
3x0.765, hence one has that

Jp(x) = o(x).

The upper bound was improved later to 3x
2
3+

1
25 log p in [30].

Moreover, it is known that for any prime p, the elements {p− 1, p(p− 1), p2− 1}
are always in the set Jp and if the set consists of only those elements, the prime
number p is called harmonic (see [16]).

We, in this paper, will work on a variant of this set, namely we will pick a prime
number p, a positive integer w and look for positive integers n so that the prime p
divides the difference Hn −Hw. We will use the following notation for the set.

Definition 1. For any prime p and a positive integer w, we define

D(p, w) := {n ∈ N : p | Hn −Hw}.

Remark 1. For any prime number p, if Jp is finite, then D(p, w) is also finite.
(See [19], Remark.4.12).

As we mentioned, it is known [23] that the difference Hn − Hm is never an
integer whenever n > m ≥ 1. In addition to this fact, it was shown in [15] that the
equality Hk −Hm = Hℓ −Hn is valid only if k = ℓ and m = n holds. However, we
work around the divisibility properties of D(p, w) as the differences are interesting
enough for this purpose. Consequently, we will need the p-adic order νp defined on
the rational numbers. Let n be any integer and p be a prime number. We have

νp(n) =

{
k if pk ∥ n

∞ if n = 0

where pk ∥ n means that pk | n but pk+1 ∤ n with k ∈ Z. If n = a
b is a rational

number, we set

νp

(a
b

)
= νp(a)− νp(b).
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We will start by investigating the congruence relations on D(p, w), and then we
will give an upper bound for the counting function

Dp,w(x) = |{n ∈ D(p, w) : n ≤ x}|.

To obtain the upper bound, we first need to bound the number of elements in
the intervals of length at most p, lying inside the set D(p, w). The idea is based on
the argument given in [27]. Eventually, we will obtain our first main result.

Theorem A. Let p be a prime number, w be a positive integer and x ≥ 1 be a real
number. Then, we have

Dp,w(x) < 3x
2
3+

1
25 log p .

Next, we consider an extension of the harmonic numbers, the generalized har-
monic numbers. They are defined as

H(s)
n =

n∑
k=1

1

ks

for any positive integers n and s. We extend the difference set to these numbers:

Definition 2. Let p be a prime number and s, w be any positive integers. Then,
we define

G(p, s, w) = Gp,s,w = {n ∈ N : p | H(s)
n −H(s)

w }.

Next, we define the corresponding counting function

Gp,s,w(x) = |{n ∈ G(p, s, w) : n ≤ x}|

and obtain our second main result.

Theorem B. Assume that p is a prime number, s, w are any positive integers and
x ≥ 1 is any real number. Then,

Gp,s,w(x) ≤ 3x
2
3+

1
25 log p+

log s
3 log p+

log s
3 log x

holds. Furthermore, whenever p > se
3
25 holds, we have

Gp,s,w(x) = o(x).

Moreover, we show that G(p, s, w) is finite in some cases and this will be our
third main result.

Theorem C. Let p be a prime number, s, w be positive integers with s ≥ 2 and
p− 1 ∤ s. If the inequality

νp

(
H

(s)
k

)
≤ s− 1

holds for any k ∈ {1, 2, . . . p− 1}, then G(p, s, w) is finite.
Moreover, if pm ≤ w < pm+1 for some integer m ≥ 0, then we have G(p, s, w) ⊆
{1, . . . , pm+1 − 1}.
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In Section 5, we obtain some difference sets using [26] together with some of our
results, including a counter example for the case when the condition in Theorem C
fails, and also discuss the computational process.

Then, in the last section, we present some generalizations of the harmonic num-
bers and point out some directions to work on the divisibility properties of the
differences.

A generalization of the harmonic numbers is the Dedekind harmonic numbers [4].
For any number field K, a finite field extension of the rationals, the nth Dedekind
harmonic number is defined as

hK(n) =
∑

0̸=I⊆OK

N(I)≤n

1

N(I)
,

such that the sum ranges over all non-zero ideals of OK with norm less than or
equal to n. These numbers also come with plenty of properties and it was shown in
the same paper [4] that the difference of these numbers are non-integer after a while.

Moreover, another generalization of the harmonic numbers is the hyperharmonic
numbers. These numbers were defined in [13] recursively as

h(r)
n =

n∑
k=1

h
(r−1)
k

for r ≥ 2, such that h
(1)
n = Hn.

The integerness of these numbers was an open question proposed in [25]. This
property was studied by various authors (see [3,7,8,18]) and recently, it was shown
that there are in fact hyperharmonic integers [28]. The set Jp was also extended to
the hyperharmonic numbers in [19] and for divisibility properties of the generalized
hyperharmonic numbers, which is an simultaneous extension of both generalized
harmonic and hyperharmonic numbers, we refer interested readers to [20] and [21].

In [13], it was stated that the nth hyperharmonic number of order r can be
written as

h(r)
n =

(
n+ r − 1

r − 1

)
(Hn+r−1 −Hr−1).

Hence, one may work on this identity to continue the investigation on the differ-
ences. In fact, the binomial coefficients leads to a conjecture on the harmonic differ-
ences, which arises from central binomial coefficients and the Catalan numbers [24].
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Lastly, we direct interested readers to [6] for intriguing results on the differences
of hyperharmonic numbers.

2. Properties of D(p, w)

In this section, we will investigate the structure of the set. First, let us consider
the case where w < p and start with an observation.

We have by [9] that

Hp−1 = 1 +
1

2
+ · · ·+ 1

p− 2
+

1

p− 1
≡ 0 (mod p) (1)

for any prime number p > 2. Therefore, we may split the sum

Hp−1 =

(
1 +

1

2
+ · · ·+ 1

r

)
+

(
1

r + 1
+ · · ·+ 1

p− 2
+

1

p− 1

)
≡ 0 (mod p)

and write

−Hr ≡
(

1

r + 1
+ · · ·+ 1

p− 2
+

1

p− 1

)
(mod p)

for any integer 1 ≤ r ≤ p− 1.

In particular, we have

1

k
+

1

p− k
≡ 0 (mod p) (2)

for any 1 ≤ k ≤ p− 1, which implies the following result.

Proposition 1. For any prime p and 1 ≤ r ≤ p− 1, we have

Hr ≡ Hp−1−r (mod p).

Proof. Notice for any prime p and 1 ≤ r ≤ p− 1 that

Hp−1−r −Hr =

(
1 +

1

2
+ · · ·+ 1

p− 1− r

)
−
(
1

r
+ · · ·+ 1

2
+ 1

)
≡
(
1 +

1

2
+ · · ·+ 1

p− r − 1

)
+

(
1

p− r
+ · · ·+ 1

p− 2
+

1

p− 1

)
= Hp−1 ≡ 0 (mod p)

and we are done. □

Corollary 1. Let p be a prime number, w be a positive integer and a, b be positive
integers with 1 ≤ a < b ≤ p− 1 such that a+ b = p− 1. Then, if a ∈ D(p, w) then
we also have b ∈ D(p, w).
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This corollary indicates that we have a symmetry about p−1
2 for any odd prime p.

