

FEN ve MÜHENDİSLİK BİLİMLERİ DERGİSİ

Cilt/Vol: 6 Sayı/No: 2 Yıl/Year: 2024

Araştırma Makalesi/Research Article

e-ISSN: 2667-7989

https://doi.org/10.47112/neufmbd.2024.50

Jeotermal Temelli bir Organik Rankine Çevriminin Eksergo-ekonomik Analizi

Esra HANÇER GÜLERYÜZ¹ Dilek Nur ÖZEN²* D

¹ KTO Karatay Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Makine Mühendisliği Bölümü, Konya, Türkiye

² Necmettin Erbakan Üniversitesi, Mühendislik Fakültesi, Makine Mühendisliği Bölümü, Konya, Türkiye

Makale Bilgisi	ÖZET
Geliş Tarihi: 23.02.2024 Kabul Tarihi: 07.05.2024 Yayın Tarihi: 31.08.2024	Elektrik üretiminde yenilenebilir enerji kaynaklarının uygun sistemlerle entegre edilerek kullanım alanlarının genişletilmesi önemli bir husustur. Bu doğrultuda, ORÇ kullanımı düşük ve orta sıcaklıkta kaynaklardan elektrik üretiminde ön plana çıkmaktadır. Bu çalışma, jeotermal tabanlı geleneksel Organik Rankine çevriminin (ORÇ) enerji, ekserji ve eksergo-ekonomik analizlerini (AE) icermektedir. Eksergo ekonomik analiz yöntemi olarak Modifive Edilmis
Anahtar Kelimeler: Eksergo-ekonomik analiz, MOPSA, Organik Rankine çevrimi, Jeotermal.	üretim Yapısı Analizi (MOPSA) yöntemi kullanılmıştır. MOPSA yöntemi, sistem bileşenlerinin önemli ekserji oranlarının maliyetlendirilmesine olanak tanıyan bir yöntemdir ve bu yönüyle diğer ekserji-ekonomik yöntemlerden ayrılmaktadır. Analizler sonucunda, önerilen sistemin toplam ekserji verimliliği (η_{ex}) %50.23 olarak bulunurken, en yüksek ekserji yıkımına sahip sistem bileşeni 43.97 kW değeri ile evaporatör olmuştur. Sistemin toplam ekserji yıkım değeri 70.67 kW olarak bulunmuş ve ekserji yıkımının birim maliyeti (c_s) 1.872 \$/GJ olarak hesaplanmıştır. Önerilen sistemin toplam ürün birim maliyeti ($c_{p,total}$ ^{MOPSA}) 3.662 \$/GJ'dür.

Exergo-economic Analysis of an Geothermal Based Organic Rankine Cycle

Article Info	ABSTRACT
Received: 23.02.2024 Accepted: 07.05.2024 Published: 31.08.2024	It is important to improve the utilization of renewable energy sources in electricity generation by integrating them with appropriate plants. In this regard, the use of organic Rankine cycle (ORÇ) comes to the forefront in electricity generation from low and medium temperature sources. This study presents energy, exergy and exergoeconomic analyzes (3E) of a geothermal-
Keywords: Exergoeconomic analysis, MOPSA, Organic Rankine cycle, Geothermal.	based conventional ORÇ. Modified Productive Structure Analysis (MOPSA) method was used as the exergo-economic analysis method. The MOPSA method is a method that allows costing the major exergy rate of plant elements, and in this respect it stands out from other exergoeconomic methods. As a result of the analyses, the overall exergy efficiency (η_{ex}) of the proposed plant was found to be 50.23%, while the plant element with the highest exergy destruction rate ($E\dot{x}_{D,k}$) was the evaporator with a value of 43.97 kW. The total exergy destruction rate of the plant was found to be 70.67 kW and the unit cost of the exergy destruction (c_s) was calculated as 1.872 \$/GJ. The total product unit cost ($c_{p,total}^{MOPSA}$) of the proposed plant is \$3.662/GJ.

Hançer Güleryüz, E. & Özen, D.N. (2024). Jeotermal temelli bir Organik Rankine çevriminin eksergo-ekonomik analizi. *Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 6*(2), 312-335. https://doi.org/10.47112/neufmbd.2024.50 ***Sorumlu Yazar:** Dilek Nur Özen, *dnozen@erbakan.edu.tr*

GİRİŞ (INTRODUCTION)

Artan enerji ihtiyacı nedeniyle elektrik üretim ve enerji dönüşüm sistemleri üzerinde yoğun çalışmalar yapılmaktadır. Fosil yakıtların olumsuz etkilerinden kurtulmak için izlenen yöntemler olarak, yenilenebilir enerji kaynaklarının kullanılması ve daha fazla enerji üretebilmek için mevcut santrallerin potansiyelinin geliştirilmesine ağırlık verilmektedir. Bu kapsamda, enerji ve iklim krizini çözmek için yenilenebilir enerji kaynaklarının kullanılması ve mevcut sistemlerin iyileştirilmesine yönelik calışmalar dikkat çekmektedir [1]. Dünya üzerinde farklı yenilenebilir enerji kaynakları mevcuttur [2]. Yenilenebilir enerji kaynakları ile elektrik üretimi Organik Rankine Çevrimi (ORÇ) gibi çevrimlerle mümkündür. Organik Rankine Çevrimi (ORÇ), termal enerjiyi elektrik enerjisine dönüştüren, yüksek oranda erişilebilir, yaygın olarak kullanılan bir enerji üretim şeklidir [3]. ORC'nin temeli Rankine çevriminin çalışma prensibine dayanmaktadır. İkisi arasındaki temel fark ısı kaynağının sıcaklığıdır. Kullandığı organik akışkanın düşük kaynama sıcaklığı, ORC'yi düşük sıcaklıktaki ısı kaynaklarından elektrik üretimi için umut verici/güvenilir bir teknoloji haline getirmektedir. Bu durumda ORC güneş, jeotermal ve termik santrallerden atık ısı geri kazanımında kullanılan en temel çevrimlerden biri olarak tercih edilmektedir [4]. Türkiye'de birçok termik santral bulunmaktadır. Buralardan elde edilen atıkların geri dönüştürülmesi ve ekonomiye kazandırılması büyük önem arz etmektedir [5]. Bu bağlamda termik santrallerin atık ısı potansiyeli dikkate alındığında, atık ısının geri kazandırılması için düşük sıcaklıklarda çalışabilen ORC çevrimi etkin bir şekilde rol almaktadır.

Bir güç sistemi tasarlarken, maliyeti mümkün olduğunca düşük tutup sistem bileşenlerini geliştirerek elektrik üretim düzeyini artırmak önemli bir husustur. Bu tür sistemlerin tasarımda kullanılan en temel yöntem enerji analizidir. Bununla birlikte sistem ve sistem bileşenlerinin sahip olduğu enerjinin doğasını anlayabilmek için ekserji analizinin de yapılması önem taşımaktadır. Ancak bu iki temel yöntem de bize sistem hakkında temel bilgileri sağlamasına rağmen tasarım için gerekli olan maliyet hususunu belirlemekte fikir vermez. Bu aşamada hem ekserji hem de maliyet analizini birleştiren termo-ekonomik analiz yöntemleri ön plana çıkmaktadır. Literatürde çeşitli termo-ekonomik analiz yöntemleri bulunmaktadır. Tablo 1'de son 4 yılda literatürde yer alan bazı jeotermal temelli ORÇ santrallerinin termo-ekonomik analiz çalışmaları sunulmuştur. Termo-ekonomik yöntemler içerisinde ekserji temelli yöntemler, ekserjiyi maliyet hesaplamasına dahil ederek santralin ekserjisini maliyetlendirmektedir. Böylece bir sistemin iki temel analiz yöntemine ek olarak eksergo-ekonomik açıdan incelenmesi, sistem için önemli olan ekserji kayıplarını maliyetlendirerek sistem hakkında bütüncül bir bakış açısı kazanılmasına olanak sağlamaktadır.

Modifiye Edilmiş Üretim Yapısı Analizi (MOPSA) literatürde ilk olarak Kim [6] tarafından önerilmiştir. Kim [6] yaptığı çalışmada önerdiği yöntemin karmaşık enerji santrallerine diğer yöntemlere kıyasla daha sistematik bir yaklaşım getirdiğini göstermiştir. MOPSA yöntemi temel olarak literatürde yaygın olarak kullanılan Spesifik Ekserji Maliyetlendirme (SPECO) yöntemine benzemektedir. Ancak yöntemin uygulanma şeklinde farklılıklar bulunmaktadır. Bu farklılıklar, ekserjinin termal, mekanik, kimyasal, kinetik ve potansiyel ekserji olarak ayrılmasına ve ayrıntılı olarak maliyetlendirilmesine olanak sağlamaktadır. Kwak ve diğerleri [7] yapmış oldukları çalışmada iki yöntem arasındaki farkları açıkça ortaya koyarak, MOPSA yönteminin ekserji yıkımının maliyetlendirilmesinde daha üstün olduğunu ifade etmişlerdir.

