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 and NA levels have varied from 

16 to 18 and 50 to 100 ppm, respectively. 

The optimum 

operating conditions are a CR of 18 and an NA level of 83.877 ppm. 

The optimized parameters were attained at a composite desirability of 0.847. 
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1. Introduction 

Everyday operations require fossil fuels as an energy source 

for running compression ignition (CI) engines (1). These CI 

engines guarantee power production in agriculture, irrigation, 

and transportation fields. As a result, in today's globe, fossil 

fuels such as crude oil, natural gas, and coal are in great demand; 

nevertheless, their reserves are decreasing. As a result, the 

exhaustion of diesel fuel and the imposition of tight pollution 

laws are significant concerns for society. Therefore, there is a 

need to develop other energy sources that will last a long time 

(2). In recent times, biodiesel appears to be an excellent 

replacement for established fuels (3). Biodiesel is a non-toxic, 

renewable, and biodegradable fuel that offers a cost-effective 

alternative to conventional fuels (4). Also, because the 

feedstocks for biodiesel synthesis are edible, non-edible 

vegetable oil and animal fats, biodiesel may be utilized as a fuel 

in CI engines as an alternative to diesel to support rural 

development and economics. However, some concerns need to 

be addressed before the actual utilization of biodiesel as a fuel. 

These are: (i) Biodiesel should not be utilized directly due to its 

increased viscosity, (ii) Also, after burning of biodiesel fewer 

contaminants are emitted, which are less harmful to human 

health (5). Nevertheless, the use of biodiesel has improved 

lubricity, which benefits engine rotating components. However, 

biodiesel's performance and combustion characteristics should 
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be further evaluated. As a result, this paper aims to improve its 

fuel characteristics as closely as possible to those of neat diesel-

fueled engines. 

Various researchers have studied the characteristics of CI 

engines when fueled with biofuels (6). Arumugam et al. 

investigated the substitution of artificial lubricant with rapeseed 

oil-based bio-lubricants in an engine (7). They found that a 

combination of biofuel/bio-lubricant reduced wear and ash 

content compared to a traditional fuel-lubricant combination. 

Selvan et al. performed an experimental investigation to conduct 

combustion, performance, and emission analysis of Cerium 

Oxide Nanoparticles and Carbon Nanotubes nanoparticle 

additives in di-esterol blends (8). They found that adding 

additives increased cylinder gas pressure compared to neat di-

esterol blends. Bridjesh et al. studied the performance properties 

of variable compression ratio (VCR) diesel engines using a 

Calophyllum inophyllum biodiesel blend (9). The result showed 

minimized brake thermal efficiency (BTE) and increased brake-

specific fuel consumption (BSFC) using neat diesel. Suresh et 

al. comprehensively evaluated biodiesel production from 

several non-edible oils in terms of combustion, performance, 

and emission characteristics of VCR diesel engines (10). As per 

their investigation, better brake fuel efficiency and minimization 

in fuel utilization are possible with blended biodiesels. 

Murugapoopathi and Vasudevan performed energy and exergy 

analysis of biodiesel-fueled engines at several fuel blends and 

compression ratios (CRs) combinations (11). They found 

optimum engine settings based on the input factors. They also 

found that a combination of CR20, B20,  

and B40 performs better at 80% load for esters of seed oil in a 

mixture with diesel. Khatri et al. experimented to study the 

influence of zinc oxide (ZnO) nanoparticles in addition to diesel 

on the properties of diesel engines (12). They found a 15.58% 

increase in BTE and an 11.11% increase in BSFC with additives. 

Also, they found that the emissions are significantly reduced. 

Hussain et al. studied a diesel engine's performance properties 

using a soybean-diesel mixture with cerium-coated zinc oxide 

nanoparticles (13). At the 50 ppm additive level, the BTE 

increased by 26.66% and BSFC reduced by 21.81%. Subramani 

and Karuppusamy conducted experiments to check VCR diesel 

engine characteristics using biofuel (B20) blended with nano-

additives (14). They found that BTE increased by 3.62%, and 

BSFC decreased by 3.3% more than neat diesel. Also, there is a 

reduction in NOx emissions. Rajak et al. blended base fuel with 

oil to study the feasibility of the product as a fuel substitute in 

CI engines (15). They found that a maximum BTE of 34.4% and 

the lowest BSFS of 738.29g/kWh is attainable with the use of 

the blended fuels. Vali et al. optimized engine parameters to 

improve the performance, emission, and combustion 

characteristics of diesel engines using a central composite 

rotating design (16). The optimum output responses are BTE of 

30.75% and brake-specific energy consumption of 13.92 

MJ/kW.hr.  