We can generalize Corollary 1 for integers greater than p − 1, but first let us
introduce some notations. Given a positive integer n and a prime p, we may write
n̂ to mean that ⌊n

p ⌋. The interval

[pk, p(k + 1)− 1]

will be denoted by Ik for any k ∈ Z≥0. Moreover, if a = pk + r ∈ Ik for some k,
we will use ā for the integer pk + (p− 1− r). Therefore, a quick observation is as
follows:

a ∈ D(p, w) =⇒ ā ∈ D(p, w). (3)

Before we give the proof, let us first show an argument that will be quite useful
when dealing with modular equivalences. Suppose that p is a prime number and
n = pk + r is a positive integer with non-negative integers k and 0 ≤ r ≤ p − 1.
Also, note that for any integers a and b, we have

1

a
≡ 1

pb+ a
(mod p).

Then, as we have (
1 +

1

2
+ · · ·+

1

p− 1

)
≡ 0,

we also have
1

(pm+ 1)
+

1

(pm+ 2)
+ · · ·+

1

(pm+ p− 1)

for any integer m (see also [11]). Therefore, for a given n as above, we will write

Hn ≡ 1

p
Hk +Hr (mod p)

throughout the paper (see [16]). Now, we can proceed with the proof.

Proposition 2. Let a = pk + r be a positive integer with r, k ∈ Z≥0 with
0 ≤ r ≤ p− 1. Then, we have

a ∈ D(p, w) =⇒ ā = pk + (p− 1− r) ∈ D(p, w)

for any w ∈ Z>0.

Proof. Let a = pk+R and w = pm+r for some integers k,m with 0 ≤ r,R ≤ p−1.
Suppose that a ∈ D(p, w) so that we write

Ha −Hw ≡ 1

p
(Hk −Hm) + (HR −Hr) ≡ 0 (mod p).

Then, setting ā = pk + (p− 1−R) yields that

Hā −Hw ≡ 1

p
(Hk −Hm) + (Hp−1−R −Hr) ≡

1

p
(Hk −Hm) + (HR −Hr) ≡ 0 (mod p)
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by Proposition 1. □

Remark 2. For any prime number p and positive integer w, we have

{w, w̄} ⊆ D(p, w).

Moreover, the equality D(p, w) = D(p, w̄) holds.

Furthermore, we actually have

Hp−1 ≡ 0 (mod p2) (4)

for primes p > 3 by [29]. This congruence points out some more elements in D(p, w)
whenever w < p.

Proposition 3. Suppose that p > 3 is a prime and 0 < w < p is an integer. Then
if we let n = p(p− 1) + w, we have {n, n̄} ∈ D(p, w).

Proof. Equation (4) states that νp(Hp−1) ≥ 2. As a consequence, we have

Hn −Hw ≡ 1

p
Hp−1 +Hw −Hw ≡ 1

p
Hp−1 ≡ 0 (mod p).

□

Proposition 4. Let p be a prime number and w < p be a positive integer. If
n = pn̂+ r ∈ D(p, w) then n̂ ∈ Jp.

Proof. Suppose that we have n = pn̂+ r ∈ D(p, w) for some prime p and an integer
0 < w < p. Then, Hn −Hw ≡ 1

pHn̂ +
(
Hr −Hw

)
≡ 0 (mod p) implies νp (Hn̂) ≥ 1

so that we have n̂ ∈ Jp. □

The symmetry

n ∈ D(p, w) ⇐⇒ n̄ ∈ D(p, w)

actually points out that there is a symmetry for the set Jp too, which can be seen
by taking w as some element in Jp. Namely, the elements of Jp come in pairs. We

omit the case when n = n̄, so that n ≡ p−1
2 (mod p).

We note that we did not consider the case when 0 ∈ Jp throughout our investiga-
tion. If we set H0 = 0

1 as in [16], then we can see that {0, p−1, p(p−1), p2−1} ⊆ Jp
where the pairs are {0, p− 1} and {p(p− 1), p2 − 1} since

0̄ = p− 1, p(p− 1) = p(p− 1) + p− 1 = p2 − 1.

However, we may omit this case. Now, if we remove the restriction w < p, we
obtain the following result.

Lemma 1. Let w ∈ Ik for some non-negative integer k. Then, we have

Ik+1 ∩D(p, w) = ∅.
Moreover, if n belongs to D(p, w) then n̂ belongs to D(p, ŵ) for any n and w.
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Proof. If w ∈ Ik = [pk, p(k+1)− 1] then we can write w = pk+ r for some integer
0 ≤ r ≤ p − 1. Now, let us take any n = p(k + 1) + R ∈ Ik+1 ∩ D(p, w) with
0 ≤ R ≤ p− 1 and write the difference as

Hn −Hw ≡ 1

p

(
Hk+1 −Hk

)
+
(
HR −Hr

)
=

1

p

1

k + 1
+
(
HR −Hr

)
(mod p). (5)

The p-adic valuation of HR−Hr is always non-negative as both R, r < p. However,

we have νp

(
1
p

1
k+1

)
≤ −1 so that we end up with νp

(
Hn −Hw

)
≤ −1.

For the last part, suppose that w ∈ Ik and there is n = pn̂ + R ∈ D(p, w).
Writing Hn −Hw as in (5), we deduce that

Hn −Hw ≡ 1

p

(
Hn̂ −Hŵ

)
+
(
HR −Hr

)
≡ 0 (mod p)

so that νp
(
Hn̂ −Hŵ

)
≥ 0 yields that n̂ ∈ D(p, ŵ). □

Lemma 2. Let p be an odd prime and w be a positive integer. If D(p, w) is finite,
then D(p, pw + r) is also finite for any integer 0 ≤ r ≤ p− 1.

Proof. Suppose that D(p, pw + r) is infinite for some 0 ≤ r ≤ p − 1 and write
D(p, w) = {n1 < n2 < · · · < nk} for some k ∈ Z>0. Then, choose some

n = pk +R ∈ D(p, pw + r)

with k > ⌊nk/p⌋. As n ∈ D(p, pw + r) we have

Hn −Hpw+r ≡ 1

p
(Hk −Hw) +

(
HR −Hr

)
≡ 0 (mod p)

so that

νp (Hk −Hw) ≥ 1.

Thus, k ∈ D(p, w) must hold but the fact k > ⌊nk/p⌋ yields a contradiction. □

3. Proof of Theorem A

In this section, we prove our first main result, which is to bound the function

Dp,w(x) = |{n ∈ D(p, w) : n ≤ x}|.

We begin by dividing the set into intervals of length at most p, next we bound them
and then provide the upper bound for the whole set D(p, w) ∩ [1, x].

Before we prove Theorem A, we first prove a weaker version of it, with the use
of arguments of [27]. Then, using the tools from [30] we will obtain Theorem A.