Tablo 1

Yazarlar	Yıl	Sistem Tanımları	Bulgular Önerdikleri sistemi, BZORÇ sistemi ile karşılaştırarak üstünlüklerini araştırmışlardır. Sistem termo-ekonomik performans kriterlerine göre optimize edilmiştir.		
Lu vd. [8]	2021	Jeotermal ile çalışan LSC temelli bileşimi ayarlanabilir zeotropik ORÇ (LCAZ-ORÇ)			
Zhao vd. [9]	2021	Jeotermal temelli ORÇ/ Jeotermal temelli BFC	ORÇ ve BFC sistemlerinin jeotermal enerji ile uyumluluğunu araştırmışlardır. BFC ile entegrasyonun ORÇ'ye kıyasla daha verimli olduğu bulunmuştur.		
Wang vd. [10]	2021	ORÇ ve CHP ile entegre Geliştirilmiş Jeotermal Santrali	EGS-ORÇ sistemini CHP ile entegre ederek sistemin verimliliğini ve ekonomik yönlerini araştırmışlardır. Sonuç olarak, EGS-ORÇ'nin LCOE değeri 24.72 iken EGS-CHP için 16.1 sent/KWh olduğu bulunmuştur.		
Chen vd. [11]	2021	ORÇ ve absorpsiyonlu ısı pompalı güneş enerjili CCHP	Önerilen sistem için 4 farklı çalışma şartı belirlenmiştir. Bu koşullar için sistemin ayrı ayrı eksergo-ekonomik (SPECO) analizi ve duyarlılık analizi yapılarak karşılaştırma yapılmıştır. Bunun sonucunda alan ısıtma, sıcak kullanım suyu, soğutulmuş su ve elektriğin özgül ekserji maliyeti sırasıyla 0.31 \$/kWh, 0.27 \$/kWh, 0.22 \$/kWh ve 0.12 \$/kWh olarak bulunmuştur.		
Aliahmadi vd. [12]	2021	Jeotermal temelli ORÇ sistemleri	Üç yeni jeotermal temelli ORÇ sistemi önerilmiştir. Ekserji verimlilikleri birinci, ikinci ve üçüncü model için sırasıyla %59.39, %57.92 ve %60.27 olarak bulunurken toplam ürün maliyetleri ise 25.8 \$/GJ, 28.79 \$/GJ ve 31.27 \$/GJ olarak bulunmuştur. Bu çalışma sonucunda, belirtilen koşullar altında sistemler karşılaştırıldığında TEG entegre sisteminin en verimli sistem olduğu görülmüştür.		
Hu vd. [13]	2021	ORÇ temelli hibrit jeotermal- güneş enerjisi santrali	Modellenen sistemler yapay sinir ağları kullanılarak analiz edilmiştir. Ekonomik parametreler ayrıntılı olarak hesaplanmıştır.		
Bett vd. [14]	2021	Jeotermal temelli ORÇ/OFÇ ile termal olarak entegre PTES	Olkaria jeotermal sahası için farklı çalışma akışkanlarına sahip ıslak ve kuru soğutmalı ikili enerji santralleri karşılaştırılarak eksergo-ekonomik (SPECO) parametreler karşılaştırılmıştır. Bu çalışmanın sonucunda, enerji santrallerinin eksergo- ekonomik yapısının anlaşılmasının daha iyi bir yatırım kararı sunduğu sonucuna varılmıştır.		

Wang vd. [15]	2022	Jeotermal temelli ORÇ/OF termal olarak entegre PTES	5 farklı akışkan ile ORÇ ve OFÇ temelliÇ ileiki sistem analiz edilerek optimize edilmişSve karşılaştırılmıştır.
Chen vd. [16]	2022	İki fazlı jeotermal kaynakla ORÇ enerji santrali	Altı farklı çalışma akışkanının performansları karşılaştırılmıştır. Toplam güç çıkışı ve net güç çıkışı değerleri termodinamik olarak optimize edilmiştir.
Li vd. [17]	2022	Jeotermal temelli ORÇ	Farklı iklim koşullarına sahip 6 farklı şehir için 4 sistem analizi gerçekleştirilmiştir. Bu çalışmanın amacı, iklimsel özelliklerin sistem performansı üzerindeki etkilerini ortaya koymaktır.
Khanmohammadi vd. [18]	2023	ORÇ, Kalina ve LNG yeni gazlaştırma çevrimlerini iç jeotermal destekli hibrit sis	Onerilen sistem için eksergo-ekonomik analiz (SPEOC) yöntemini den uygulamışlardır. Toplam enerji, ekserji eren verimlilikleri ve toplam maliyet oranı tem sırasıyla %24.33 ve %5.6 ve 12.04 \$/h olarak hesaplanmıştır.
Ruhani vd. [19]	2024	Jeotermal ve güneş enerjisi çalışan ORÇ temelli hibrit	Jeotermal ve güneş ile entegre ORÇ ünitelerinin ekserji verimlilikleri sırasıyla %8.7 ve %12.4 bulunmuştur. Ayrıca jeotermal, güneş ile entegre ORÇ ve yakıt proses pili ünitelerinde LCOE değerlerinin sırasıyla 0.021, 0.093 ve 0.149 USD/kWh olduğu belirlenmiştir.
Yuan vd. [20]	2024	ORÇ ile entegre edilmiş geliştirilmiş jeotermal siste	m Farklı konfigürasyonlar oluşturarak elde edilen sonuçları karşılaştırmışlardır. Tek kademeli geri kazanımlı çevrime sahip iki kademeli geliştirilmiş jeotermal sistem, karşılaştırılan sistemler arasında en iyi performansa ve en düşük LCOE değerine (0.1895 \$ kW/h) sahiptir.
Abdelghafar vd. [21]	2024	SCO ₂ -ORC bazlı yoğunlaş güneş enerjisinin yönlendir birleşik güç çevrimlerinin l analizi	Ekserji analızı, doğrudan sistemlerle karşılaştırıldığında dolaylı sistemlerde rdiği RBC için %1.3'lük ekserji verimliliği artışını gösterirken, ORC, ikili sistemlerde %35.66'lık olağanüstü bir ekserji verimliliği artışı göstermektedir.
Semmari vd. [22]	2024	Dolaylı 1sı ORC jeotermal santralinin jeolojik bağlam termo-ekonomik çalışması	Bu çalışma, ekonomik açıdan jeotermal enerji elektrik üretimi-maksimum güç çıkışı ı ve senaryosu ve kapasite üretiminin ön teknik fizibilitesini ve potansiyelini ortaya koymaktadır.
BFC : Binary Flas	h Cycle]	LSC : Liquid separation condenser
BZORÇ : Basic zeotre	opic ORÇ	wor Dlant	OFÇ : Organik Flaş çevrimi PTES : Pumped thermal energy storage
EGS : Enhanced g	eothermal	plant	SCO ₂ : Süperkritik karbondioksit
LCOE : Levelized co	ost of elec	etricity	RBC : Yeniden sıkıştırma Brayton çevrimi
LCOS : Levelized co	ost of stor	age	

Literatür incelendiğinde ORÇ ve jeotermal santrallerin birbirleriyle uyumlu bir şekilde çalıştıkları görülmektedir. Literatürde ORÇ ve jeotermale dayalı farklı konfigürasyonlar ve bu santrallerin ekonomik analizleri üzerine Tablo 1'de görüldüğü gibi örnek çalışmalar mevcuttur. Ancak, MOPSA yönteminin eksergo-ekonomik bir yöntem olarak bu alanda uygulanması sınırlıdır. Bu açıdan, MOPSA yönteminin jeotermal kaynak ile entegre bir ORÇ sistemine uygulanması, bu sistemlerin farklı konfigürasyonları için bir referans noktası sağlayacaktır.

Bu çalışmanın ana fikri ve literatüre katkıları aşağıda özetlenmiştir:

- Jeotermal kaynaklı bir ORÇ sisteminin enerji, ekserji ve eksergo-ekonomik (3E) analizleri yapılmıştır.

- Literatürde çok sık rastlanmayan MOPSA yöntemi ile eksergo-ekonomik analizler yapılarak literatürde MOPSA yöntemi ile ilgili çalışmaların eksikliğinin giderilmesi amaçlanmıştır.

3E analiz sonuçlarının değerlendirilmesi için sistemin performansını etkileyen karar değişkenleri ve performans kriterleri belirlenmiştir. Böylece sistem tasarımında bir yol haritası belirlenmiştir.

MATERYAL VE METOT (MATERIALS AND METHODS)

Bu çalışmada, önerilen sistemin enerji, ekserji ve eksergo-ekonomik analizleri sunulmuştur. Bu amaç için gerekli matematiksel model Engineering Equation Solver (EES) programı kullanılarak formüle edilmiştir. Matematiksel model oluşturulurken her bir sistem bileşeni bir kontrol hacmi olarak ele alınmıştır. Termodinamiğin ikinci yasası, enerji ve kütle korunumu dikkate alınarak bu kontrol hacimlerine uygulanmıştır.

Sistem Tanımı ve Matematik Model

Önerilen sistemin şematik görüntüsü ve T-s diyagramı Şekil 1'de verilmiştir. Sistem bir ORÇ'nin bileşenleri olan pompa, evaporatör, türbin ve kondenserden oluşmaktadır. Sistemin çalışması için gerekli olan 1s1 jeotermal kaynaktan sağlanmaktadır. Sistemin amacı jeotermal kaynağın 1s1sını kullanarak elektrik üretmektir. Önerilen sistem aşağıdaki şekilde çalışmaktadır. Kondenserden doymuş olarak çıkan çalışma akışkanı, pompada evaporatörün çalışma basıncına yükseltilir. Jeotermal kaynağın 1s1sını sısından yararlanılarak çalışma akışkanı buharlaştırıcıda 1s1tılır. Basıncı ve sıcaklığı artan çalışma akışkanı türbinde genişler ve jeneratör tarafından elektrik üretilir.