The review paper by Shelare et al. discusses waste biodiesel 

production, nano-additives, and the applications of Internet-of-

things (IoT), artificial intelligence (AI), and machine learning 

(ML) in biofuels. These advancements can promote biodiesel as 

a cleaner, renewable energy source (17). Further, fast and 

precise modelling tools are needed for design, optimization, 

monitoring, and control in the production and use of biodiesel. 

Artificial neural network (ANN) technology, in particular, has 

demonstrated improved predictive potential in data-driven ML 

techniques. ANN is frequently utilized in biodiesel research to 

solve optimization, control, monitoring, and function 

approximation issues. In addition to reviewing several ML 

technology applications with an emphasis on ANN, the 

researchers also discussed the benefits and drawbacks of 

applying ML to biodiesel research. Future research should 

concentrate on real-time process control and monitoring to 

improve environmental sustainability, economic viability, and 

production efficiency (18). In automotive applications, ANNs 

are a common predictive tool, especially for intricate and 

expensive systems (19). 

Li et al. developed a response surface optimization model for 

diesel-biodiesel hybrid engines. They reduced emissions while 

maximizing engine performance (20). Dharmalingam et al. 

utilized a Bayesian neural network and response surface 

methodology to predict diesel engine performance with waste 

cooking oil biodiesel, showcasing improved accuracy over 

traditional methods (21). Response surface methodology aids in 

predicting the performance of diesel engines with biodiesel-

nanoparticle blends. Machine learning can enhance prediction 

accuracy for cerium oxide blended biodiesel in compression 

ignition engines (22). ML algorithms like random forest and 

AdaBoost are effective for predicting biodiesel production 

responses, as demonstrated by Gupta et al. (23). Increased 

performance and decreased emissions in blended biodiesel with 

EGR were observed by Selvam et al. (24). They found that novel 

nano-additives improved engine characteristics and reduced 

emissions significantly. Murugapoopathi et al. carried out 

prediction and evaluation of performance and emission analysis 

using biodiesel blends. Comparison with standard diesel using a 

response surface methodology approach was also performed in 

their research (25). 

Doğan et al. examined the impact of adding nanoparticles to 

diesel and heavy fuel oil blends on engine performance, with a 

focus on enhancing efficiency and reducing environmental harm. 

Detailed experiments demonstrated the effects of nanoparticles 

on engine power, fuel consumption, exhaust gas temperature, 

engine temperature, and pollutant emissions, aiming to 

comprehend the potential for more sustainable fuel use. 

Comparing various fuel blends with nanoparticles revealed a 

decrease in energy loss and an improvement in engine efficiency, 

signaling progress towards mitigating the negative 

environmental effects of fuel consumption (6). Koçyiğit et al. 

investigated the impact of adding ethanol and propolis to diesel 

fuel on engine performance and emissions under various load 
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conditions. They suggested using propolis as a novel bio-based 

additive to reduce environmental pollution in diesel fuel. The 

analysis examined how propolis and ethanol inclusion affected 

engine parameters and emissions, providing insights into 

sustainable fuel options. They also showcased propolis's 

antioxidant properties and its benefits as an additive in diesel 

fuel (26). Özel et al. discussed the impact of ceramic coatings 

on diesel engine emissions like CO, CO2, HC, and NOx using 

TBC methods with Cr2O3 and Al2O3 powders. Taguchi analysis 

is applied to optimize the influence of coatings on emissions, 

improving engine performance and environmental compliance. 

They introduced Taguchi optimization and ANOVA tests to 

analyze the effects of ceramic coatings on emissions, identifying 

factors that affect exhaust values (27). They further examined 

the impact of thermal barrier coatings on diesel engine 

performance using the Taguchi method for optimization. They 

presented a new approach to quality processes in engineering by 

applying Taguchi's loss function to thermal barrier coatings. 

They also determined optimal values for engine torque, power, 

and fuel consumption by testing different coating materials and 

engine speeds (28). Vural et al. examined the effects of blending 

hexane and water with diesel fuel on emissions and performance 

in ceramic-coated and uncoated diesel engines using the 

Taguchi optimization method. The research revealed that adding 

hexane and water to diesel fuel can enhance emission and 

performance parameters, particularly in ceramic-coated engines 

at a 4 kW brake load. Although blending hexane and water with 

diesel fuel generally improved emission and performance 

parameters, pure diesel fuel remained superior for brake thermal 

efficiency. ANOVA testing identified brake load, fuel type, and 

engine coating as significant factors affecting emissions and 

performance, offering a statistical foundation for optimizing 

diesel engine operation with hexane-water-diesel blends (29). 

