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Abstract

The swiftly changing panorama of machine learning has observed first-rate leaps within the field of
Generative Adversarial Networks (GANSs). In the beginning, the implantation of a deep neural network
seemed quite difficult and poses challenges. However, with the rapid development of huge processing
power, different machine learning models such as Convolutional Neural Networks, Recurrent Neural
Networks, and GANs have emerged in the past few years. Following Ian Goodfellow’s proposed GANs
model in 2014, there has been a huge increase in the research focused on Generative Adversarial
Networks. In the present context, not only GANs are used in feature extraction, but it proves itself
worthy in the domain of anomaly and malware detection having firmly established in this field.
Therefore, in our research paper, we conducted a comprehensive survey of prior and current research
attempts in anomaly and malware detection using GANS. This research paper aims to provides detailed
insights to the reader about what types of GANSs are used for anomaly and malware detection with a
general overview of the different types of GANSs. These results are provided by analyzing both past and
present GAN surveys performed, along with detailed information regarding the datasets used in these
surveyed papers. Furthermore, this paper also explores the potential future use of GANSs to overcome
the advancing threats and malware.

Keywords: Generative Adversarial Networks (GAN); Network Security; Deep Neural Network (DNN);
Research Survey; Threat detection; Malware detection; Adversarial examples.

1. Introduction

Malware also known as malicious software, is undesired programs designed to harm or exploit computer
systems [1]. After the outbreak of COVID-19, the change in working environment from onsite office work to
a work from home has rapidly increased cybercrimes. According to Statista [2], there were 5.4 billion
malware attacks detected in 2021. The number of malware attacks reached 2.8 billion by mid-2022 over a
short period of time. 560,000 new instances of malware are detected every day, contributing to the over 1
billion malware programs already been discovered [3]. From the insights of this data, we can infer that the
number of cybercrimes continues to rise upward in 2024, raising concerns for the government and
organizations. The cybercriminals are implementing Machine Learning models to automate and increase their
capabilities which leads to more sophisticated and adaptive attacks which seems impossible to detect. With
the current resources, it seems daunting to detect these types of attacks. As a result, Generative Adversarial
Networks (GANSs) emerge as a powerful tool to be used to see the unseen cybercriminals malicious
behaviors. Generative Adversarial Networks, or GANSs, serve as an architecture for training generative
models, such as deep convolutional neural networks used for generating images [4]. These networks have
emerged as a machine learning model proficient at creating new, previously unseen data samples realistically
and synthesizing large datasets based on learned classes and features from an existing dataset [5]. GANSs play
a key role by assisting in the development of new datasets that replicates real-world cyber threats. These
usage of GANSs enables researchers and cybersecurity professionals to develop defense system to fight
against a diversified possible attack, finally enhancing the security of networks against upcoming cyber
threats.

This survey explores different research papers that provides insights regarding the effective detection of
malware through the use of the Generative Adversarial Networks (GANS), highlighting the role of GANSs in
enhancing network security. Along with this, we focused for every individual and provide a clear understanding
of the straightforward architecture and operational principles of GANs. Further, general overview of the
various types of GANSs are discussed, covering both widely accepted models and recent innovations proposed
by researchers. In short, this paper will detail the various applications of GANs models in the malware research
and network security, highlighting specific areas where GAN research significantly contributes.