For any positive integer d, we let

fd(x) = (x+ 1)(x+ 2) . . . (x+ d). (6)
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Consequently we get

f ′
d(x)

fd(x)
=

1

x+ 1
+

1

x+ 2
+ · · ·+ 1

x+ d
.

Then, if n ∈ D(p, w) for some n > w we can say that

Hn −Hw =
1

w + 1
+

1

w + 2
+ · · ·+ 1

n
=

f ′
n−w(w)

fn−w(w)
≡ 0 (mod p).

Now, we will bound the number of elements in the intersection of D(p, w) with
intervals of length at most p. To do so, we use the polynomial f ′

d(x). However, we
will not consider the particular case d = n− w, x = w, as the polynomial f ′

n−w(w)
leads to some other direction that we do not investigate in this paper (see Section
6). Moreover, the condition n > w will not be a concern, as we see in the proof of
the next lemma.

Lemma 3. Assume that p is a prime number, w is a positive integer and x, y are
real numbers with 1 ≤ y < p. Then, we have

|D(p, w) ∩ [x, x+ y]| < 3

2
y

2
3 + 1.

Proof. Let us write

D(p, w) ∩ [x, x+ y] = {n1 < n2 < · · · < nk}

for some k ≥ 2 because otherwise there is nothing to show. Therefore, suppose that
k = |D(p, w) ∩ [x, x+ y]| > 1. For any 1 ≤ i < j ≤ k we have

Hni
−Hnj

= (Hni
−Hw)− (Hnj

−Hw) ≡ 0 (mod p). (7)

Then, let us set di = ni+1 − ni for i = 1, 2, . . . , k − 1 and observe for any i that

f ′
di
(ni)

fdi
(ni)

=
1

ni + 1
+

1

ni + 2
+ · · ·+ 1

ni+1
= Hni+1

−Hni
≡ 0 (mod p). (8)

by (7) above. Then, the result follows from [27, Lemma 2.2]. □

A partition of Jp was given in [16] as follows. Inductively, we define the sets

J
(1)
p = [1, p−1]∩Jp and J

(k+1)
p = {pn+r ∈ Jp : n ∈ J

(k)
p , 0 ≤ r ≤ p−1, p | Hn}

for any positive integer k. It was shown that J
(k)
p = [pk−1, pk − 1]. Hence, we can

write

Jp =

∞⋃
k=1

J (k)
p

Fact 5. By the definition

J (k+1)
p = {pn+ r ∈ Jp : n ∈ J (k)

p , 0 ≤ r ≤ p− 1, p | Hn},
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notice that if J
(k)
p = ∅ for some positive integer k, then J

(t)
p = ∅ for any t ≥ k and

we get

Jp =

k−1⋃
t=1

J (t)
p .

Now, we give a partition of D(p, w) for any w < p using the notation above.

Definition 3. Let p be a prime and w < p be a positive integer. We define

D(1)
p,w = D(p, w) ∩ [1, p− 1] and D(k+1)

p,w = {pn+ r ∈ D(p, w) : n ∈ J (k)
p , 0 ≤ r ≤ p− 1}.

Next, a similar result can be obtained.

Proposition 6. The equality

D(k)
p,w = D(p, w) ∩ [pk−1, pk − 1]

holds for any prime number p and positive integer k.

Proof. Let us prove by induction on k. For k = 1, the result follows. Now, suppose

that the equality D
(k)
p,w = [pk−1, pk − 1] holds and let

pn+ r ∈ D(k+1)
p,w = {pn+ r ∈ D(p, w) | n ∈ J (k)

p : 0 ≤ r ≤ p− 1}.

Then, as n ∈ J
(k)
p we know that pk−1 ≤ n ≤ pk − 1 holds, which implies that

pn+ r ∈ [pk, pk+1 − 1]

and we are done. Conversely, if m ∈ D(p, w) ∩ [pk, pk+1 − 1] then we can write
m = pn + r for some n ∈ [pk−1, pk − 1] and 0 ≤ r ≤ p − 1. Furthermore, as the
integer m = pn+ r ∈ D(p, w), we have

Hm −Hw = Hpn+r −Hw ≡ 1

p
Hn +

(
Hr −Hw

)
≡ 0.

That is, as νp
(
Hr − Hw

)
≥ 0 holds, we obtain that n ∈ Jp. The proof is now

complete. □

Now, we can prove a weaker version of Theorem A.

Lemma 4. Let p be a prime, w < p be a positive integer and x ≥ 1 be a real
number. Then, we have

Dp,w(x) < 129p
2
3x0.765.

Proof. First, let us set N = 3
2 (p − 1)2/3 + 1. With the help of Lemma 3 and [27,

Lemma 2.2] we obtain that

|D(1)
p,w| = |J (1)

p | < N.

Next, we have

|D(k+1)
p,w | =

∑
n∈J

(k)
p

|D(p, w) ∩ [pn, pn+ p− 1]| < |J (k)
p |N.
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Moreover, |J (k)
p | < Nk holds by the proof of [27, Theorem 1.1]. Consequently, we

get

|D(k)
p,w| < Nk

and the rest is similar to the cited proof. □

Now, we can prove Theorem A.

Proof of Theorem A. Our aim is to improve the upper bound presented in Lemma
4. To improve the upper bound for Dp,w(x), we need to modify Definition 3,
investigate the different cases, and then follow the procedure presented in [30] for
Jp. In the proof of Lemma 3, we had

D(p, w) ∩ [x, x+ y] = {n1 < · · · < nk}

with some positive integer w < p, real numbers x, y with 1 ≤ y < p and set
di = ni+1 − ni for i = 1, 2, . . . , k − 1. Then, we observed in (8) that

f ′
di
(ni)

fdi
(ni)

= Hni+1 −Hni ≡ 0 (mod p).

As fd(x) is a polynomial of degree d and the intersection interval has length at
most p, we deduce that there are at most d− 1 many solutions of

f ′
di
(ni) ≡ 0 (mod p).

This fact leads that

|{i : ni+1 − ni = d}| ≤ d− 1

for any positive integer d ≥ 1 with i = 1, 2, . . . , k.

At this point, we need to consider the cases where w ∈ [pt, pt+1 − 1] for some
t ∈ Z≥0.

Case 1. w ∈ [1, p− 1].

In this case, we can continue with Definition 3 and set D
(1)
p,w = D(p, w) ∩ [1, p− 1]

and D
(k+1)
p,w = {pn + r ∈ D(p, w) : n ∈ J

(k)
p , 0 ≤ r ≤ p − 1} for any k. Then,

together with our argument presented in the proof of Lemma 4, our setup becomes
identical with the set up given in [30, Theorem 1.1].

Namely, [30, Lemma 2.4] applies to the difference set so that we have

|D(p, w) ∩ [x, x+ y]| ≤
(
9

8

) 1
3

y
2
3 (9)

for any prime number p, any positive integer w and any real numbers x, y with
8
3 ≤ y < p. Here, we do not have to bound w with p by our observation in the
proof of Lemma 3. So, we continue with the improved upper bound.
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Let us set

N =

(
9

8

) 1
3

(p− 1)
2
3 .