From the reviewed literature, it is concluded that the engine 

performance can be controlled simultaneously by tuning CR and 

NA levels in biodiesel. Also, more focus should be given to 

improvement in thermal efficiency and minimization in fuel 

utilization of CI engines. However, limited studies have been 

reported on optimizing engine variables for improvement in 

BTE and BSFC. To the best of the researcher’s knowledge, no 

studies have been reported on the use of ML techniques in the 

prediction of response characteristics. Thus, the objectives of the 

present study are to perform a critical analysis of the effects of 

CR and the level of NA on the response characteristics of 

biodiesel-fueled CI engines. Deep-learning-based surrogate 

modelling, i.e. ML techniques and Response surface 

methodology (RSM) are used for the generation of non-linear 

models of response characteristics. The methodology of the 

present work is discussed in the next section. 

2. Methodology 

The biodiesel mixed with NA was prepared for performing 

experiments in a VCR diesel engine. The methodology of the 

present work is shown in Figure 1. 

 

Fig. 1. Methodology of the present work 

2.1. Materials 

The liquefied fuel used in the experiments comprised cottonseed oil 

and neat diesel. Apex Innovation Pvt. Ltd. India offered 99.5 per cent 

pure Analytic Quality Methanol Merck and Potassium Hydroxide 

(KOH). In Table 1, the fatty acid profile of cottonseeds was listed, 

which was analyzed at Nikhil Analysis and Research Pvt. Ltd., Sangli, 

India. Table 1 lists the fatty acid composition of cottonseed oil fatty 

acid. 
Table 1. Cottonseed oil fatty acid composition.  

Fatty Acidulous name Construction Weight % 

Myristic Acidulous C14:0 00.53 

Palmitic Acidulous C16:0 10.33 

Stearic Acidulous C18:0 03.64 

Oleic Acidulous C18:1 32.82 

Linoleic Acidulous C18:2 39.29 

2.1.1. Preparation of Biodiesel 

The biodiesel preparation starts from transesterification to 

drying of ester. During the transesterification reaction, methanol 

reacts with KOH to form ester and glycerol. The prepared 

biodiesel was blended with a nanoparticle additive in the present 

investigation. Methanol/oil molar ratio (4:1-8:1), catalyst 

concentration (0.5-2 per cent), temperature (50-70°C), and 

catalyst KOH were the reaction variables employed. In a batch 

reactor, the efficiency of transesterification increased with 

increasing temperature up to 60°C. Ultrasonication was used to 

prepare nanoparticle cerium oxide concentration with a 
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biodiesel blend. NAs were dispersed into the water in biofuel, 

resulting in 50 ppm, 75 ppm, and 100 ppm blends of biofuels. 

The preparation process of biofuel with NA is shown in Figure 

2. Properties of biofuels were tabulated in Table 2.  

Uncertainty analysis was performed to establish the 

confidence level of acquired results. The uncertainty ratio was 

dependent on equipment selection and test arrangement. 

Uncertainty in measured parameters was tabulated in Table 3. 

2.2.2 Experimental Setup 

A water-cooled individual-cylinder VCR engine connected 

dynamometer with all essential equipment, including the 

Kirloskar computer interface diesel engine, was set up. Then, 

the CR of the engine was tuned with the auxiliary piston using a 

screw rod and hand wheel assembly. A marked scale was 

provided to the screw rod for varying CRs. The experiments 

were performed on individual cylinder engines with CR16, 

CR17, and CR18 producing 3.5 kW power (1500 rpm). Then, 

the performance analysis was carried out using the diesel blends 

at the additive levels of 50, 75, and 100 ppm. Figure 3 shows the 

experimental setup and schematic diagram of the test rig. Table 

4 listed the detailed specifications of the VCR diesel engine, and 

the properties of fuel used were tabulated in Table 4. Engine Soft 

LV collects, stores, and analyses data during tests using 

numerous measurement sensors utilizing engine performance 

analysis software with automated data editing tools. For this 

experiment, a strain gauge-type load cell, an eddy current-type 

dynamometer, and a loading unit were used to measure the load. 

The fuel flow rate was determined by utilizing a load cell to 

calculate the fuel weight loss in the fuel tank. It was ensured that 

there was sufficient water flow before starting the engine. 