2. Background
Reflecting on 2023 it stands out as the most successful year for cybercriminals. One of the prevalent threats
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to organizations globally targeted 4,368 victims, marking an increase of over 55.5% compared to the previous
year. The second and third quarter alone accounted for more victims (2,903) than totaled for the entire year
2022 [6]. These attacks are becoming more and more popular today. Malware is a software program that
conducts virtually any behavior malicious attacker wants to perform [1]. These goals include interrupting
system operations gained access to the system and network resources and gathering personal information
without user consent. In the realm of cybersecurity Generative Adversarial Networks can act as a double-edged
sword. MalGAN is a notable example of GANs producing malware. MalGAN was used to generate PE
malware effectively bypassing a static PE malware detection engine [7]. This approach represented a direct
and forceful attack on the engine as the system was trained to observe the outputs of the model while being
aware of the exploratory inputs sent to the engine. On the other hand, generative Adversarial Networks (GANS)
serve as a potent and innovative tool we can harness to continually improve detection systems and prevent
ransomware attacks. Section 2.1 provides an overview of the fundamental working principles of Generative
Adversarial Networks (GANSs). In Section 2.2, previous work in the realm of malware detection and network
security using GANSs is discussed. The techniques for measuring the performance of GANSs are outlined in
Section 2.3, while Section 2.4 details the datasets utilized in the surveyed research paper. Section 3 introduces
various modes or types of GANs employed in the study. Section 4 explores the diverse areas of application for
GAN:Ss, and Section 5 outlines potential future uses of GANS.

2.1. Overview of GAN working

The Generative Adversarial Networks (GANSs) include two neural networks i.e., Generator and
discriminator as shown in Figure 1, which are in competition with each other, forming a Zero-sum game where
one agent's win is at the expense of the other's loss. This approach, a generative model originally presented for
the domain of unsupervised learning, has turned out to be useful not only in that domain, but also in semi-
supervised learning, fully supervised learning, and reinforcement learning [8-10]. GANS use a training set to
diverge from the training set, and are an outstanding tool for classifying different learning paradigms.
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Figure 1. Generative Adversarial Network, adopted from [11]

2.1.1. Generator

The generator generates synthetic data that closely mimics the actual data from the training set [12]. It takes
noisy signal as a stock input, and encodes it to data that ideally is impossible to distinguish from genuine ones.
This process is that of knowledge acquisition through extraction of the underlying patterns and structures from
the training data. The generator's goal during the training phase is to make the discriminator think that the fake
samples are real.

2.1.2. Discriminator

The discriminator is the binary classifier that classifies data as real and fake [13]. It has a data set, which
contains both the original samples and fake ones. Discriminator tries to precisely classify the origin of the input
data. With time, the discriminator learns to discern more efficiently between the real and the generated samples

2.1.3. Feedback Loop
The interactions between a generator and discriminator of Generative Adversarial Networks (GANS)
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generate a vital feedback loop. This cyclic interaction fosters a growth mindset in both strands of training.
Generator improves its skill to produce realistic data to mislead the discriminator while the discriminator is
getting better at this task [14]. The Generator trains its weights in response to Discriminator signal, thereby
improving the generator’s performance. Through this process, the complexity of both networks gets perfected
using back-propagation as the mechanism [5]. On the other hand, this kind of adjustment takes place in a black
box environment where researchers only control inputs and results while the underlying operations are
simulated and calculated based on assumptions. Nonetheless, Arjovsky et al., 2017's approach also studies the
mathematical foundations of GANSs, building a framework for a deeper understanding of how adversarial
training works [15].

2.2. Previous Work

Within the enormous area of application, the utilization of Generative Adversarial Networks (GANS)
occupies numerous areas which are capable of classification, generalization, and feature extraction. The GAN
models’ adaptability allows them to be used in almost any field, and therefore, listing all the applications is a
challenging task. Many surveys made attempts to quantify the far-reaching activities of GAN models in their
respective domains. In the study we give a brief summary of the different types of GAN models examined in
the related works, offering a concise overview of their varied applications.

In Z. Cai et al., 2021 work [16], the authors focus on cybersecurity by investigating application of deep
learning methods in different areas. Our paper has the same scope, on the topic of employing the Generative
Adversarial Networks (GANSs) in the domain of malware research, and consists of both the generation and
detection. In the paper of Z. Cai et al., 2021 [16], the machine learning research in cybersecurity is acquainted
with the readers first. Their functionalities are explored through the enumeration of different adversarial
networks. The author dives into the GAN's privacy and security details, which are discussed through various
GAN models that have been designed to protect personal information. Besides, the article does comparative
assessment of GAN-Based Mechanisms for Data Privacy Protection. The authors fully delve into the issue of
model privacy and compares GAN-Based schemes for model privacy protection. This article focuses on the
capabilities of various GANSs in cybersecurity domains, illustrating the research results on the model
robustness, malware detection, fraud prevention, vehicle security, industrial protocols, and more. Similarly,
our research also focuses on how GAN models can be useful in detecting and safeguarding against malware
and malicious activities. In further research, this paper recommends advancing GAN-based attack methods by
lowering convergence rates, and resolving the mode collapse issue. Corresponding objective functions are
defined, and probably approximately correct learning may be used for optimization of data volume. The GAN-
based adversarial sample detection should be employed in the practical applications. Android malware
detection by statistics, dynamic analysis, and white-box attacks are shown as prospects of development. It is
also important to continually improve bioinformatic identification and industrial protection with the help of
GANSs technologies.