Yenilenebilir enerji kaynaklarının başında güneş, rüzgâr, dalga, biyokütle ve jeotermal gibi enerji kaynakları gelmektedir. Jeotermal kaynaklar sıcaklıklarına göre farklı kullanım alanlarına sahiptir. Düşük sıcaklıktaki jeotermal kaynaklar daha çok ısıtma ve turizm amaçlı kullanılırken, orta ve yüksek sıcaklıktaki jeotermal kaynaklardan elektrik üretilerek yararlanılabilmektedir. 100-200 °C sıcaklık aralığındaki jeotermal kaynaklar elektrik üretiminde yaygın olarak kullanılmaktadır [23]. Bunlar arasında düşük sıcaklıklı jeotermal kaynaklardan elektrik üretmek maksadıyla ORÇ santralleri ile entegre edilerek literatürde sıklıkla kullanılmaktadır.

ORÇ'nin performansını etkileyen önemli faktörlerden biri de çalışma akışkanının türüdür. R245fa, çevresel ve termofiziksel özellikleri (yüksek kritik sıcaklık ve kritik basınç, düşük kaynama sıcaklığı) nedeniyle ORÇ tabanlı sistemlerde yaygın olarak kullanılmaktadır [24,25]. Bahsedilen bu avantajlardan dolayı, bu çalışmada ORÇ akışkanı olarak R245fa akışkanı tercih edilmiştir.

Şekil 1 (*a*) Sistemin Şematik Diyagramı (*b*) T-s Diyagramı

Yukarıda bahsedilen detaylar dikkate alınarak oluşturulan matematiksel model için yapılan varsayımlar aşağıdaki gibidir.

- Sistem bileşenleri kararlı hal şartlarında çalışmaktadır.
- Sistem bileşenlerindeki kinetik ve potansiyel enerji kayıpları ihmal edilmiştir.
- Borulardaki basınç kaybı dikkate alınmamıştır.

Önerilen sistem için tasarım parametreleri Tablo 2'de verilmiştir.

Tablo 2

Önerilen sistem için simülasyon koşulları.

Parametre	Sembol	Değer
Çevre sıcaklığı	T_0	25 [C]
Çevre basıncı	P_0	100 [kPa]
Kondenser sıcaklığı	T_K	40 [C]
Pompanın izentropik verimi [26]	η_P	0.80
Türbinin izentropik verimi [26]	η_T	0.85
Sistemin çıkış gücü	\dot{W}_{net}	100[kW]
Jeotermal suyun sıcaklığı	T _{jeo}	120[°C]
Jeotermal suyun basıncı [27]	P _{jeo}	2000 [kPa]
Jeotermal suyun kütlesel debisi	\dot{m}_{jeo}	50 [kg/s]
Havanın kütlesel debisi	\dot{m}_{hava}	30 [kg/s]
Basınç oranı	P_R	6 [-]
Aşırı kızdırma sıcaklığı	ΔT_{ak}	5 [Ĉ]

Enerji Analizi

Enerji analizi, bir sistemi termodinamik açıdan anlamak için önemli ve yaygın olarak kullanılan bir araçtır. Ayrıca sistemdeki temel parametreleri belirlememize de yardımcı olur. Önerilen sistemin enerji analizi için geçerli enerji ve kütle korunum denklemleri aşağıdaki gibidir [28]:

$$\sum \dot{m}_{giren} - \sum \dot{m}_{\varsigma \iota kan} = 0 \tag{1}$$

$$\dot{Q} - \dot{W} = \sum (\dot{m}h)_{\varsigma lkan} - \sum (\dot{m}h)_{giren}$$
⁽²⁾

Önerilen sistemin tüm bileşenleri için enerji denge denklemleri Tablo 3'te verilmiştir. Sistem bileşenlerindeki potansiyel ve kinetik enerji kayıpları ihmal edilmiştir.

Tablo 3

Sistem Bileşenleri için Enerji Dengeleri

Bileşen	Enerji Denge Denklemleri	
Pompa	$\dot{W}_P = \dot{m}_{or\varsigma} \cdot (h_2 - h_1)$	$\eta_P = \frac{h_{2s} - h_1}{h_2 - h_1}$
Evaporatör	$\dot{Q}_E = \dot{m}_{orç} \cdot (h_3 - h_2) = \dot{m}_{jeo} \cdot (h_5 - h_6)$	$h_{\rm c} = h_{\rm c}$
Türbin	$\dot{W}_T = \dot{m}_{or\varsigma}. \left(h_3 - h_4\right)$	$\eta_T = \frac{h_3 - h_4}{h_3 - h_{4s}}$
Kondenser	$\dot{W}_{K} = \dot{m}_{orç} \cdot (h_4 - h_1) = \dot{m}_{hava} \cdot (h_8 - h_7)$	

Ekserji Analizi

Enerji analizi termodinamik analizin temelini oluşturur. Ancak, sistemdeki tersinmezlikleri ve sistemin iyileştirilmesi gereken yönlerini belirlemek için ekserji analizine ihtiyaç vardır. Bu nedenle,

ekserji analizi sistemi daha detaylı analiz etmek için önemli bir araçtır.

Sistemde kimyasal reaksiyon olmadığı için ekserji analizinde kimyasal ekserji dikkate alınmamış, fiziksel ekserji dikkate alınmıştır. Fiziksel ekserji aşağıdaki denklem ile hesaplanır [29].

$$ex = h - h_0 - T_0(s - s_0) \tag{3}$$

Toplam ekserji oranı aşağıdaki gibi hesaplanır [30,31].

$$\dot{Ex} = \dot{Ex}^{TM} + \dot{Ex}^{CHE} + \dot{Ex}^{KN} + \dot{Ex}^{PT}$$
(4)

Burada $\vec{E}x^{TM}$, $\vec{E}x^{CHE}$, $\vec{E}x^{KN}$, $\vec{E}x^{PT}$ sırasıyla termo-mekanik, kimyasal, kinetik ve potansiyel ekserji değerlerini temsil etmektedir. Sistem bileşenlerindeki kinetik ve potansiyel ekserji değişimleri ihmal edilmiştir. Ayrıca, sistemin herhangi bir bileşeninde kimyasal reaksiyon gerçekleşmediği için kimyasal ekserji bu çalışmada dikkate alınmamıştır.

Termo-mekanik ekserji, termal ve mekanik ekserji olarak ikiye ayrılır ve aşağıdaki gibi hesaplanır [30,31]:

$$\vec{E}x^{TM} = \dot{m}.\{h(T,P) - h(T_0,P_0) - T_0[s(T,P) - s(T_0,P_0)]\}$$
(5)

$$\dot{E}x^{T} = \dot{m} \{ h(T, P) - h(T_{0}, P) - T_{0}[s(T, P) - s(T_{0}, P)] \}$$
(6)

$$\dot{Ex}^{M} = \dot{m} \{ h(T_{0}, P) - h(T_{0}, P_{0}) - T_{0}[s(T_{0}, P) - s(T_{0}, P_{0})] \}$$
(7)

Ekserji analizinde, Besleme-Ürün kuralı yaygın olarak kullanılır. $\vec{E}x_{f,k}$ ve $\vec{E}x_{p,k}$ sırasıyla k bileşeninin besleme ve ürün ekserjisini temsil eder. Besleme-ürün kuralına göre, $\vec{E}x_{D,k}$ aşağıdaki denklemle bulunur.

$$\vec{E}x_{D,k} = \vec{E}x_{f,k} - \vec{E}x_{p,k} \tag{8}$$

Bu yaklaşım kullanılarak her bir sistem bileşeni için elde edilen besleme-ürün ekserjileri Tablo 4'te sunulmuştur.

Tablo 4

Sistem Bileşenlerinin $\dot{E}x_{f,k}ve \ \dot{E}x_{p,k}$ değerleri

Bileşen	$Ex_{f,k}$	$\dot{Ex}_{p,k}$
Pompa	₩ _P	$\left(\dot{Ex_2^T} - \dot{Ex_1^T} \right) + \left(\dot{Ex_2^M} - \dot{Ex_1^M} \right)$
Evaporatör	$\left(\dot{Ex}_5^T - \dot{Ex}_6^T \right) + \left(\dot{Ex}_5^M - \dot{Ex}_6^M \right) + \left(\dot{Ex}_2^M - \dot{Ex}_3^M \right)$	$\left(\dot{Ex_3^T} - \dot{Ex_2^T} \right)$
Türbin	$\left(\dot{Ex}_{3}^{T} - \dot{Ex}_{4}^{T} \right) + \left(\dot{Ex}_{3}^{M} - \dot{Ex}_{4}^{M} \right)$	\dot{W}_T
Kondenser	$ \begin{pmatrix} \dot{E}\dot{x}_4^T - \dot{E}\dot{x}_1^T \end{pmatrix} + \begin{pmatrix} \dot{E}\dot{x}_4^M - \dot{E}\dot{x}_1^M \end{pmatrix} + \begin{pmatrix} \dot{E}\dot{x}_7^M - \dot{E}\dot{x}_8^M \end{pmatrix} $	$\left(\dot{Ex_8^T} - \dot{Ex_7^T}\right)$

 $Y_{D,k}^*$ değeri, her bir sistem bileşeninin ekserji yıkım oranının ($Ex_{D,k}$) sistemin toplam ekserji yıkım oranı ($Ex_{D,total}$)içerisindeki payını gösteren bir ifadedir [32].

$$Y_{D,k}^* = \frac{\vec{E}x_{D,k}}{\vec{E}x_{D,total}} \tag{9}$$

 ε_k her bir bileşen için besleme ekserjisine bağlı olarak ürün ekserjisinin değerlendirilmesini sağlayan bir parametredir ve aşağıdaki formül ile bulunur [30].

$$\varepsilon_k = \frac{Ex_{p,k}}{Ex_{f,k}} \tag{10}$$

Sistemin ekserji verimi aşağıdaki denklem ile bulunmuştur [33].

$$\eta_{ex} = 1 - \frac{W_{net}}{\vec{E}x_{giren}} \tag{11}$$

Burada Ex_{giren} jeotermal kaynaktan sağlanan ekserji girdisini ifade eder.