Table 2. Properties of fuel 

Fuel properties Standard Diesel CB100 CB20 CB20+50ppm CB20+100ppm 

Density @25 0C (gm/cm3) ASTM D287 0.83 0.874 0.8388 0.848 0.852 

Specific Gravity ASTM D287 0.83 0.874 0.8388 0.848 0.852 

Gross Calorific Value Cal/gm ASTM D 4809 44000 39045 43009 43350 43380 

Flash Point 0C ASTM D 93-58T 66 130 91 94 96 

Cetane number ASTM D 93-58T 49 56 52 52 51.5 

Cloud Point 0C ASTM-D 97 -6 0 -4.8 -4.2 -3.6 

Pour Point 0C ASTM-D 97 -10 -4 -8.8 -8.2 -7.6 

Kinematic Viscosity @40 0C cst ASTM D 445 2.95 4.31 3.53 5.64 5.68 

FFA % > 2.5 - 0.53 - - 0 

 

  
(a) (b) 

  
(c) (d) 

Fig. 2. Measurements (a) Fire Point, (b) Cloud Point Measurement, (c) Flash Point Measurement, and (d) Experimentation on single-cylinder 
VCR Diesel engine 
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(a) (b) 
Fig. 3. Test rig 

Table 3. Uncertainty in measured parameters 

Parameters Accuracies Uncertainty 

Air flow rate ±1.0 cm3/h ± 0.15% 

Fuel consumption ±2.0 g/h ± 0.10% 

Engine speed ± 10 rpm ± 0.5% 

Load ± 0.15 N ± 0.15% 

Power - ± 0.15% 

Temperatures ± 1 0 C ± 0.10% 

Table 4. Specification of engine 

No. of cylinder One 

No. of stroke Four 

Fuel type Diesel 

Power of engine 3.5 kW@1500 rpm 

Type Constant speed 

Stroke length 111 mm 

Bore diameter 87.5 mm 

Connecting rod length 234 mm 

Cooling Method Water Cooled 

Compression ratio 16 

Swept volume 661.45 cm3 

2.2.3 Response Surface Methodology  

RSM is a statistical experimental design technique for 

modelling and optimizing real-world problems. The present 

study examined CR and NA levels as input parameters. These 

parameters could affect response characteristics such as BTE 

and BSFC. Thus, quadratic regression models of response 

characteristics were developed using the central composite 

design (CCD) matrix technique of RSM. Experimental design 

was performed with the help of Design-Expert V13.0 software. 

This software offers an effective solution for designing 

processes and predicting their behavioural characteristics under 

different conditions. In the present study, two parameters are 

varied at three levels, resulting in a matrix as tabulated in Table 

5, which lists input parameters and average values of response 

characteristics at a load level of 100%.  

In addition to the evaluation metrics discussed, it is pertinent 

to provide insight into the coefficient of determination (R²) 

values obtained during model validation. The R² serves as a 

measure of how well the model fits the observed data. In our 

study, the R² values for BTE and BSFC are 0.9938 and 0.9973. 

These values provide further validation of the model's predictive 

capability and its suitability for the analysis of responses. 

Table 5. Test parameters 

Case 

No. 
Input Parameter Response Characteristics 

 
Compression 

ratio 
NA level BTE (%) 

BSFC 

(kg/kWh) 

1 17 100 26.77 0.31 

2 16 75 26.11 0.3 

3 16 50 26.23 0.33 

4 18 75 27.4 0.27 

5 17 50 26.48 0.32 

6 16 100 26.77 0.31 

7 18 50 28.06 0.29 

8 18 100 28.1 0.29 

9 17 75 26.16 0.291 

After conducting experiments according to CCD, analysis of 

variance (ANOVA) was used to clarify statistical parameters, 

namely, R2, Adjusted R2, Predicted R2, F-value, and p-value. 

Significant parameters were represented by parameters having a 

p-value less than 0.05.  

2.2.4 Machine Learning Technique 

2.2.4.1 Architecture 

The neural network architecture used for surrogate modelling 

in this study is a key element within the deep learning 

framework. The primary objective of this design was to 

effectively capture the intricate and non-linear connections that 

exist for the response characteristics of biofuels. The 

architectural design often used is a deep feed forward neural 

network, which is sometimes referred to as a multi-layer 

perceptron (MLP). The architecture consists of nine concealed 
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layers, each containing a variable number of neurons or nodes, 

facilitating the representation of complex patterns and 

relationships present in the data as shown in Figure 4. MLP has 

four major components- the fully connected layer, dropout layer, 

skip connections and outer layer. The input layer is a 

combination of normalized vectors of input parameters. 