The paper Navidan et al., 2021 [17] reviewed GANSs application in the cybersecurity and networking sector.
The survey delves into various types of GAN models, categorizing their use cases into five main domains:
mobile networks, network analysis, the Internet of Things, the physical layer, and cybersecurity. Remarkably,
the authors built an interesting collection of the network related papers written using GANs, and each one was
categorized on its merit. Additionally, the paper provides a set of qualitative assessment criteria common for
this area, and compares the results of various GANs models on datasets obtained from the reviewed papers.
Our research contributes by providing readers with knowledge on variety of GANs and their applications in
computer and communication network areas.

Similarly, Dong-Ok Won et al., 2022 [18], address the threat of detecting zero-day malware by developing
a system that is able to learn and detect related situations that have been generated to mimic real cases. Proposed
PlausMal-GAN model implements generative adversarial networks (GANSs) to generate plausible malware
images that are visually appealing and unique, making use of a existing malware data. The discriminator, as a
detector, gets trained on both genuine and false characteristics. It has a very strong and stable prediction
capacity for same group of zero-day-malware images which provides accurate prediction results on average
across a different range of representative GANs models. The authors assess both the standard GAN strategy
(min-max), least-squares strategy, heuristic approach and a mix of those, as well as for the DCGAN, LSGAN,
WGAN and E-GAN models that are included in the proposed architecture. This demonstrates the seeming
success of the framework in identifying and anticipating many new resembling zero-day malware instances
especially during the testing and updating of malware detection systems.

The primary objective of our survey is to offer readers a comprehensive understanding of the utilization of
Generative Adversarial Networks (GANSs). In other words, this research paper served as a bridge for those
individuals who are interested in GANs and its applications in cybersecurity, particularly in malware and
threat-related studies. Our overview provides a detailed examination that distinguishes itself from [5] and [19].
While aligning with these works, our paper explores various approaches, providing a deep analysis of the
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current use of GAN models in computer malware research and network security along with the future usage.

Table 1. Different topics discussed in the surveyed research paper.

Topics Z.Caietal., 2021 Navidanetal., 2021 Dong-Ok Won et al., 2022
Malware Detection v v v
Fraud Detection v v
Android Malware v v
Bioinformatic-Based Recognition v
Android Security v v
Industry Protocol v
Zero-Day Malware Detection v
Black-box API attacks v
Adversarial Examples v v v
Malware Classification v
Model Privacy v
Password attack v
Vehicle Security v
Botnet Detection v
Network Intrusion Detection v v
Data Privacy v

Table 2. Different GANS Models discussed in surveyed research paper.
ANS Model Z. Caietal., 2021 Navidan et al., 2021 Dong-Ok Won et al., 2022

nilla GAN v v v
5AN v v

>GAN v
5AN

GAN v
GAN-GP
GAN
GAN
‘0GAN
>GAN
GAN
:GAN
)GAN
5gGAN
'cleGAN

<«
SR R NN

AN

AU G U N NN

We have cited three major papers that have already worked on Anomaly and Malware Detection. Table 1
presents the findings on various aspects of those surveyed papers that belong to the Anomaly and Malware
Detection categories. This table provides a cross tabulation of the areas of concern. Likewise, Table 2 shows
the different types of GANs described in those research papers and their uses in Anomaly and Malware
Detection. This analysis in that paper demonstrates the different GAN models employed in the field and shows
how each type handles the problems associated with the identification of anomalies and malware type. In this
way, the presented insights can shape further research in this rapidly evolving field and offer a systematic
overview of the current state of knowledge, as found in the existing literature.