Then, given a real number x, we can find the positive integer m satisfying

pm−1 ≤ x < pm.

Then, we can write

Dp,w(x) = Dp,w(p
m−1 − 1) + |D(p, w) ∩ [pm−1, x]|. (10)

For the first summand, we can write by Definition 3 and Proposition 6, together
with (9) that

Dp,w(p
m−1 − 1) =

m−1∑
i=1

|D(p, w) ∩ [pi−1, pi − 1]|

=

m−1∑
i=1

|D(i)
p,w| ≤

m−1∑
i=1

N i =
N

N − 1
Nm−1. (11)

Here, we also use the fact that |D(i)
p,w| ≤ N i for i ≥ 1 via Lemma 4. For the second

summand, we have

|D(p, w) ∩ [pm−1, x]| ≤
∑

n∈J(m−1)
p

pn≤x

|D(p, w) ∩ [pn, pn+ p− 1]|

so that

|D(p, w) ∩ [pm−1, x]| ≤ N
∑

n∈J(m−1)
p

pn≤x

1 = N

∣∣∣∣D(p, w) ∩
[
pm−2,

x

p

]∣∣∣∣
≤ N2

∣∣∣∣D(p, w) ∩
[
pm−3,

x

p2

]∣∣∣∣
≤ . . .

= Nm−1

∣∣∣∣D(p, w) ∩
[
1,

x

pm−1

]∣∣∣∣ .
Here, if x < 3pm−1 then∣∣∣∣D(p, w) ∩

[
1,

x

pm−1

]∣∣∣∣ ≤ 1 ≤
(
9

8

) 1
3
(

x

pm−1

) 2
3

.

Otherwise, if x ≥ 3pm−1 then by (9) we get∣∣∣∣D(p, w) ∩
[
1,

x

pm−1

]∣∣∣∣ ≤ (9

8

) 1
3
(

x

pm−1

) 2
3

.
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Thus, we obtain that

|D(p, w) ∩ [pm−1, x]| ≤ Nm−1

∣∣∣∣D(p, w) ∩
[
1,

x

pm−1

]∣∣∣∣ ≤ Nm−1

(
9

8

) 1
3
(

x

pm−1

) 2
3

.

Then, combining this result with (11), we write for (10) that

Dp,w(x) ≤
N

N − 1
Nm−1 +Nm−1

(
9

8

) 1
3
(

x

pm−1

) 2
3

.

The rest is similar to the proof of [30, Theorem 1.1] and we are done.

Case 2. w ∈ [p, p2 − 1].
In the first case, when we have w ∈ I0 = [1, p− 1], we had the sets

D(1)
p,w = D(p, w) ∩ [1, p− 1]

and D
(k+1)
p,w = {pn+ r ∈ D(p, w) : n ∈ J

(k)
p , 0 ≤ r ≤ p− 1} for any integer k ≥ 1.

Now, if w belongs to the interval [p, p2 − 1], we will need to modify the sets D
(k+1)
p,w

for k ≥ 1.

We know by Lemma 1 that if pn + r ∈ D(p, w) then n ∈ D(p, ŵ) holds where
0 ≤ r ≤ p − 1 and ŵ = ⌊w

p ⌋. However, the positive integer w in the lemma was

strictly less than p, and we get ŵ = 0 so that D(p, w) becomes Jp. That is why

we had J
(k)
p in Definition 3. However, we need the following definition to have a

partition of D(p, w) when w ∈ [p, p2 − 1]:

Definition 4. For any prime number p and a positive integer w, we define

D(1)
p,w = D(p, w) ∩ [1, p− 1] and D(k+1)

p,w = {pn+ r ∈ D(p, w) : n ∈ D
(k)
p,ŵ, r ∈ [0, p− 1]}

where ŵ = ⌊w
p ⌋, k ∈ Z>0.

Consequently, using Lemma 3, we can write that

|D(1)
p,w| <

3

2
(p− 1)2/3 + 1 = N.

In fact, we have

|D(k+1)
p,w | =

∑
n∈D

(k)
p,ŵ

|D(p, w) ∩ [pn, pn+ p− 1]| < |D(k)
p,ŵ|N < NkN = Nk+1

by the first case, as ŵ ∈ [1, p− 1].

As a consequence, we again obtain the same setup in [30] to bound our set.
Moreover, as Definition 4 applies to any w ∈ [pt, pt+1 − 1] with t ∈ Z≥0, we can
cover all the cases. The proof of Theorem A is now complete. □
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Remark 3. The authors of [30] examined general harmonic numbers in [12], de-
fined as follows. Let a, b ≥ 1 be two integers. They introduced

Ha,b(n) =

n−1∑
k=0

1

ak + b
,

such that by setting a = b = 1, we recover H1,1(n) = Hn. Furthermore, for positive
integers w ≤ n, we can express

Hn −Hw =
1

w + 1
+ · · ·+ 1

n
= H1,w+1(n− w)

and encourage readers to consult [12] for further interesting results.

4. Proof of Theorem B

In this section, we work with the differences of generalized harmonic numbers
and then prove Theorem B. Let us introduce these numbers. For any positive
integers n and s, the nth generalized harmonic number of order s is defined as

H(s)
n =

n∑
k=1

1

ks
.

First of all, as

1 <

∞∑
k=1

1

ks
< 2

holds, they are non-integer except for the case, when n = 1. Also, one can easily

show that the difference H
(s)
n −H

(r)
m is never an integer, except for the trivial case:

n = m and s = r.

These numbers also satisfy a Wolstenholme [29] type congruence, the generalized
version of (4) by [17]:

Fact 7. For any prime number p and a positive integer s, the congruence

H
(s)
p−1 ≡ 0 (mod p)

holds whenever p− 1 ∤ s.

This fact is quite useful when we deal with the divisibility properties. In partic-
ular, we know that most of the time,

ν
(
H

(s)
p−1

)
= 1

holds (see [22]).
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Similar to the harmonic numbers, given a positive integer n = pn̂ + r with p a
prime number and an integer 0 ≤ r ≤ p− 1, we have that

H(s)
n = H

(s)
pn̂+r ≡ 1

ps
H

(s)
n̂ +H(s)

r ≡ 0 (mod p), (12)

whenever p− 1 ∤ s by Fact 7.

Moreover, an extension of J(p) can also be defined as

J(p, s) = Jp,s := {n ∈ N : p | H(s)
n }.

Fact 8. If pn̂+ r ∈ J(p, s), then we have n̂ ∈ J(p, s) whenever p− 1 ∤ s.

The fact comes from (12) as if νp

(
1
psH

(s)
n̂ +H

(s)
r

)
≥ 0, then

νp

(
1

ps
H

(s)
n̂

)
≥ 0

must hold by the Archimedean property of νp. In other words, νp

(
H

(s)
n̂

)
≥ s must

hold so that we get n̂ ∈ J(p, s) (see also the proof of Proposition 4).