Advanced activation functions, such as Rectified Linear Units 

(ReLU) are used to improve the performance of models. The 

output layer is designed to cater to particular goals, generally 

offering forecasts for BTE and BSFC. Regularization methods, 

such as dropout and batch normalization, are used to mitigate 

the issue of over fitting. Skip connection is added for smooth 

learning and to control vanishing and exploding gradients. The 

determination of the architecture's complexity, the number of 

layers, and the hyper parameters is conducted via a process of 

testing and optimization. This is done to attain a surrogate model 

for the analysis that is both highly accurate and efficient. The 

flexibility and generalization capabilities of the neural network 

design provide it a potent instrument for correctly representing 

the response characteristics of biofuel. 

Thus, in the present architecture, the total number of trainable 

parameters became 23,945 from 7500 training data points. 

Model over fitting is handled using dropout and cross-

validation-based early stopping. 

 
Fig. 4 Deep Neural Network Framework 

2.2.4.2 Training and Validation 

Design space investigation is a method to recognize the effect 

of the input variables on responses and analyze the complicated 

association between them. Thus, the training phase of the deep 

learning model is a crucial component in this study, during 

which the neural network acquires the ability to approximate the 

intricate connections between input parameters namely Nt, Nn, 

Na, and Nh and the response namely, BTE and BSFC. Initially, 

a complete dataset containing 10211 data points was randomly 

split into training data (7500) and test data (2711). The training 

procedure begins with the use of a meticulously pre-processed 

dataset, whereby the inputs include a range of variables, 

compression ratio, and NA level. The model repeatedly 

analyzed the given data by doing forward and backward runs. 

During this process, the model adjusts its internal weights and 

biases to reduce the discrepancy between its predictions and the 

actual findings. The process of training involves many epochs 

or iterations when the model is repeatedly exposed to the data to 

enhance its predicting skills. The optimization of hyper 

parameters, such as learning rates and batch sizes, was 

performed to achieve effective convergence and enhance the 

generalization capabilities of the model. The result was a deep 

learning model that can make exact predictions about the 

performance of pressure vessels. This capability was acquired 

via the model's acquisition of information from the training data. 

Consequently, the model facilitates the efficient and accurate 

analysis, design, and optimization of pressure vessel systems.  

To enhance prediction accuracy, a group of deep learning 

networks were trained, since they were seen to be more precise 

than individual predictors, due to the lack of extensive data. To 

achieve this objective, 5-fold cross-validation was used and a 

separate deep neural network on each dataset fold. Each fold 

dataset was thereafter partitioned into a training dataset (90%) 

and a validation dataset (10%). The multiple trained networks' 

predictions were averaged to produce the final values of the BTE 

and BSFC for a specific parameter set. Through the process of 

conducting experiments with various loss functions and learning 

rates, it was determined that the Lasso (L1) loss function 

outperformed other alternatives when paired with a learning rate 

of 0.001. The model was trained using the Adam optimizer with 

Xavier/He initialization. Figure 5 shows an ensemble of learning 

models. 

 
Fig. 5 Ensemble of learning models 

2.2.4.3 Model Evaluation 

The assessment of the deep learning-based surrogate model's 

effectiveness in pressure vessel examination necessitates the use 

of distinct measures to measure its precision and dependability. 

Metrics play a crucial role in quantifying the accuracy of a 

model's predictions about pressure vessel behaviour. In the 

present investigation, MAE and RMSE were used for model 

evaluation, which is computed as per Eq. (1) and Eq. (2) 

respectively.  

𝑀𝐴𝐸 =
1

𝑛
 × ∑ (|(𝜎𝑎𝑐𝑡𝑢𝑎𝑙  − 𝜎𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)|)        (1) 

𝑅𝑀𝑆𝐸 = √1

𝑛
 × ∑ (

(𝜎𝑎𝑐𝑡𝑢𝑎𝑙 −𝜎𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)
2

1
)             (2) 
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Where: 

n represents the total number of data points inside the dataset. 

Σ denotes the summation of all data points. 

σactual = actual value 

σpredicted = predicted value 

The expression (σactual - σpredicted)2 is used to compute the 

squared discrepancy between the observed (σactual) value and the 

expected (σpredicted) value for each data point. 

It provided valuable information on the quality of the model 

and its capacity to accurately represent the differences in stress 

distributions and deformations. The RMSE had the favorable 

attribute of being easily interpretable due to its correspondence 

with the units of the target variable. The RMSE exhibited scale 

independence, making it appropriate for the comparative 

assessment of model correctness across diverse datasets and 

target variables. The magnitude of mistakes was more 

effectively penalized by the RMSE in comparison to the MAE 

due to the squaring of errors. The RMSE was a number that was 

always non-negative or zero. A score of zero indicated that the 

model's predictions align perfectly with the actual data. The 

RMSE was susceptible to the influence of outliers due to the 

squaring of mistakes, which amplifies the impact of larger errors 

in the overall computation. The RMSE was often used to assess 

the efficacy of regression models and to ascertain the superior 

predictive capabilities of various models. 