Eksergo-ekonomik Analiz

Ekserji analizi, enerjinin doğasını anlamamızı ve sistemde meydana gelen tersinmezlikleri belirlememizi sağlar. Eksergo-ekonomik analiz, ekserji maliyetini ortaya çıkararak sistemin hem ekserji hem de ekonomik yönlerini birleştiren bir yaklaşımdır. Böylece ekserji akışının maliyetinin yanı sıra yatırım maliyetini de dikkate alır. Ekserji yıkımının maliyeti \dot{C} aşağıdaki denklem ile hesaplanır.

$$\dot{C} = c. \dot{E}x \tag{12}$$

Zamana bağlı yatırım maliyet oranı (\dot{Z}_k) denklem (13) ile hesaplanır [34,35].

$$\dot{Z}_k = \frac{Z_k \cdot CRF \cdot \varphi}{3600 \cdot N} \tag{13}$$

Denklem (13) içerisinde bulunan CRF terimi anapara geri kazanım faktörüdür ve denklem (14) ile hesaplanır. Ayrıca φ bakım faktörünü sembolize eder ve bu çalışma için bu değer 1.06 kabul edilmiştir. Yıllık faiz oranı (λ) %10 olup sistemin 7000 saat çalıştığı dikkate alınmıştır [36,37].

$$CRF = \frac{\lambda (1+\lambda)^N}{((1+\lambda)^N - 1)}$$
(14)

Bu çalışmada, eksergo-ekonomik analiz yöntemlerinden biri olan Modifiye Edilmiş Üretim Yapısı Analizi (MOPSA) yöntemi kullanılmıştır. Bu yönteme göre ekserji termal, mekanik ve kimyasal olarak farklı kısımlara ayrılır. Bu ayrım yapılırken her bir bileşenin çalışma amacına göre ekserji maliyetlendirilir. Örneğin türbinlerde ana amaç elektrik üretimi iken pompalarda ana ürün/çıktı mekanik ekserjidir. MOPSA yönteminde sistem bileşenlerinin birim ürün maliyetleri koyu renkle gösterilmiştir. Önerilen sistemin birim ürün maliyetleri Tablo 5'te verilmiştir.

Tablo 5

Bileşen	Maliyet Dengeleri
Pompa	$(E\dot{x}_{1}^{T} - E\dot{x}_{2}^{T})c_{T} + (E\dot{x}_{1}^{M} - E\dot{x}_{2}^{M})c_{1M} + (-E\dot{x}_{D,P})c_{s} + \dot{Z}_{P} = (-E\dot{x}_{P}^{W})c_{W,T}$
	Yukarıdaki denklem şu şekilde yazılabilir:
	$(E\dot{x}_1^T - E\dot{x}_2^T)c_T + (E\dot{x}_1^M - E\dot{x}_2^M)c_{1M} + T_0(\dot{S}_1 - \dot{S}_2)c_s + \dot{Z}_P = (-E\dot{x}_P^W)c_{W,T}$
Evaporatör	$(E\dot{x}_{2}^{T}+E\dot{x}_{5}^{T}-E\dot{x}_{3}^{T}-E\dot{x}_{6}^{T})c_{2T}+(E\dot{x}_{2}^{M}+E\dot{x}_{5}^{M}-E\dot{x}_{3}^{M}-E\dot{x}_{6}^{M})c_{M}+(-E\dot{x}_{D,E})c_{S}$
	$+\dot{Z}_E = 0$
Türbin	$(E\dot{x}_{3}^{T} - E\dot{x}_{4}^{T})c_{T} + (E\dot{x}_{3}^{M} - E\dot{x}_{4}^{M})c_{M} + (-E\dot{x}_{D,T})c_{S} + \dot{Z}_{T} = (-E\dot{x}_{T}^{W})c_{W,T}$
Kondenser	$\left(E\dot{x}_{7}^{BQ} - E\dot{x}_{8}^{BQ}\right)c_{BQ} + \left(E\dot{x}_{4}^{T} - E\dot{x}_{1}^{T}\right)c_{T} + \left(E\dot{x}_{4}^{M} - E\dot{x}_{1}^{M}\right)c_{M} + \left(-E\dot{x}_{D,C}\right)c_{s} + \dot{Z}_{K} = 0$
Birleşim T	$(E\dot{x}_{2}^{T} + E\dot{x}_{5}^{T} - E\dot{x}_{3}^{T} - E\dot{x}_{6}^{T})c_{T} - (E\dot{x}_{2}^{T} + E\dot{x}_{5}^{T} - E\dot{x}_{3}^{T} - E\dot{x}_{6}^{T})c_{2T} = 0$
Birleşim M	$(E\dot{x}_{1}^{M} - E\dot{x}_{2}^{M})c_{M} - (E\dot{x}_{1}^{M} - E\dot{x}_{2}^{M})c_{1M} = 0$
Sınır	$ \left(E\dot{x}_{8}^{BQ} - E\dot{x}_{7}^{BQ} \right) \boldsymbol{c}_{BQ} * + \left(E\dot{x}_{6}^{T} - E\dot{x}_{5}^{T} \right) \boldsymbol{c}_{T} + \left(E\dot{x}_{6}^{M} - E\dot{x}_{5}^{M} \right) \boldsymbol{c}_{M} + \left(-E\dot{x}_{D,BQ} \right) \boldsymbol{c}_{s} + \dot{Z}_{BQ} $
	= 0

Sistem Bileşenlerinin MOPSA Metoduna (Göre Maliye	t Dengeleri
--	-------------	-------------

* Kalın olarak belirtilen birim maliyetler, sistem bileşenlerinin üretim maliyetleridir.

MOPSA metodunda kullanılan maliyet denklemi aşağıdaki gibidir [31,38].

$$E\dot{x}^{CHE}c_{0} + E\dot{x}^{BQ}c_{BQ} + \left(\sum E\dot{x}_{giren}^{T} - \sum E\dot{x}_{\varsigma ikan}^{T}\right)c_{T} + \left(\sum E\dot{x}_{giren}^{M} - \sum E\dot{x}_{\varsigma ikan}^{M}\right)c_{M} + T_{0}\left(\sum \dot{S}_{giren} - \sum \dot{S}_{\varsigma ikan}\right)c_{S} + \dot{Z}_{k} = E\dot{x}^{W}c_{W}$$

$$(15)$$

Burada c_0 ve c_{BQ} değerleri sırasıyla yakıtın ve sistemdeki işlevini yerine getirdikten sonra çevreye verilen ikinci akışın birim maliyetlerini göstermektedir. c_s entropi üretim maliyetidir [31,39].

Ortalama birim ürün-ekserji yıkım maliyeti aşağıdaki tanımlanmaktadır [40].

$$c_{ps,toplam} = c_{p,toplam}{}^{MOPSA} + c_s \tag{16}$$

Burada, $c_{p,toplam}^{MOPSA}$ ürünün ortalama birim maliyetidir ve aşağıdaki denklemle bulunur[40].

$$c_{p,toplam}{}^{MOPSA} = \frac{\sum_{i=1}^{n_k} \dot{Z}_k + \sum_{i=1}^{n_k} \dot{C}_{f,k} - \sum_{i=1}^{n_k} \dot{C}_{D,k}}{\sum_{i=1}^{n_k} \dot{E}x_{D,k}}$$
(17)

Ayrıca, ekserji yıkım maliyetinin $\dot{C}_{D,k}$ yatırım maliyeti oranına (\dot{Z}_k) göre değişimini analiz etmemizi sağlayan eksergo-ekonomik faktör f_k aşağıdaki gibi hesaplanır [36].

$$f_k = \frac{\dot{Z}_k}{\dot{Z}_k + \dot{C}_{D,k}} \tag{18}$$

Sistem bileșenlerine ait Z_k değerleri Tablo 6'da sunulmuştur.

Her bileşen için $\dot{C}_{D,k}$ değeri aşağıdaki gibi hesaplanmaktadır [31]:

$$\dot{C}_{D,k} = c_s. \, \dot{E} x_{D,k} \tag{19}$$

Her bileşen için göreceli maliyet farkı (r_k) şu şekilde hesaplanır [29].

$$r_{k} = \frac{c_{p,k} - c_{f,k}}{c_{f,k}}$$
(20)

 $c_{f,k}$ ve $c_{p,k}$ değerleri sırasıyla ortalama besleme ve ürün ekserji maliyetlerini ifade etmektedir.