Also, similar to Fact 5, setting

J (1)
p,s = J(p, s)∩[1, p−1] and J (k+1)

p,s = {pn+r ∈ Jp,s : n ∈ J (k)
p,s , 0 ≤ r ≤ p−1, p | H(s)

n }

for any k ≥ 1, we have that J
(k)
p,s = [pk−1, pk − 1] (see [5, Lemma 3.1]). Hence, we

have the following fact.

Fact 9. If J
(k)
p,s = J(p, s) ∩ [pk−1, pk − 1] = ∅ for some positive integer k, then we

have J(p, s) =
⋃k−1

t=1 J
(t)
p,s.

Now, let us define the corresponding difference set for generalized harmonic
numbers.

Definition 5. Let p be a prime number and s, w be any positive integers. Then,
we define

G(p, s, w) = Gp,s,w = {n ∈ N : p | H(s)
n −H(s)

w }.

Note by definition that if w ∈ J(p, s), then the difference set G(p, s, w) becomes
identical with J(p, s).

Let us extend some of our results to the generalized harmonic numbers. For the
rest of this section, suppose that p − 1 ∤ s holds. Under this condition, we can
extend our results from Section 2. For instance, we generalize Lemma 1 and we
obtain the following result.
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Lemma 5. Let n,w be positive integers and p be a prime number. Also let
n = pn̂+R, w = pŵ+r for some non-negative integers n̂, ŵ and 0 ≤ r,R ≤ p−1. If
n ∈ G(p, s, w), then we have n̂ ∈ G(p, s, ŵ) for any positive integer s. In particular,
if w < p, then G(p, s, ŵ) = J(p, s).

Proof. The idea is similar to the proof of Lemma 1. Using (12), we write

H(s)
n −H(s)

w = H
(s)
pn̂+R −H

(s)
pŵ+r ≡ 1

ps

(
H

(s)
n̂ −H

(s)
ŵ

)
+
(
H

(s)
R −H(s)

r

)
≡ 0 (mod p)

where

νp

(
H

(s)
R −H(s)

r

)
≥ 0

as both r,R ≤ p− 1. Thus, we have νp

(
1
ps

(
H

(s)
n̂ −H

(s)
ŵ

))
≥ 0. Therefore, n̂ lies

in the set G(p, s, ŵ) with (
H

(s)
n̂ −H

(s)
ŵ

)
≡ 0 (mod ps).

Moreover, if w < p, then ŵ = ⌊w
p ⌋ = 0 and we are done.

□

We can also generalize Lemma 2 as follows, which we state without the proof as
the process is similar.

Lemma 6. Let p be an odd prime and w, s be positive integers. If G(p, s, w) is
finite, then G(p, s, pw + r) is also finite for any integer 0 ≤ r ≤ p− 1.

Now, let us define the counting function for G(p, s, w).

Definition 6. For any real number x ≥ 1, a prime number p and a positive integer
w, we define

G(p, s, w)(x) = Gp,s,w(x) = |G(p, s, w) ∩ [1, x]|.

We are ready to prove Theorem B.

Proof of Theorem B. To begin with, our first step is to divide the difference set
into smaller sets.

Definition 7. For any prime number p and a positive integer w, we define

G(1)
p,s,w = Gp,s,w ∩ [1, p− 1] and G(k+1)

p,s,w = {pn+ r ∈ Gp,s,w : n ∈ G
(k)
p,s,ŵ, r ∈ [0, p− 1]}

where ŵ = ⌊w
p ⌋, k ∈ Z>0.

Recall by Proposition 6 that

D(k)
p,w = D(p, w) ∩ [pk−1, pk − 1]

for any prime number p and positive integer k. By extending this result, we obtain
the following proposition which we present without proof.
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Proposition 10. The equality

G(k)
p,s,w = Gp,s,w ∩ [pk−1, pk − 1]

holds for any prime number p and positive integers s, k and w.

Hence, we have

G(p, s, w) =

∞⋃
k=1

G(k)
p,s,w.

Now, in order to count the elements of G(p, s, w), we can consider the intersection
of the set with intervals of length at most p. That is, one may first bound the set

G(p, s, w) ∩ [x, x+ y]

for some positive real numbers x, y with 1 ≤ y < p. Therefore, we may consider to
generalize Lemma 3.

Given two positive integers n1, n2 ∈ G(p, s, w) ∩ [x, x + y], with for some prime
p, positive integers s, w and real numbers x, y with 1 ≤ y < p, the equivalences

H(s)
n1

−H(s)
w ≡ 0 (mod p) and H(s)

n2
−H(s)

w ≡ 0 (mod p)

imply that

H(s)
n2

−H(s)
n1

≡ 0 (mod p). (13)

On the other hand, if we have n1, n2 ∈ J(p, s)∩ [x, x+y] under the same conditions
above, we end up with (13). This fact is valid for any finite number of elements
inside G(p, s, w) ∩ [x, x + y]. Consequently, the counting of G(p, s, w) ∩ [x, x + y]
is essentially equivalent to the counting of J(p, s) ∩ [x, x + y], similar to the argu-
ment in the proof of Lemma 3. The process was covered broadly in [5, Lemma 3.3,
Lemma 3.4] by the author.

Now, as we observed the fact that counting J(p, s) is equivalent to the counting
of the difference set, we rely on the proof of bounding J(p, s) given by the author
as below.

Theorem ( [5, Theorem A]). Suppose that p is a prime number, s is any positive
integer and x ≥ 1 is any real number. Then,

Jp,s(x) ≤ 3x
2
3+

1
25 log p+

log s
3 log p+

log s
3 log x

holds. Moreover, whenever p > se
3
25 holds, we have

Jp,s(x) = o(x).

Hence, when our setup becomes identical with the cited theorems proof, we are
done. Eventually, we need the following lemma from [5].
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Lemma 7 ( [5, Lemma 3.5]). Let p be a prime number and x, y be real numbers
with 8

3 ≤ y < p. Then, the inequality

|J(p, s) ∩ [x, x+ y]| ≤
(
9

8

) 1
3

y
2
3 s

1
3

holds for any positive integer s.

Now, if we set

A =

(
9

8

) 1
3

(p− 1)
2
3 s

1
3 ,

we obtain that

|G(1)
p,s,w| = |Gp,s,w ∩ [1, p− 1]| ≤ A.

Moreover, we have

|G(k+1)
p,s,w | =

∑
n∈G

(k)
p,s,ŵ

|G(p, s, w) ∩ [pn, pn+ p− 1]| ≤ |G(k)
p,s,ŵ|A

so that

|G(k)
p,s,ŵ| ≤ Ak

holds for any k ∈ Z>0. Finally, as the upper bounds do not contain w, our setup is
now complete. Hence, the upper bound for J(p, s) is also valid for G(p, s, w).