Accuracy was calculated as a percentage of the number of 

samples whose MAE was within an acceptable error of 10%. For 

comparison purposes, the Random Forest and Gradient Boosting 

Regressors models were developed using the same training 

dataset.  

3. Results and Discussion 

This section focuses on the impact of diesel engine input 

variables on two response characteristics. 

3.1 Engine Performance Test 

3.1.1 Brake thermal efficiency 

BTE measures the performance of the engine. The primary 

purpose of this study is to test the efficiency of cottonseed 

biofuel with NA. The influence of the percentage of biofuel 

mixture on performance was observed for various loads. In all 

running situations with changing loads, the BTE of biofuel is 

between 2 to 30 per cent, as shown in Figure 6. The plotted curve 

in Figure 6 shows that efficiency increases with an increase in 

load from 19.6 Nm to 117.6 Nm. 

ANOVA values for BTE analysis are tabulated in Table 6. 

Also, the regression model for BTE is given in Eq. (3). It is 

found that both input parameters significantly affect BTE. From 

the surface plot shown in Figure 7, it is observed that BTE 

increases with an increase in CR and NA levels. A similar trend 

is observed for variation in CR is given in the published 

literature using different biofuel and NA combinations (14–

16,30–33). Higher efficiency with increased NA level is 

attributed to the high surface area of NA, their catalytic effect, 

more excellent fuel-oxidizer contact, and higher rate of reaction. 

3.1.2 Brake Specific Fuel Consumption  

In all running situations with changing loads, the BSFC of 

biofuel is between 0.2 to 1 kg/kWh. During experimentation 

value occurs at higher side because of zero brake power (No load 

condition). The plotted curve in Figure 6 shows that BSFC 

reduces as the load increases from 19.6 Nm to 117.6 Nm. 

ANOVA values for BSFC analysis are tabulated in Table 7. 

Also, the regression model for BTE is given in Eq. (4). It is 

found that both input parameters significantly affect BSFC. 

From Figure 7, it is observed that BSFC reduces with an increase 

in CR and NA levels. The observed trend is in line with the trend 

reported in the literature (14, 22). This is because the in-cylinder 

pressure and combustion temperature have increased, resulting 

in more output power and improved fuel efficiency. Also, the 

increased surface area of NA induces fuel oxidizer contact 

resulting in reduced BSFC.   

3.2 Interpretation of Machine Learning Results 

The comparison of the outcomes obtained from our 

methodology with those derived from experimentation is an 

essential process in substantiating the efficacy of the deep 

learning-based surrogate model, a type of Machine Learning 

(ML) model. The objective of the present study is to address the 

existing disparity by offering improved solutions that are both 

efficient and accurate. This comparative analysis aims to 

evaluate the extent to which our deep learning model accurately 

replicates the BTE and BSFC projected by experimentation. 

From the comparison, it is confirmed that the present 

methodology exhibits a strong correlation with experimental 

results while substantially decreasing computing time, it not 

only confirms the viability of using deep learning in this domain 

but also emphasizes the possibility of achieving quicker and 

more economical analysis. Furthermore, doing such a 

comparative analysis will provide valuable insights into the 

strengths and weaknesses of each methodology, hence guiding 

forthcoming determinations and influencing the integration of 

state-of-the-art technologies within the realm of fuel analysis.  

Figure 8 displays the evaluation metrics for three trained 

models on the test data set. All models are trained using the same 

7500 training dataset and evaluated using the 2711 test dataset. 

The accuracy of the deep learning model was much higher 

(94%) compared to other models such as Random Forest (72%), 

Decision Tree (60%), Support Vector Machines (55%), 

Gradient Boost Regressor (50%), and K-Nearest Neighbor 

(40%). Thus, the deep learning model outperforms both Random 

Forest and Gradient Boost-based Regressor in all evaluation 

metrics. Convincing results are obtained while comparing 

models based on MAE and RMSE. 
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Table 6. ANOVA for BTE 

Source 
Sum of 

Squares 
df 

Mean 

Square 
F-value p-value 

Model 4.84 5 0.9672 96.05 0.0017 

A-

Compression 

ratio 

3.3 1 3.3 327.74 0.0004 

B-

Nanoparticles 
0.1262 1 0.1262 12.53 0.0384 

AB 0.0625 1 0.0625 6.21 0.0884 

A² 0.8235 1 0.8235 81.77 0.0029 

B² 0.5236 1 0.5236 51.99 0.0055 

Residual 0.0302 3 0.0101     

Cor Total 4.87 8       

 