Tablo 6

Her bir Sistem Bileşeni için Z_k Değerleri

Bileşen	Z_k
Pompa [41]	$Z_P = 1120. \dot{W}_P^{0.8}$
Evaporatör [42]	$Z_E = 2681.A_E^{0.59}$
Türbin [43]	$Z_T = 6000. \dot{W}_T^{0.7}$
Kondenser [44]	$Z_K = 2143.A_K^{0.514}$

Model Doğrulama

Önerilen sistemin matematiksel modeli Engineering Equation Solver (EES) kullanılarak simüle edilmiştir. Bu çalışmanın simülasyon sonuçları Ref. [45] ile kıyaslanmıştır. Tablo 7'de görüldüğü gibi, net iş çıktı değerleri arasındaki fark %1'den azdır.

Tablo 7

Mevcut Model ile Ref. [45]'ün Kıyaslanması

Girdi Parametreleri			Çıktı Parametreleri		
			Model	Ref [45]	Fark (%)
Pompanın izentropik verimi Türbinin izentropik verimi Evaporatör basıncı Kondenserin basıncı Türbinin giriş sıcaklığı Akışkanın kütlesel debisi	0.9 0.85 3000 kPa 100 kPa 183.5 °C 5 kg/s	Net güç	734.00 kW	734.1 kW	0.014

BULGULAR (RESULTS)

Bu bölümde, önerilen sistemin ekserji analizi ve eksergo-ekonomik analiz sonuçları detaylı olarak incelenmiştir. Analiz için oluşturulan matematiksel model Engineering Equation Solver (EES) kullanılarak hazırlanmıştır. Sistem bileşenlerinin $\vec{E}x_{D,k}$ değerleri ve $\dot{C}_{D,k}$ değerleri hesaplanmıştır. Bir eksergo-ekonomik analiz yöntemi olan MOPSA yöntemine göre ısıl ve mekanik ekserji ayrımı dikkate alınarak $\vec{E}x_{D,k}$ ve $\dot{C}_{D,k}$ değerleri de belirlenmiştir. Önerilen sistemdeki noktaların termodinamik verileri Tablo 8'de sunulmuştur.

Tablo 8

Simülasyon Koşullarına Göre Sistemdeki Her Nokta İçin Termodinamik Özellikler

Nokta	Çalışma akışkanı	ṁ (kg/s)	T (°C)	P (kPa)	Ex ^M (kW)	Ex ^t (kW)	Eż (kW)
1	R245fa	3.61	40.00	249.60	25.24	1.77	27.02
2	R245fa	3.61	40.67	1498.00	28.61	1.93	30.53
3	R245fa	3.61	112.60	1498.00	28.61	157.00	185.60
4	R245fa	3.61	62.76	249.60	25.24	39.59	64.84
5	Su	30	120.00	2000.00	95.24	2634.00	2729.00
6	Su	30	116.10	2000.00	95.24	2435.00	2530.00
7	Hava	50	25.00	100.00	0	0	0
8	Hava	50	49.40	100.00	0	28.62	28.62

Sistem Bileşenlerinin $\dot{E}x_{D,k}$ Değerleri ve $\dot{E}x_{D,toplam}$ İçerisindeki Yüzdeleri

Şekil 2, sistem bileşenlerinin ekserji yıkım oranlarını ve tüm sistemdeki ekserji yıkımındaki yüzde paylarını göstermektedir. Ayrıca, sistem bileşenlerinin ekserji analizi sonuçları Tablo 9'da sunulmuştur. Şekil 2 ve Tablo 9 birlikte değerlendirildiğinde, en yüksek ekserji yıkımı sırasıyla evaporatör (%62), türbin (%24), kondenser (%13) ve pompada (%1) gerçekleşmektedir.

Sistem bileşenlerinin kendi içlerindeki çalışma performanslarını değerlendirmek amacıyla ε_k ve $Y_{D,k}^*$ değerleri bileşen bazında hesaplanmış ve Tablo 9'da sunulmuştur. Buna göre en yüksek ε_k değerlerine sahip sistem bileşenleri sırasıyla türbin (%86), pompa (%80.99), evaporatör (%77.91) ve kondenserdir (%77.91). Sistem bileşenleri $Y_{D,k}^*$ açısından incelendiğinde en yüksek $Y_{D,k}^*$ değerinin sırasıyla evaporatör (%62.41), türbin (%23.37), kondenser (%13.05) ve pompada (%1.17) olduğu görülmektedir.

Tablo 9

Sistem Bileşenlerinin Ekserji Analiz Sonuçları

Bileşen	$E\dot{x}_{f,k}$ (kW)	$E\dot{x}_{p,k}$ (kW)	$E\dot{x}_{D,k}$ (kW)	$\boldsymbol{\varepsilon}_{k}\left(\% ight)$	$Y_{D,k}^{*}$ (%)
Pompa	4.342	3.517	0.8253	80.99	1.17
Evaporatör	199.1	155.1	43.98	77.91	62.41
Türbin	120.8	104.3	16.47	86.37	23.37
Kondenser	37.82	28.62	9.197	75.68	13.05
Toplam	362.1	291.6	70.47	80.54	100.00

Sistem bileşenlerinin eksergo-ekonomik analiz sonuçları Tablo 10'da sunulmuştur. Tabloda yer alan eksergo-ekonomik faktör (f_k), toplam maliyette $\dot{C}_{D,k}$ değerinin mi yoksa yatırım maliyeti oranının mı baskın olduğunu gösteren bir parametredir. Eksergo-ekonomik faktör en yüksek değeri türbinde (%96.14) alırken, bunu sırasıyla pompa (%92.06), kondenser (%81.71) ve evaporatör (%55.34) takip etmektedir. f_k değerleri bu sistem bileşenleri için %50'nin üzerindedir. Bu da yatırım maliyeti oranının $\dot{C}_{D,k}$ değerinden daha yüksek olduğunu göstermektedir. Bu sistem bileşenleri için yatırım maliyet oranları düşürülmelidir. Türbin, pompa ve evaporatörde $Ex_{D,k}$ azaltacak bir iyileştirme çalışması için sistem bileşenleri arasındaki ilişki incelenebilir. Maliyet ve ekserji açısından dengeli bir sistemde göreceli maliyet farkının r_k düşük olması istenir. Tablo 10'da görüldüğü gibi en yüksek r_k değeri sırasıyla türbinde (%873.20), kondenserde (%497.60), pompada (%89.94) ve evaporatördedir (%56.51). Bu sıralama bize iyileştirme potansiyeli olan unsurların sıralamasını göstermektedir. Tablo 10'daki toplam maliyet sıralamasına bakıldığında en yüksek paya sahip sistem bileşeninin türbin olduğu görülmektedir. Yüksek f_k değerine sahip türbinin yatırım maliyeti oranı üzerinde bir iyileştirme çalışması yapılmalıdır.

Tablo 10

Sistem Bileşenlerinin Eksergo-ekonomik Analiz Sonuçları

Bileşen	$\left(\dot{Z}_{k}+\dot{C}_{D,k}\right)$ (\$/h)	${m f}_{ m k}$ (%)	r _k (%)
Pompa	0.0705	92.06	89.94
Evaporatör	0.6635	55.34	56.51
Türbin	2.873	96.14	873.20
Kondenser	0.3387	81.71	497.60
Toplam	3.945	87.97	352.70

Maliyet-denge denklemlerinin MOPSA yöntemine göre çözülmesi sonucunda elde edilen birim maliyet değerleri Tablo 11'de sunulmuştur. Buna göre;

 \bullet Termal ve mekanik birim ekserji maliyetleri sırasıyla 0.45 GJ ve 13.92 /GJ olarak hesaplanmıştır.

• Entropi üretiminin birim maliyeti 1.87 \$/GJ olarak hesaplanmıştır.

• Türbinde üretilen elektriğin birim maliyeti 7.00 \$/GJ olarak hesaplanmıştır.

Tablo 11

MOPSA Yöntemi için Tanımlanan Birim Maliyet Değerleri

c _{1M} (\$/GJ)	<i>c</i> _{2<i>T</i>} (\$/GJ)	c _{BQ} (\$/GJ)	<i>c_M</i> (\$/GJ)
13.92	-0.45	1.49	13.92
<i>c</i> _s (\$/GJ)	<i>c_T</i> (\$/GJ)	<i>c_{WT}</i> (\$/GJ)	
1.87	-0.45	7.00	

Tablo 12'de görüldüğü gibi;

- Önerilen sistemin ilk yatırım maliyeti 963.88 \$/h olarak hesaplanmıştır.
- Türbinde üretilen elektriğin maliyeti 730.6 \$/h olarak hesaplanmıştır.
- Pompa tarafından tüketilen toplam elektrik maliyeti 30.4 \$/h olarak hesaplanmıştır.
- Sistemde üretilen net elektriğin maliyeti 700.2 \$/h olarak hesaplanmıştır.
- Entropi üretiminin birim maliyeti evaporatör için 82.3 \$/h, türbin için 30.82 \$/h ve kondenser için 17.21 \$/h olarak hesaplanmıştır.