2.3 Measuring Performance

The evaluation of the machine learning models is done through the application of a range of conventional
metrics. Those statistics are universally acknowledged and are popularly used for evaluation purpose.
Generally speaking, the metrics involved would be the Confusion Matrix, Classification Accuracy, Precision,
Recall, F1 Score, True Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN) as
shown in Figure 2.
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Figure 2. Performance Metrics for Machine learning Classifications, adopted from [20]

True Positive, True Positive refers to the number of benign samples being correctly identified as benign
samples. True Negative, True Negative refers to the sum of malicious samples being correctly detected as
malicious samples. False Positive, False Positive is calculated based on the number of malicious samples being
incorrectly identified as benign samples. False Negative, False Negative refers to the number of benign samples
that are incorrectly identified as malicious samples.

The classification accuracy of a model is simply measured by comparing the test samples that are correctly
identified with total number of test samples. The accuracy of the model is given by:
E B TP + TN O
CCUracy =Tp L TN + FP + FN
Precision is calculated by comparing the number of correctly identified benign samples to the total predicted
as benign. It measures the model's accuracy in classifying instances as benign and emphasizes its ability to
minimize misclassifications.
TP
Precision = ——— 2
recision =5 0 2
The Recall (True Positive Rate or Sensitivity), represents the ratio between the accurate detection of benign
samples and the total number of actual benign samples.

TP
Recall = ———— 3)

F1 score is the harmonic mean of precision and recall, it serves as a composite metric that captures the
fundamental balance between precision and recall. The unified evaluation of the model's overall performance
is provided by it which is given by,

s 9 Precison * Recall @)
= *
core Precision + Recall

The Inception Score is a metric for human evaluation of the quality of image generative models that was
developed by Salimans et al. and was published in 2016 [21]. This measure shows a particular good correlation
with human evaluations of the generated images in the context of CIFAR-10 dataset. The Inception Score is a
measure of a pre-trained Inception v3 Network on the ImageNet dataset, based on the network's outputs applied
to generated images [22].

IS(G) = exp(Ex.p, Di, (p(y[¥) [ P())) (5)

where x ~p, refers that x is an image sampled from p,, Dy, (p || q)) is the KL-divergence between the

distributions p and q, p(y|x) is the conditional class distribution, and p(y) :fx p(y|x)pg(x) is the marginal
class distribution.

The Mode Score is the modified Inception Score [23] to overcome the sampling assessing issues by GAN.
The Mode Score differs from the Inception Score in that it disregards the original probabilities. Since the
generator results in few samples while the discriminator has more dominance, this score modifies the
originating score [24]. Moreover, the Mode Score is an automated alternative to human annotators for quality
evaluation of the DNA samples. Further details about Mode Score, including computational process, are
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provided in the original article [25].

The Fréchet Inception Distance (FID) [26] which is arguably the most widely used metric for testing the
feature similarity between real and fake images has gained much attention. The assessment of GAN resembles
the most with the Fréchet Inception Distance (FID) that is analyzed using the Inception V3 model, which is
pre-trained on the ImageNet dataset. This FID score was named due to the activation function obtained through
the Inception V3 model, providing a tool for classifying how dissimilar those distributions of authentic and
fake images are.

Frechet Inception Distance (FID) technique for determining a "multivariate" normal distribution is as
follows:

FID =|lie = iyl? =Tr()  +3,=2 (5%, ©)

where X and Y are the real and fake embeddings (activation from the Inception model) assumed to be two
multivariate normal distributions. p, and p, are the magnitudes of the vector X and Y. Tr is the trace of the
matrix and Y., and };, are the covariance matrix of the vectors.
2.4. Datasets

To uncover various aspects of research, our surveyed paper used some in-depth datasets. CSI data set for
wireless sensing and the Microsoft Malware Classification Challenge Dataset were the most important datasets
which shaped the results. Here is a summary of the datasets employed in the survey article that we selected.