BTE = 196.757 – 20.7× A – 0.032× B - 0.005×A×B + 

0.6416×A×A + 0.0008×B×B                         (3) 

 

Table 7. ANOVA for BSFC 

Source 
Sum of 

Squares 
df 

Mean 

Square 
F-value p-value 

Model 0.0027 5 0.0005 224.47 0.0005 

A-

Compression 

ratio 

0.0014 1 0.0014 569.53 0.0002 

B-

Nanoparticles 
0.0002 1 0.0002 63.28 0.0041 

AB 0.0001 1 0.0001 42.19 0.0074 

A² 0.0002 1 0.0002 63.37 0.0041 

B² 0.0009 1 0.0009 384 0.0003 

Residual 
7.11E-

06 
3 

2.37E-

06 
    

Cor Total 0.0027 8       

 

BSFC = -1.494 + 0.264× A – 0.0002× B – 0.008×A×B – 

0.008×A×A + 0.000034×B×B                        (4) 

 

         
      (a) (b) 

Fig. 6 Effect of load variation on (a) BTE and (b) BSFC 

      
(a) (b) 

Fig. 7 Effect of Compression ratio and Nanoparticle additives on (a) BTE and (b) BSFC  



 

Kabudake et al. / International Journal of Automotive Science and Technology 8 (4): 589-601, 2024 

 

597 

 

 
Fig. 8 Comparison of Accuracy and Error Metrics for different 

models 

One of the key aspects that distinguishes the present study is 

the integration of ML techniques to analyze the performance of 

cerium oxide blended biodiesel, particularly fuel consumption 

metrics such as BSFC. ML plays a pivotal role in extracting 

meaningful insights from complex datasets, especially in 

domains where traditional analytical approaches may fall short. 

In the context of the present study, the utilization of ML 

algorithms facilitates: 

1. Pattern Recognition and Prediction: By training models on 

historical data comprising various operational parameters and 

corresponding performance metrics, ML algorithms can 

effectively recognize patterns and predict future outcomes. In 

our case, these models can predict BSFC values under different 

operating conditions, aiding researchers and research and 

development (R&D) engineers in understanding the fuel 

consumption behaviour of cerium oxide blended biodiesel 

across a wide range of scenarios. 

2. Optimization and Decision Support: ML algorithms can be 

further leveraged to optimize engine performance and guide 

decision-making processes. Through iterative learning and 

optimization techniques, these algorithms can identify optimal 

operating conditions that minimize fuel consumption while 

maximizing efficiency and performance. This aspect is 

particularly valuable for researchers and R&D engineers 

involved in the development and optimization of biofuel 

formulations and engine systems. 

3. Insight Generation: Beyond mere prediction and optimization, 

ML enables the generation of actionable insights from complex 

datasets. By analyzing the relationships between input 

parameters and performance metrics, these algorithms can 

uncover underlying trends, correlations, and causal relationships 

that may not be readily apparent through traditional analysis 

methods. Such insights are instrumental in guiding further 

research directions, refining experimental protocols, and 

informing strategic decisions in biofuel development and engine 

design. 

 

 
Fig. 9 Comparison of Adjusted R2 for different models 

 

 

        (a) 

 

(b) 

Fig. 10 Desirability (a) Contour plot and (b) Bar graph 
 

In summary, the incorporation of ML in the present study 

offers several tangible benefits to researchers and R&D 
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engineers engaged in the development and optimization of 

cerium oxide blended biodiesel and associated engine systems.  

In the present study, another metric for evaluating models is 

considered, namely Adjusted R². Adjusted R² is a valuable 

measure for model evaluation as it increases only when an added 

variable significantly improves the model. Consequently, 

Adjusted R² accounts for only significant independent variables. 

Figure 9 displays the Adjusted R² graph for various models, 

indicating that the highest value of Adjusted R² is attained with 

the Deep Learning model. 

3.3 Optimization 

The desirability function approach, a multi-objective 

optimization method, is used for optimization purposes. The in-

built optimization module of Design-Expert 13 software is used 

to maximize BTE and minimize BSFC. It is observed that CR of 

18 and NA level of 83.877 ppm provide optimized values of 

BTE as 27.583% and BSFC of 0.272 kg/kWh. The contour plot 

and bar graph of desirability are shown in Figure 10. 