	Ċ _T	Ċ _M	Ċ _{BQ}	Ċ _W	Ċ _D	Ż _k
Bileşen	[\$/h]	[\$/h]	[\$/h]	[\$/h]	[\$/h]	[\$/h]
Pompa	0.06854	-46.84	0	-30.4	-1.544	17.91
Evaporatör	-19.69	0	0	0	-82.3	102
Türbin	-52.59	46.84	0	730.6	-30.82	767.1
Kondenser	-16.94	0	-42.72	0	-17.21	76.87
Sınır	89.15146	0	42.72	0	131.874	0
Toplam	0	0	0	700.2	0	963.88

Tablo 12

	•• •			-	-	
1		Dilan anlani 1	ain Flan and	Trial and a day	Malinat	O
(ineriien Misiemi	n Bilesenieri i	CIN EKSPEII	Turierinin	Manver	Graniari
•				1 111 101 11111		

Önerilen sistemin enerji, ekserji ve eksergo-ekonomik performansı Tablo 13'te verilen kararlı değişken aralıklarına göre incelenmiştir.

Tablo 13

Anahtar Parametreler İçin Aralıklar

Kararlı Değişkenler	Aralık	
Pompanın izentropik verimi	0.7-0.98	
Türbinin izentropik verimi	0.7-0.96	
Aşırı kızdırma sıcaklığı	2-12	
Basınç oranı	2-4	

Şekil 3, pompanın izentropik verimindeki değişimin η_{ex} , $c_{ps,toplam}^{MOPSA}$, c_s , $c_{p,toplam}^{MOPSA}$ 'yı ne ölçüde etkilediğini göstermektedir. Şekil 3(a) incelendiğinde pompanın izentropik verimi 0.7-0.98 aralığında arttıkça η_{ex} değerinde %1.26'lık bir artış, $c_{ps,toplam}^{MOPSA}$ değerinde ise %1.37'lik bir düşüş görülmektedir. η_{ex} 'teki artış, Denklem (11)'de görüldüğü gibi jeotermal kaynaktan (\vec{Ex}_{giren}) evaporatöre geçen termal enerjideki azalmadan kaynaklanmaktadır. $c_{ps,toplam}^{MOPSA}$ 'daki azalmayı daha iyi anlamak için Şekil 3(b)'ye bakılması gerekmektedir. Bu durum Denklem (16)'da görülebilir, c_s neredeyse sabit kalırken, $c_{p,toplam}^{MOPSA}$ 'daki %2.06'lık düşüşten kaynaklanmaktadır. Şekil 3 (c)'ye bakıldığında, $c_{p,toplam}^{MOPSA}$ 'nın $c_{ps,toplam}^{MOPSA}$ değerindeki payının c_s 'den daha yüksek olduğu görülmektedir. Dolayısıyla bu durum $c_{p,toplam}^{MOPSA}$ değerindeki düşüşün $c_{ps,total}^{MOPSA}$ değerindeki düşüşe paralel bir etki yapacağını göstermektedir.

Pompanın İzentropik Verimine Bağlı Olarak (a) Sistemin η_{ex} ve $c_{ps,total}^{MOPSA}$ 'nın Değişimi (b) Sistemin c_s ve $c_{p,total}^{MOPSA}$ 'deki Değişimi (c) $c_{ps,total}^{MOPSA}$ 'ya Bağlı Olarak $c_{p,total}^{MOPSA}$ Ve c_s 'nin Oransal Değişimi

Şekil 4, türbinin izentropik verimindeki değişimin η_{ex} , $c_{ps,toplam}^{MOPSA}$, c_s , $c_{p,toplam}^{MOPSA}$ 'yı ne ölçüde etkilediğini göstermektedir. Şekil 4(a) incelendiğinde, pompanın izentropik verimi 0.7-0.96 aralığında arttıkça, η_{ex} 'te %38.36'lık bir artış görülmektedir. Aynı zamanda $c_{ps,toplam}^{MOPSA}$ değerinde de %19.2'lik bir artış görülmektedir. Denklem 11'de görüldüğü gibi, bu düşüş net işin (Tablo 2) sabit olduğu kabul edildiğinden Ex_{giren} 'deki düşüşten kaynaklanmaktadır. $c_{ps,toplam}^{MOPSA}$ değerindeki artış, Şekil 4(b)'de görüldüğü gibi, hem $c_{p,toplam}^{MOPSA}$ değerindeki %20.49'luk artıştan hem de c_s değerindeki %19.78'lik artıştan kaynaklanmaktadır. Şekil 4(c), $c_{ps,toplam}^{MOPSA}$ 'nın kısımları olan $c_{p,toplam}^{MOPSA}$ ve $c_{ps,toplam}^{MOPSA}$ ve c_s'nin oransal etkisini daha iyi incelememizi sağlar. Dolayısıyla, Şekil 4(c)'ye bakıldığında, $c_{p,toplam}^{MOPSA}/c_{ps,toplam}^{MOPSA}$ değerinin türbinin izentropik verimliliği 0.7-0.86 aralığında iken arttığı, 0.86-0.88 aralığında sabit kaldığı ve 0.88'den sonra bu değerin azaldığı görülmektedir. c_s/ $c_{ps,toplam}^{MOPSA}$ oranı için ise tam tersi geçerlidir.

Türbinin İzentropik Verimine Bağlı Olarak (**a**) Sistemin η_{ex} ve $c_{ps,total}^{MOPSA}$ 'nın Değişimi (**b**) Sistemin c_s ve $c_{p,total}^{MOPSA}$ 'deki Değişimi (**c**) $c_{ps,total}^{MOPSA}$ 'ya Bağlı Olarak $c_{p,total}^{MOPSA}$ Ve c_s 'nin Oransal Değişimi

Şekil 5, aşırı kızdırma sıcaklığındaki değişimin η_{ex} , $c_{ps,total}^{MOPSA}$, c_s , $c_{p,total}^{MOPSA}$ 'yı ne ölçüde etkilediğini göstermektedir. Şekil 5 (a) incelendiğinde, aşırı kızdırma sıcaklığı 2-12 °C aralığında arttıkça sistemin η_{ex} 'i fazla etkilemediği, $c_{ps,total}^{MOPSA}$ 'nın ise %29.08 oranında arttığı görülmektedir. Şekil 5 (b)'de görüldüğü gibi, hem $c_{p,total}^{MOPSA}$ hem de c_s değerlerinde sırasıyla %17.21 ve %52.91'lik bir artış vardır. Şekil 5 (c)'de görüldüğü gibi, c_s 'deki artış $c_{ps,total}^{MOPSA}$ 'daki oranı daha da baskın hale getirmektedir. Dolayısıyla, birim ekserji yıkım maliyetinin ortalama toplam birim maliyet üzerinde daha büyük bir etkiye sahip olduğu anlaşılmaktadır.

Aşırı Kızdırma Sıcaklığına Bağlı Olarak (a) Sistemin η_{ex} ve $c_{ps,total}^{MOPSA}$ 'nın Değişimi (b) Sistemin c_s ve $c_{p,total}^{MOPSA}$ 'deki Değişimi (c) $c_{ps,total}^{MOPSA}$ 'ya Bağlı Olarak $c_{p,total}^{MOPSA}$ Ve c_s 'nin Oransal Değişimi

Şekil 6, basınç oranındaki değişimin η_{ex} , $c_{ps,total}^{MOPSA}$, c_s , $c_{p,total}^{MOPSA}$ 'yı ne ölçüde etkilediğini göstermektedir. Şekil 6 (a)'da, P_R 4-6 aralığında arttıkça, η_{ex} değerinde %22.25 ve $c_{ps,total}^{MOPSA}$ değerinde %31.39'luk bir artış görülmektedir. Şekil 6 (b) incelendiğinde, $c_{ps,total}^{MOPSA}$ değerindeki %19.83'lük ve c_s değerindeki %61.99'luk artıştan kaynaklanmaktadır. PR 4-6 arasında değiştikçe, Şekil 6 (c)'de görüldüğü gibi c_s 'nin $c_{ps,total}^{MOPSA}$ içindeki payı artmakta ve $c_{p,total}^{MOPSA}$ içindeki payı azalmaktadır.