For the last part of the theorem, namely, to obtain the equality

Gp,s,w(x) = o(x),

we only need to work on the inequality

1

25 log p
+

log s

3 log p
+

log s

3 log x
<

1

3

and end up with the condition p > se
3
25 , which can be easily shown. The proof is

now complete. □

Now, we prove our last result, Theorem C, which is a direct consequence of [5,
Theorem B.(i)].

Theorem C. Let p be a prime number, s, w be positive integers with s ≥ 2 and
p− 1 ∤ s. If the inequality

νp

(
H

(s)
k

)
≤ s− 1

holds for any k ∈ {1, 2, . . . p− 1}, then G(p, s, w) is finite. Moreover, if

pm ≤ w < pm+1

for some integer m ≥ 0, then we have G(p, s, w) ⊆ {1, . . . , pm+1 − 1}.
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Proof. Using Fact 9, we first obtain that J(p, s) is finite for any p, s as in the

statement, by showing that J
(2)
p,s = ∅. Suppose that νp

(
H

(s)
k

)
≤ s−1 holds for any

integer 1 ≤ k ≤ p− 1, for some prime number p, and a positive integer s ≥ 2 with

p−1 ∤ s. Assume also that pn+ r ∈ J
(2)
p,s ̸= ∅ for some integers n and 0 ≤ r ≤ p−1.

Note that we have n ∈ [1, p−1] as pn+r ∈ J
(2)
p,s = J(p, s)∩ [p, p2−1] via [5, Lemma

3.1]. Now,

H
(s)
pn+r ≡ 1

ps
H(s)

n +H(s)
r ≡ 0 (mod p)

implies that

νp

(
H(s)

n

)
≥ s

by the Archimedean property as νp

(
H

(s)
r

)
≥ 0. On the other hand, the inequality

νp

(
H

(s)
n

)
≥ s contradicts with our assumption, as n ∈ J(p, s) with 1 ≤ n ≤ p− 1.

Thus, J
(2)
p,s = ∅ and we have

J(p, s) = J (1)
p,s = J(p, s) ∩ [1, p− 1].

Next, let us take any positive integer w. By Lemmas 5 and 6, if we show that
G(p, s, ŵ) is finite, then we are done. We can bound w as pm ≤ w < pm+1 for some
integer m ≥ 0. Now, since J(p, s) is finite, the set

G
(
p, s, ⌊ w

pm
⌋
)

is also finite, since

1 ≤
⌊
w

pm

⌋
≤ p− 1

and J(p, s) = G(p, s,
⌊
⌊ w
pm ⌋/p

⌋
). Also, as G

(
p, s,

⌊
w
pm

⌋)
is finite, G

(
p, s,

⌊
w

pm−1

⌋)
is

also finite. Continuing the process, we end up with the finiteness of G(p, s, w) and
the first part of the theorem is done.

Now, let us obtain the upper bound for the setG(p, s, w). Take any n ∈ G(p, s, w)
so that pm ≤ w ≤ n. Again by Lemma 5, we have⌊

n

pm

⌋
∈ G

(
p, s, ⌊ w

pm
⌋
)

where 1 ≤ ⌊ w
pm ⌋ ≤ p − 1. Now, assume that ⌊ n

pm ⌋ ≥ p holds. Then, let us write

⌊ n
pm ⌋ = pk + r for some k, r with k ≥ 1 and 0 ≤ r ≤ p− 1. As we have⌊

n

pm

⌋
= pk + r ∈ G

(
p, s, ⌊ w

pm
⌋
)
,

we may write

H
(s)
pk+r ≡ 1

ps
H

(s)
k +

(
H(s)

r −H
(s)
⌊ w
pm ⌋

)
≡ 0 (mod p)
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such that νp
(
H

(s)
k

)
≥ s, thus k ∈ J(p, s). However, J(p, s) is bounded above by

p− 1 and for any k ∈ J(p, s), we have

νp
(
H

(s)
k

)
≤ s− 1.

Hence the assumption ⌊ n
pm ⌋ ≥ p fails and

n

pm
− 1 < ⌊ n

pm
⌋ ≤ p− 1

yields that pm ≤ w ≤ n < pm+1. The proof is now complete. □

5. Computations

In this section, we begin by computing the difference sets D(p, w) for some prime
p and positive integers w.

Example 1. p = 5, w = 2. To compute D(5, 2), recall that we have

D
(1)
5,2 = D(5, 2) ∩ [1, 4]. Next, as ŵ = 2̂ = ⌊ 2

5⌋ = 0, we have

D
(k+1)
5,2 = {5n+ r ∈ D(5, 2) : n ∈ D

(k)
5,0 , 0 ≤ r ≤ 4}

for positive integers k.
Also, as

D(5, 0) = {n ∈ N : p | Hn −H0 = Hn}
we have D(5, 0) = J(5) = J5. The prime 5 is a harmonic prime so that

J(5) = {4, 20, 24}

by [16]. Therefore, we have J
(1)
5 = {4}, J (2)

5 = J5 ∩ [5, 24] = {20, 24} and J
(3)
5 = ∅.

Then, by Fact 5, we can write

J5 = J
(1)
5 ∪ J

(2)
5 .

Moreover, we also have J
(k)
5 = ∅ for any k ≥ 3 by the same fact.

The equality yields that

D
(k+1)
5,2 = {5n+ r ∈ D(5, 2) : n ∈ J

(k)
5 , 0 ≤ r ≤ 4} = ∅

for any k ≥ 3. Consequently, we have

D(5, 2) = D
(1)
5,2 ∪D

(2)
5,2 ∪D

(3)
5,2.

Now, we can say that 2 and 2̄ = 5 − 1 − 2 = 2 is already in the set D(5, 2) via
Remark 2. Then, with the help of [26], we see that there is not any other element

in the first level so D
(1)
5,2 = {2}. Next,

D
(2)
5,2 = {5n+ r ∈ D(5, 2) : n ∈ J

(1)
5 , 0 ≤ r ≤ 4}
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and as J
(1)
5 = {4} we only need to check {5 · 4 + r} for r ∈ {0, 1, 2, 3, 4}. By

Proposition 3 we already know that p(p−1)+w = 22 ∈ D(5, 2). Eventually, we see

that D
(2)
5,2 = {22} using [26]. Then, for D

(3)
5,2 we consider the set

{5n+ r ∈ D(5, 2) : n ∈ J
(2)
5 = {20, 24}, 0 ≤ r ≤ 4}.

That is, we check

{100 + r : r ∈ {0, 1, 2, 3, 4}} ∩D(5, 2) and {120 + r : r ∈ {0, 1, 2, 3, 4}} ∩D(5, 2).

Finally, we obtain D
(3)
5,2 = {101, 103, 121, 123} so that

D(5, 2) = {2} ∪ {22} ∪ {101, 103, 121, 123} = {2, 22, 101, 103, 121, 123}.