3.4 Confirmation test 

Experimental confirmation tests are performed in input 

parameters such as CR of 17 and NA level of 75ppm to check 

the accuracy of developed regression models. Table 8 shows the 

results of the confirmation test. The error percentage is less than 

5. Therefore, the developed models are satisfactory. 

Table 8. Results of confirmation tests 

Responses Predicted Actual % Error 

BTE 26.16 24.9 4.817 

BSFC 0.291 0.302 3.78 

3.5 Practical Implications 

These findings represent an innovative advancement in using 

deep learning-based surrogate modelling to greatly improve the 

effectiveness of prediction, specifically in the domain of fuel 

analysis. The pragmatic implications of the present 

methodology within the industrial sector are considerable and 

include a broad spectrum. This study presents a good solution 

for numerous industries, such as petrochemical, energy, 

aerospace, and manufacturing, by incorporating deep learning-

based surrogate modelling into fuel analysis. The accurate and 

efficient prediction of response characteristics is of utmost 

importance in ensuring the effectiveness of vital activities. 

Consequently, the present advancement has the potential to 

increase overall efficiency and dependability. 

3.6 Limitations of the present study 

The current study signifies a notable advancement in the use 

of deep learning-based surrogate modelling in the context of fuel 

analysis. However, it is crucial to recognize and address the 

inherent constraints associated with this research. The accuracy 

of the surrogate model is contingent upon the quality and 

representativeness of the training data. The use of incomplete or 

biased datasets might result in inferior performance of models. 

Moreover, it is worth noting that the deep learning model may 

have difficulties in extrapolating its learned knowledge to 

situations that are not represented in the training data. This 

underscores the need to have a dataset that is both varied and 

complete. Another constraint is the comprehensibility of the 

deep learning model. The opacity of deep neural networks often 

poses a significant obstacle in comprehending the precise 

rationale behind their predictions. The absence of 

interpretability might provide a disadvantage when conveying 

actionable information to engineers and decision-makers in 

industrial contexts. 

3.7 Future Research 

This study has made significant advancements in the use of 

deep learning-based surrogate modelling for fuel analysis and 

presents various promising avenues for future research. To 

increase the performance and generalizability of the model, it is 

recommended to delve into more sophisticated neural network 

topologies, such as recurrent or convolutional networks (34,35). 

Additionally, examining the advantages of transfer learning 

might be beneficial (36). Furthermore, enhancing the dataset by 

including a broader range of pressure vessel types and 

circumstances will enhance the model's versatility and 

practicality in real-world scenarios. 

An area of study that shows potential is the integration of 

uncertainty quantification methods, which would allow 

engineers to get insight into the level of confidence and 

dependability associated with the predictions made by the model. 

The exploration of methods to enhance the interpretability and 

transparency of deep learning models, such as the incorporation 

of explainable AI approaches, is of utmost importance to 

establish confidence and foster adoption within industrial 

contexts (37). Moreover, it is possible to expand the scope of the 

study by investigating the integration of deep learning models 

with physics-based simulations, therefore establishing a hybrid 

methodology that capitalizes on the respective advantages of 

both approaches. This approach has the potential to provide a 

more comprehensive and precise resolution to intricate pressure 

vessel design obstacles. 

Also, the increasing industrial use of deep learning in the 

realm of pressure vessel design necessitates more investigation 

into the establishment of standardized protocols and validation 

procedures for these models. This is crucial to guarantee their 

secure and dependable implementation across diverse industrial 

sectors.  

4. Conclusion 

In this study, a surrogate technique based on deep learning 

and RSM was employed to investigate the impact of CR and NA 

levels on diesel engine response. The major findings of the study 

are as follows: 

 CR and NA levels have varied from 16 to 18 and 50 to 

100 ppm, respectively. For both response characteristics, non-
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linear regression models have been developed, and ANOVA 

performed. Significant input parameters are found, and the 

significance level has been determined.  

 Further, the input parameters are optimized to maximize 

BTE and minimize BSFC. The optimum operating conditions 

are a CR of 18 and an NA level of 83.877 ppm.  

 The use of deep learning-based surrogate modelling has 

shown the capacity to significantly augment efficacy, 

enabling expedited and economically viable fuel analysis 

without compromising precision.  

 Also, a comparison of conventional machine learning 

techniques with deep learning techniques has been presented 

based on Accuracy, MAE, RMSE, and Adjusted R2. The study 

results facilitate the acceleration of design iterations and 

facilitate the discovery of novel insights that were previously 

impeded by computing limitations. 

 The optimized parameters were attained at a composite 

desirability of 0.847. Further, confirmation experiments are 

performed to gauge the accuracy of the developed models.  

 The obtained results from the study could help engine 

manufacturers predict optimal input parameters for enhanced 

engine performance. Future research should focus on 

developed fuel’s long-term stability with long-term durability 

and endurance of engine parts. 

Thus, the present study signifies a notable advancement in the 

field of fuel analysis. 
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