Sıkıştırma Oranına Olarak (**a**) Sistemin η_{ex} ve $c_{ps,total}^{MOPSA}$ 'nın Değişimi (**b**) Sistemin c_s ve $c_{p,total}^{MOPSA}$ 'deki Değişimi (**c**) $c_{ps,total}^{MOPSA}$ 'ya Bağlı Olarak $c_{p,total}^{MOPSA}$ Ve c_s 'nin Oransal Değişimi

TARTIŞMA VE SONUÇLAR (DISCUSSION AND CONCLUSIONS

Termal enerji kaynağı olarak jeotermal enerjiden yararlanan bir ORÇ çevriminin enerji, ekserji ve eksergo-ekonomik analizleri yapılmıştır. Eksergo-ekonomik analiz yöntemi olarak MOPSA yöntemi kullanılmıştır. Önerilen sistemin matematiksel modelini çözümlemek için EES programı kullanılmıştır. Belirlenen kararlı değişkenlerin sistemin performans kriterleri üzerindeki etkisi incelenmiştir. Çalışmanın ana sonuçları aşağıdaki gibi özetlenebilir:

- En yüksek ε_k değerlerine sahip sistem bileşenleri sırasıyla türbin (%86), pompa (%80.99), evaporatör (%77.91) ve kondenserdir (%77.91). En yüksek $Y_{D,k}^*$ değerlerinin sırasıyla evaporatör (%62.41), türbin (%23.37), kondenser (%13.05) ve pompada (%1.17) olduğu görülmektedir. f_k en yüksek değeri türbinde (%96.14) alırken, bunu sırasıyla pompa (%92.06), kondenser (%81.71) ve evaporatör (%55.34) takip etmektedir. Bu değerler tüm sistem bileşenlerinde %50'nin üzerindedir. Bu da yatırım maliyeti oranının $\dot{C}_{D,k}$ 'den daha yüksek olduğunu göstermektedir. En yüksek r_k değeri sırasıyla türbin (%873.20), kondenser (%497.60), pompa (%89.94) ve evaporatördedir (%56.51). r_k açısından en yüksek iyileştirme potansiyeline sahip bileşen türbindir.
- Türbinde üretilen elektriğin maliyeti 730.6 \$/h, pompa tarafından tüketilen elektriğin maliyeti 30.4 \$/h ve sistemde üretilen net elektriğin maliyeti 700.2 \$/h olarak hesaplanmıştır. Entropi üretim maliyeti evaporatör için 82.3 \$/h, türbin için 30.82 \$/h ve kondenser için 17.21 \$/h olarak hesaplanmıştır.
- Pompanın izentropik verimi 0.7-0.98 aralığında arttıkça, $c_{ps,total}^{MOPSA}$ değeri azalır ve η_e x

artar. Türbinin izentropik verimi 0.7-0.96 aralığında arttıkça $c_{ps,total}^{MOPSA}$ ve η_{ex} değerleri artmaktadır. Aşırı kızdırma sıcaklığı 2-12 °C aralığında arttıkça, η_{ex} neredeyse sabit kalırken $c_{ps,total}^{MOPSA}$ değeri artmaktadır. Sıkıştırma oranı 4-6 aralığında arttıkça, $c_{ps,total}^{MOPSA}$ ve η_{ex} değerleri artar.

Bu çalışma, MOPSA yönteminin jeotermal temelli bir ORÇ sistemine uygulanması açısından bir rehber niteliğindedir. Elde edilen analiz sonuçları enerji verimliliğinin arttırılabilmesi için geliştirilecek politikalarda kullanılabilecektir [46].

Kısaltmalar

BFC	binary flash cycle
BZORÇ	basic zeotropic ORÇ
CHP	combined heating power plant
EES	engineering equation solver
EGS	enhanced geothermal plant
J	jenerator
Κ	kondenser
LCOE	levelized cost of electricity
LCOS	levelized cost of storage
LSC	liquid separation condenser
MOPSA	modified productive structure analysis
OFÇ	organik flaş çevrim
ORÇ	organik Rankine çevrim
Р	pompa
PTES	pumped thermal energy storage
SPECO	specific exergy costing
Т	türbin
Semboller	
А	alan (m^2)
c	ekserji birim maliyeti (\$/GJ)
Ċ	maliyet oranı (\$/h)
CRF	Capital Recovery Factor
Ėx	ekserji yıkım oranı (kW)
f	eksergo-ekonomik faktör
h	entalpi (kJ/kg)
'n	kütlesel debi (kg/s)
Ν	sistemin ömrü (yıl)

Р	basınç (kPa)
r	göreceli maliyet farkı
S	entropi (kJ/kgK)
Т	sıcaklık (K)
Ż	yatırım maliyet oranı (\$/h)
Yunan harfleri	
η	izentropik verim (%)
λ	yıllık faiz oranı (%)
arphi	bakım faktörü
Alt indisler	
0	referans noktası
1-8	noktalar
ak	aşırı kızdırma
BQ	sınır şartları
D	yıkım
E	evaporatör
f	besleme
jeo	jeotermal
Κ	kondenser
р	ürün
Р	pompa
Т	türbin
Üst indis	
BQ	sınır
CHE	kimyasal
KN	kinetik
М	mekanik
PT	potansiyel
Т	termal
TM	termo-mekanik
W	iş

Finansal Destek (Funding)

Bu araştırma herhangi bir kamu, ticari veya kâr amacı gütmeyen kuruluş tarafından desteklenmemiştir.

Yazar Katkıları (Authors Credits)

Araştırma Tasarımı (CRediT 1) E.H.G. (%60) – D.N.Ö. (%40) Veri Toplama (CRediT 2) E.H.G. (%60) – D.N.Ö. (%40) Araştırma - Veri Analizi - Doğrulama (CRediT 3-4-6-11) E.H.G. (%60) – D.N.Ö. (%40) Makalenin Yazımı (CRediT 12-13) E.H.G. (%60) – D.N.Ö. (%40) Metnin Tashihi ve Geliştirilmesi (CRediT 14) E.H.G. (%60) – D.N.Ö. (%40)

Çıkar Çatışması (Conflict of Interest)

Çıkar çatışması söz konusu değildir.

Sürdürülebilir Kalkınma Amaçları (SDG)

Sürdürülebilir Kalkınma Amaçları: 7 Erişilebilir ve Temiz Enerji

KAYNAKÇA (REFERENCES)

- [1] A. Mahmoudi, M. Fazli, M.R. Morad, A recent review of waste heat recovery by Organic Rankine Cycle, *Applied Thermal Engineering*. 143 (2018) 660–675. doi:10.1016/j.applthermaleng.2018.07.136.
- [2] A.O. Özkan, H.B. Demir, Fotovoltaik panellerde sıcaklık ve zenit açısının panel güç üretimine etkisi, *Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi*. 1(1) (2019) 1–9.
- [3] M.E. Boyacıoğlu, R. Şahin, A. Kahraman, S. Ata, ORÇ ile düşük sıcaklıklı ısı kaynaklarından elektrik üretilmesinde ıslak ve yeni nesil akışkanların çevresel ve termodinamik performanslarının karşılaştırılması, *Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi*. 1 (2021) 13–23. doi:10.47112/neufmbd.2021.6.
- [4] R. Loni, O. Mahian, G. Najafi, A.Z. Sahin, F. Rajaee, A. Kasaeian, M. Mehrpooya, E. Bellos, W.G. le Roux, A critical review of power generation using geothermal-driven organic Rankine cycle, *Thermal Science and Engineering Progress*. 25 (2021). doi:10.1016/j.tsep.2021.101028.
- [5] Ş. Bülbül, E. Ayhan, H. Gökmeşe, Termik santral atığı olan kömür külünün sbr matrisli bileşiklere ilave edilmesinin mekanik özelliklere etkisi, *Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi*. 5 (2023) 135–146. doi:10.47112/neufmbd.2023.14
- [6] H.Y. Kwak, D.J. Kim, J.S. Jeon, Exergetic and thermoeconomic analyses of power plants, *Energy*. 28 (2003) 343–360. doi:10.1016/S0360-5442(02)00138-X.
- [7] C. Uysal, D.N. Ozen, H. Kurt, H.Y. Kwak, A comparative assessment of SPECO and MOPSA on costing of exergy destruction, *International Journal of Exergy*. 32 (2020) 62. doi: 10.1504/IJEX.2020.107744
- [8] P. Lu, X. Luo, J. Wang, J. Chen, Y. Liang, Z. Yang, C. Wang, Y. Chen, Thermo-economic design, optimization, and evaluation of a novel zeotropic ORC with mixture composition adjustment during operation, *Energy Conversion and Management*. 230 (2021) 113771. doi:10.1016/j.enconman.2020.113771.
- [9] Y. Zhao, B. Du, S. Chen, J. Zhao, Y. Gong, X. Bu, H. Li, L. Wang, Thermo-Economic comparison between organic Rankine cycle and binary-flashing cycle for geothermal energy, *Frontiers in Earth Science*. 9 (2021) 1–10. doi:10.3389/feart.2021.759872.
- [10] L. Wang, B.U. Xianbiao, L.I. Huashan, Thermo-economic investigation of an enhanced geothermal system organic Rankine cycle and combined heating and power system, *Acta Geologica Sinica (English Edition)*. 95 (2021) 1958–1966. doi:10.1111/1755-6724.14871.
- [11] Y. Chen, J. Xu, D. Zhao, J. Wang, P.D. Lund, Exergo-economic assessment and sensitivity analysis of a solar-driven combined cooling, heating and power system with organic Rankine cycle and absorption heat pump, *Energy*. 230 (2021) 120717. doi:10.1016/j.energy.2021.120717.
- [12] M. Aliahmadi, A. Moosavi, H. Sadrhosseini, Multi-objective optimization of regenerative ORC system integrated with thermoelectric generators for low-temperature waste heat recovery, *Energy Reports*. 7 (2021) 300–313. doi:10.1016/j.egyr.2020.12.035.
- [13] S. Hu, Z. Yang, J. Li, Y. Duan, Thermo-economic optimization of the hybrid geothermal-solar power system: A data-driven method based on lifetime off-design operation, *Energy Conversion* and Management. 229 (2021) 113738. doi:10.1016/j.enconman.2020.113738.
- [14] A.K. Bett, S. Jalilinasrabady, Exergoeconomic Analysis for Optimized Combined Wet and Dry Cooling BinaryPower Plant at Olkaria I, Kenya, *Geothermics*. 95 (2021) 102160. doi:10.1016/j.geothermics.2021.102160.
- [15] P. Wang, Q. Li, C. Liu, R. Wang, Z. Luo, P. Zou, S. Wang, Comparative analysis of system performance of thermally integrated pumped thermal energy storage systems based on organic flash cycle and organic Rankine cycle, *Energy Conversion and Management*. 273 (2022) 116416. doi:10.1016/j.enconman.2022.116416.