In the next example, we will see that one do not need to compute each level

D(k)
p,w

to determine D(p, w), as long as D(p, ŵ) is known.

Example 2. p = 5, w = 11. Now, let us consider the case w = 11 > p = 5. First,
let us write ŵ = 1̂1 = ⌊ 11

5 ⌋ = 2 as we need D(5, 2) to determine D(5, 11). So, we

have D
(1)
5,11 = D(5, 11) ∩ [1, 4] and

D
(k+1)
5,11 = {5n+ r ∈ D(5, 11) : n ∈ D

(k)
5,2 , 0 ≤ r ≤ 4}

for any k ≥ 1. By the first example, we know that D
(k)
5,2 = ∅ for any k ≥ 4. Thus,

D
(k)
5,11 = ∅ for any k ≥ 4 and

D(5, 11) = D
(1)
5,11 ∪D

(2)
5,11 ∪D

(3)
5,11.

By following our steps in the first example, we can completely determine D(5, 11).
However, we can use Lemma 1 and quickly get the result:

if n belongs to D(p, w) then n̂ belongs to D(p, ŵ) for any n and w.

That is,

D(5, 11) = D(5, 11) ∩ {5 · n+ r : n ∈ {2, 22, 101, 103, 121, 123}, 0 ≤ r ≤ 4}.

Thus, using [26] we conclude that

D(5, 11) = {11, 13, 506, 508, 515, 519, 617}.

Example 3. p = 5, w = 59. In this case, D(5, 59) can be determined by
D(5, 11) = {11, 13, 506, 508, 515, 519, 617} as ŵ = ⌊w

p ⌋ = ⌊ 59
5 ⌋ = 11. Hence, using

[26] again, we have that

D(5, 59) = {55, 59, 65, 69, 2532, 2541, 2543, 2576, 2578, 2596, 2598, 3085, 3089}.
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Recall by Fact 5 that if J
(k)
p = ∅ for some k ∈ Z>0, then J

(t)
p = ∅ for any t ≥ k

and we have

Jp =

k−1⋃
t=1

J (t)
p .

However, this might not be the case with the difference sets. For instance, if we
choose p = 7, then we know by [16] that

J7 = {6, 42, 48, 295, 299, 337, 341, 2096, 2390, 14675, 16731, 16735, 102728}

with J7 =
⋃6

t=1 J
(t)
7 . We have J

(7)
7 = ∅ and hence, J

(t)
7 = ∅ for any t ≥ 7. Now if

we pick w = 2, we obtain that

D
(1)
7,2 = {2, 4} and D

(2)
7,2 = {44, 46}

by Remark 2 and Proposition 3. On the other hand, even if

D
(3)
7,2 = D(7, 2) ∩ [72, 73 − 1] = ∅

holds, we cannot conclude that D(7, 2) = D
(1)
7,2 ∪D

(2)
7,2 as

D
(4)
7,2 = {2094, 2098, 2359, 2365, 2388, 2392} ≠ ∅.

On the other hand, one may observe that as J
(7)
7 = ∅ then D

(8)
7,2 is also empty as

D
(8)
7,2 = {6n+ r ∈ D(7, 2) : n ∈ J

(7)
7 , 0 ≤ r ≤ 6}.

Hence, the number of non-empty D
(k)
p,w’s cannot exceed the number of non-empty

J
(k)
p ’s for k ∈ Z>0.

To sum up, given a prime number p and a positive integer w, it may be time
consuming to determine D(p, w) completely. However, we can find the integer m
satisfying pm ≤ w < pm+1, namely m = ⌊logp w⌋. Then, ⌊ w

pm ⌋ yields the base step

to start with. To determine D(p, ⌊ w
pm ⌋) we need to determine Jp (see Example 1).

This process is done by finding the integer k where J
(k)
p = ∅.

First, we find

D

(
p,

⌊
w

pm

⌋)
∩ [1, p− 1] = D

(1)
p,⌊ w

pm ⌋.

Then, we check

D

(
p,

⌊
w

pm

⌋)
∩ [pn, pn+ p− 1]

for each n ∈ Jp so that we completely obtain D
(
p, ⌊ w

pm ⌋
)
. Next, we determine

D
(
p, ⌊ w

pm−1 ⌋
)
by proceeding as we did in the examples above. After m steps, we
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finally have D(p, w).

Table 1. The number of elements in the sets J(p) and D(p, w)
for several p, w values.

p |J(p)| |D(p, 1)| |D(p, 2)|
3 3 3 3

5 3 4 6

7 13 10 20

13 3 10 12

17 3 6 12

23 3 4 8

Table 2. The elements in the sets J(p) and D(p, 1) for several p values.

p J(p) D(p, 1)

3 {2, 7, 22} {1, 66, 68}

5 {4, 20, 24} {1, 3, 21, 23}

7 {6, 42, 48, 295, 299, 337, 341, 2096, 2390, 14675, 16731, 16735, 102728} {1, 5, 43, 47, 2067, 2069, 2362, 117120, 117148, 719099}

13 {12, 156, 168} {1, 4, 8, 11, 157, 160, 164, 167, 2034, 2190}

17 {16, 272, 288} {1, 15, 273, 287, 4632, 4904}

23 {22, 506, 528} {1, 21, 507, 527}

Table 3. The elements in the sets J(p) and D(p, 2) for several p values.

p J(p) D(p, 2)

3 {2, 7, 22} {2, 7, 22}

5 {4, 20, 24} {2, 22, 101, 103, 121, 123}

7 {6, 42, 48, 295, 299, 337, 341, 2096, 2390, 14675, 16731, 16735, 102728}

 2, 4, 44, 46, 2094, 2098, 2359, 2365, 2388, 2392, 14673, 14677,

102726, 102730, 117117, 117123, 117145, 117151, 719096, 719102


13 {12, 156, 168} {2, 10, 158, 166, 2029, 2032, 2036, 2039, 2185, 2188, 2192, 2195}

17 {16, 272, 288} {2, 7, 9, 14, 274, 279, 281, 286, 4624, 4640, 4896, 4912}

23 {22, 506, 528} {2, 20, 508, 526, 11643, 11655, 12149, 12161}
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Finally, let us check some examples for G(p, s, w). If we choose p = 5 and s = 2,

we have the following generalized harmonic numbers H
(s)
n with the corresponding

5-adic orders:

n H
(2)
n ν5

(
H

(2)
n

)
1 1 0

2 5/4 1

3 49/36 0

4 205/144 1

Hence via Theorem C, if we take an integer w satisfying pm ≤ w < pm+1, we
expect to get G(p, s, w) ⊆ {1, . . . , pm+1 − 1}. We first find J(5, 2) = {2, 4} and
obtained the following results via [26]:

w G(p, s, w)

2 ∈ [1, 4] {2, 4}
13 ∈ [5, 24] {13, 20, 22, 24}
66 ∈ [25, 124] {66, 120, 122, 124}

331 ∈ [125, 624] {331, 623}

On the other hand, we have H
(2)
3 = 49

36 and

ν7

(
H

(2)
3

)
= 2 ̸≤ 1,

such that our condition in Theorem C fails. In fact, we have

26 ∈ G(7, 2, 3), 27 ∈ G(7, 2, 21), 182 ∈ G(7, 2, 43).