- [16] C. Chen, F. Witte, I. Tuschy, O. Kolditz, H. Shao, Parametric optimization and comparative study of an organic Rankine cycle power plant for two-phase geothermal sources, *Energy*. 252 (2022). doi:10.1016/j.energy.2022.123910.
- [17] J. Li, Z. Yang, Z. Yu, J. Shen, Y. Duan, Influences of climatic environment on the geothermal power generation potential, *Energy Conversion and Management*. 268 (2022) 115980. doi:10.1016/j.enconman.2022.115980.
- [18] S. Khanmohammadi, M. Rahmani, F. Musharavati, S. Khanmohammadi, Q.V. Bach, Thermal modeling and triple objective optimization of a new compressed air energy storage system integrated with Rankine cycle, PEM fuel cell, and thermoelectric unit, *Sustainable Energy Technologies and Assessments*. 43 (2021) 100810. doi:10.1016/J.SETA.2020.100810.
- [19] B. Ruhani, S.A. Moghaddas, A. Kheradmand, Hydrogen production via renewable-based energy system: Thermoeconomic assessment and Long Short-Term Memory (LSTM) optimization approach, *International Journal of Hydrogen Energy*. 52 (2023) 505–519. doi:10.1016/j.ijhydene.2023.03.456.
- [20] Z. Yuan, G. Jun, Z. Yingxia, Z. Bo, L. Guanqun, T. Yuanjun, Y. Chao, Thermo-economic analysis of an enhanced gekothermal system for power generation based on organic Rankine cycle, 19 (2024), 24-32. doi: 10.1093/ijlct/ctad097
- [21] M.M. Abdelghafar, M.A. Hassan, H. Kayed, Comprehensive analysis of combined power cycles driven by sCO2-based concentrated solar power: Energy, exergy, and exergoeconomic perspectives, *Energy Conversion and Management*. 301 (2024) 118046. doi:10.1016/J.ENCONMAN.2023.118046.
- [22] H. Semmari, F. Bouaicha, S. Aberkane, A. Filali, D. Blessent, M. Badache, Geological context and thermo-economic study of an indirect heat ORC geothermal power plant for the northeast region of Algeria, *Energy*. 290 (2024) 130323. doi:10.1016/j.energy.2024.130323.
- [23] A. Ahmadi, M. El Haj Assad, D.H. Jamali, R. Kumar, Z.X. Li, T. Salameh, M. Al-Shabi, M.A. Ehyaei, Applications of geothermal organic Rankine Cycle for electricity production, *Journal of Cleaner Production*. 274 (2020). doi:10.1016/j.jclepro.2020.122950.
- [24] E. Wang, H. Zhang, B. Fan, Y. Wu, Optimized performances comparison of organic Rankine cycles for low grade waste heat recovery, *Journal of Mechanical Science and Technology*. 26 (2012) 2301–2312. doi:10.1007/s12206-012-0603-4.
- [25] N.K. Choudhary, A.P. Deep, S. Karmakar, Thermodynamic analysis of integrated gasification combined cycle integrated with organic Rankine cycle for waste heat utilization, *Waste and Biomass Valorization*. (2024). doi:10.1007/s12649-023-02391-2.
- [26] M. Ranjbar Hasani, N. Nedaei, E. Assareh, S.M. Alirahmi, Thermo-economic appraisal and operating fluid selection of geothermal-driven ORC configurations integrated with PEM electrolyzer, *Energy*. 262 (2023) 125550. doi:10.1016/j.energy.2022.125550.
- [27] P. Wan, L. Gong, Z. Bai, Thermodynamic analysis of a geothermal-solar flash-binary hybrid power generation system, *Energy Procedia*. 158 (2019) 3–8. doi:10.1016/j.egypro.2019.01.023.
- [28] F. Mohammadkhani, N. Shokati, S.M.S. Mahmoudi, M. Yari, M.A. Rosen, Exergoeconomic assessment and parametric study of a Gas Turbine-Modular Helium Reactor combined with two Organic Rankine Cycles, *Energy*. 65 (2014) 533–543. doi:10.1016/j.energy.2013.11.002.
- [29] Y. Zhang, E. Yao, T. Wang, Comparative analysis of compressed carbon dioxide energy storage system and compressed air energy storage system under low-temperature conditions based on conventional and advanced exergy methods, *Journal of Energy Storage*. 35 (2021) 102274. doi:10.1016/J.EST.2021.102274.
- [30] D.N. Ozen, C. Uysal, O. Balli, Thermoeconomic analysis of t56 turboprop engine under different load conditions, *Isi Bilimi ve Teknigi Dergisi/ Journal of Thermal Science and Technology*. 40 (2020) 251–265. doi:10.47480/isibted.817013.

- [31] D.N. Özen, B. Koçak, Advanced exergy and exergo-economic analyses of a novel combined power system using the cold energy of liquefied natural gas, *Energy*. 248 (2022). doi:10.1016/j.energy.2022.123531.
- [32] Y. Zhang, T. Liang, C. Yang, X. Zhang, K. Yang, Advanced exergy analysis of an integrated energy storage system based on transcritical CO2 energy storage and Organic Rankine Cycle, *Energy Conversion and Management*. 216 (2020). doi:10.1016/j.enconman.2020.112938.
- [33] D. Marmolejo-Correa, T. Gundersen, A comparison of exergy efficiency definitions with focus on low temperature processes, *Energy*. 44 (2012) 477–489. doi:10.1016/J.ENERGY.2012.06.001.
- [34] E. Hançer Güleryüz, D.N. Özen, Advanced exergy and exergo-economic analyses of an advanced adiabatic compressed air energy storage system, *Journal of Energy Storage*. 55 (2022). doi:10.1016/j.est.2022.105845.
- [35] Y. Mazloum, H. Sayah, M. Nemer, Exergy analysis and exergoeconomic optimization of a constant-pressure adiabatic compressed air energy storage system, *Journal of Energy Storage*. 14 (2017) 192–202. doi:10.1016/j.est.2017.10.006.
- [36] D.N. Ozen, İ. Uçar, Energy, exergy, and exergo-economic analysis of a novel combined power system using the cold energy of liquified natural gas (LNG), *Environmental Progress and Sustainable Energy*. 39 (2020) 1–16. doi:10.1002/ep.13377.
- [37] S. Hou, Y. Zhou, L. Yu, F. Zhang, S. Cao, Y. Wu, Optimization of a novel cogeneration system including a gas turbine, a supercritical CO2 recompression cycle, a steam power cycle and an organic Rankine cycle, *Energy Conversion and Management*. 172 (2018) 457–471. doi:10.1016/j.enconman.2018.07.042.
- [38] C. Uysal, A new approach to advanced exergoeconomic analysis: The unit cost of entropy generation, *Environmental Progress and Sustainable Energy*. 39 (2020). doi:10.1002/ep.13297.
- [39] C. Uysal, H. Kurt, H.Y. Kwak, Exergetic and thermoeconomic analyses of a coal-fired power plant, *International Journal of Thermal Sciences*. 117 (2017) 106–120. doi:10.1016/j.ijthermalsci.2017.03.010.
- [40] D.N. Özen, E. Hançer Güleryüz, A.M. Acılar, Advanced exergo-economic analysis of an advanced adiabatic compressed air energy storage system with the modified productive structure analysis method and multi-objective optimization study, *Journal of Energy Storage*. 81 (2024). doi:10.1016/j.est.2023.110380.
- [41] Y. Aryanfar, M.E.H. Assad, A. Khosravi, R.S.M. Atiqure, S. Sharma, J.L.G. Alcaraz, R. Alayi, Energy, exergy and economic analysis of combined solar ORC-VCC power plant, *International Journal of Low-Carbon Technologies*. 17 (2022) 196–205. doi:10.1093/IJLCT/CTAB099.
- [42] A.D. Akbari, S.M.S. Mahmoudi, Thermoeconomic analysis & optimization of the combined supercritical CO2 (carbon dioxide) recompression Brayton/organic Rankine cycle, *Energy*. 78 (2014) 501–512. doi:10.1016/J.ENERGY.2014.10.037.
- [43] M. Khaljani, R. Khoshbakhti Saray, K. Bahlouli, Comprehensive analysis of energy, exergy and exergo-economic of cogeneration of heat and power in a combined gas turbine and organic Rankine cycle, *Energy Conversion and Management*. 97 (2015) 154–165. doi:10.1016/J.ENCONMAN.2015.02.067.
- [44] J. Bao, Y. Lin, R. Zhang, N. Zhang, G. He, Effects of stage number of condensing process on the power generation systems for LNG cold energy recovery, 126 (2017), 566-582.
- [45] M. Almahdi, I. Dincer, M.A. Rosen, A new solar based multigeneration system with hot and cold thermal storages and hydrogen production, *Renewable Energy*. 91 (2016) 302–314.
- [46] M. Hacıbeyoglu, M. Çelik, Ö. Erdaş Çiçek, K en yakın komşu algoritması ile binalarda enerji verimliliği tahmini, Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. 5 (2023) 28–37. doi:10.47112/neufmbd.2023.10