Lastly, let us close the section with another counter example. One may check
that the case p = 37 and s = 3 yields some elements in G(p, s, w) that are greater

than 37. That is because we have ν37

(
H

(3)
36

)
= 3 ̸≤ 3− 1 = 2. For instance, if we

pick w = 10, we obtain that 1344 ∈ G(37, 3, 10) and 1344 > p− 1 = 37− 1 = 36.

6. Conclusion

In this section, we first present some of the generalizations of the harmonic
numbers. The first one of those is the Dedekind harmonic numbers. Let K be
a number field. Then, the nth Dedekind harmonic number, denoted by hK(n) is
defined as
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∑
0̸=I⊆OK

N(I)≤n

1

N(I)
,

where the sum is ranging over all the non-zero ideals of OK with norm less than or
equal to n. This idea was inspired by the Dedekind zeta function ζK(s) for K and
these are indeed an extension of harmonic numbers as taking K = Q yields that

hK(n) = Hn

as ζK(s) = ζ(s) in that case.

In [4], it was shown that almost all of these numbers are non-integer. Moreover,
the differences of these numbers was also studied. In fact, it was proven under the
Riemann hypothesis for ζK(s) that the difference

hK(n)− hK(m)

is not an integer after a while. Namely, there exist constants α, x0 > 0 such that
hK(n)− hK(m) /∈ Z for any positive integers n > m ≥ x0 whenever

n−m ≥ α(dK logm+ log∆K)
√
m

holds, where dK is the degree of K and ∆K denotes the absolute value of the dis-
criminant of K.

Euler introduced the harmonic zeta function given as

ζH(s) =

∞∑
n=1

Hn

ns
,

where R(s) > 1. He showed that the identity

2ζH(m) = (m+ 2)ζ(m+ 1)−
m−2∑
k=1

ζ(m− k)ζ(k + 1)

holds for any integers k ≥ 2, provided that the sum vanishes if m = 2. In particular,
if we let m = 2, we get

2ζH(2) = 2

( ∞∑
n=1

Hn

n2

)
= 4ζ(3)

so that

ζH(2) =

∞∑
n=1

Hn

n2
= 2ζ(3)

and for m = 3, we have that

ζH(3) =

∞∑
n=1

Hn

n3
=

5

4
ζ(4) =

π4

72
.
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Consequently, one may obtain the special values of the harmonic zeta function
via the special values of the Riemann zeta function. One of the applications of the
special values of the harmonic zeta function is to approximate the real numbers
given in [1, 2]. Moreover, ζH(s) is just one example of a Dirichlet series. It was
shown lately that not only this function can be used for the approximation purpose
but all Dirichlet series can be used [14].

Now, we point out a direction that has another generalization of the harmonic
numbers and the harmonic differences for interested readers. Conway and Guy
presented a generalization in their book, The Book of Numbers [13] called the
hyperharmonic numbers. The hyperharmonic numbers were defined recursively as

h(r)
n =

n∑
k=1

h
(r−1)
k

where r ≥ 2, and that h
(1)
n = hn. These numbers are also endowed with a variety of

arithmetic and analytical features. In particular, the integerness of the difference
of hyperharmonic numbers was studied in [6] and it was shown that almost all of
the differences

h(r)
n − h(s)

m

are non-integer. However, there are also some cases that the difference is an integer,
infinitely many times.

To relate the differences of harmonic numbers with hyperharmonic numbers, one
may consider the following identity given by Conway and Guy. They stated that
the nth hyperharmonic number of order r can be written as

h(r)
n =

(
n+ r − 1

r − 1

)
(Hn+r−1 −Hr−1). (14)

The identity (14) points out that in order to work on the p-adic order of har-
monic differences, we may consider to work on the p-adic valuations of the binomial
coefficient and the corresponding hyperharmonic number.

Now, recall the polynomial at (6)

fd(x) = (x+ 1)(x+ 2) . . . (x+ d)

for some positive integer d. Notice that the polynomial appears in the numerator
of the binomial coefficient, as we have(

n+ r − 1

r − 1

)
=

(n+ r − 1)(n+ r − 2) . . . (r)

n!

so that one direction is to study this polynomial. Moreover, by feeding with the
harmonic difference, we may write for (14) that
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h(r)
n =

(
n+ r − 1

r − 1

)
(Hn+r−1 −Hr−1)

=
(n+ r − 1)(n+ r − 2) . . . (r)

n!

(
1

r
+

1

r + 1
+ · · ·+ 1

n+ r − 1

)
=

f ′
n(r − 1)

n!

and the focus completely turns on to the hyperharmonic numbers.

Also, if we consider a particular case for the binomial coefficient, some fruitful
relations appear, together with a conjecture on the differences [24]. Following the
same notation as [24], we let

cn =

(
2n

n

)
,

to be the nth central binomial coefficient, for any n ≥ 0. Also, let

Cn =
1

n+ 1
cn,

be the nth Catalan number with n ≥ 0.

The main concern of the paper was the p-adic order of the differences

capn+1+b − capn+b and Capn+1+b − Capn+b,

where a, b are integers with p being a prime number satisfying (a, p) = 1 and n ≥ nk

for some integer nk ≥ 0. Consequently, some identites involving these numbers were
presented. For instance, one of the results which were given was as follows.

Fact 11 ( [24, Theorem 2.2]). The equality

νp
(
Capn+1 − Capn

)
= n+ νp

((
2a

a

))
holds for any integers n, a ≥ 1 and any prime p ≥ 2 with (a, p) = 1.

The identities yield the function

g(k) = 2

(
2k

k

)
(H2k −Hk) k ≥ 1,

which is needed to work on the p-adic order of those differences. Finally, a conjec-
ture was proposed, which is still open:

Conjecture ( [24, Conjecture 2.9]). The inequality

νp(g(k)) ≤ 2

holds for any prime p ≥ 5 and k ≥ 1.
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In other words, for any prime p ≥ 5 and k ≥ 1,

νp (H2k −Hk) ≤ 2

holds [24, Conjecture 2.10].

So, one may consider to pursue the above case about the differences as an another
alternative. Finally, notice that if we let r = k + 1 in the function g(k) and set
n = k, we obtain that

g(k) = 2

(
2k

k

)
(H2k −Hk) = 2

(
n+ r − 1

r − 1

)
(Hn+r−1 −Hr−1) = 2h(r)

n = 2h(n+1)
n

by (14).

Thus, we are back to the hyperharmonic numbers. Finally, let us finalize the
discussion with an equivalent conjecture to those above:

Conjecture 12. Let p ≥ 5 be a prime number. Then,

νp(h
(n+1)
n ) ≤ 2

holds for any positive integer n.
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