2.4.1 WIFI RSSI

Wi-Fi RSSI dataset [27] is designed for indoor user detection by signal strength strengthening its use by
smart homes, security (finding criminals), and access point user counting. The dataset is used as a tool for
building an optimized model for monitoring devices, which can be used to identify user location via Wi-Fi
signal strength measurement. Signal strength data from different routers is used, and are classified as a problem
of map making. The training of neural networks employs a fuzzy hybrid of Particle Swarm Optimization &
Gravitational Search Algorithm (FPSOGSA) to achieve a higher accuracy. The dataset is aimed at applications
that are in-house with an emphasis on the most efficient indoor user detection using Wi-Fi RSSI.

2.4.2 CSI

The CSI dataset [28] is an important layer for wireless sensing applications, considering the cases of activity
recognition, people identification, and people counting with the support of Wi-Fi connection device. The
gathered dataset, using a monitor router with Nexmon CSI, encompasses seven activities, ten clients, and more
than 13.5 hours of channel readings. It establishes 242 Wi-Fi OFDM data sub-channels within this 80 MHz
band to ensure a better unified foundation for the development of Wi-Fi-based wireless sensing solutions. The
related work [29] highlights the possibilities of throughputs from commercial WiFi systems by utilization of
Channel State Information (CSI). It concentrates on the active points CSI variations produced by body
movement for activity recognition. The approach is represented by the process of feature extraction from CSI
data streams and using machine learning techniques, which leads to the development of behavior recognition
models.

2.4.3 Network traffic (KDD99)

The dataset known as the KDDCUP'99 dataset, or Network Traffic KDD99 dataset [30], features is
especially important because it was created for the purpose of assessing the modern intrusion detection systems.
It is a multifaceted exploit that consists of different attacks such as the connection details, traffic stats, system
calls, and the user’s authentication data. The data set permits the realization of multiclass classification,
associating connections with safe and different attack types. Due to its humerous records, it can be used to
develop models that would be helpful in security network. This is the reason why it is regarded as a critical
data resource.

2.4.4 Deepsig RadioML 2016.10A

The "RADIOML 2016.10A" [31] historical dataset is a synthetic one which was created in GNU Radio
programming. This library from Virtual Studio Technology introduced in 2016 contains 11 different types of
modulation, 8 of which are digital while the remaining 3 are analog with different signal to noise ratios. These
data were first reported at the 6th International Conference on GNU Radio. The 2016.05A data version is an
updated and standardized version compared to the 2016.04C dataset, which is no longer available. The dataset
may be designed for studies and experimentation in the domain of RF signaling processing and modulation
characteristics.
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2.4.5 Microsoft Malware Classification Challenge Dataset

The data of the Microsoft Malware Classification [32] has a large repository; its uncompressed size is
almost 500 GB. The dataset is composed of nine well-known malware families that are covered by the entire
dataset. This combination represents. For each malware file, the 20-bit hash is generated and then the integer
is in turn converted into one of the family names. The raw data for every file is shown in a hexadecimal
equivalent that represents the binary contents stripping off the headers such that only the analysis of the files
is carried out without being biased. Concurrently with the raw data is given a text file, which has been enriched
by different data like task names and strings which were obtained with the help of the IDA disassembler tool.
The main issue of the participants was the classification of malware into the nine classes that had been already
assigned.

2.4.6 Malimg Dataset

Malimg Dataset [35] includes 9,339 byteplot images of malware from 25 families. It is applied as a creative
approach for malware visualization and classification based on the image processing [33]. Malware binaries
are converted into gray images by utilizing visual resemblance across families.

3. Variant Models of GAN

The reviewed papers provide a quantitative study of different GANs and come with a more detailed analysis
of their utilization. This part unravels the essence of GANs, where variety is emphasized and specific features
are highlighted.

3.1. CGAN

The traditional GAN [14] do not have a control over the output. The drawback of the traditional Generative
Adversarial Network (GAN) is resolved in the Conditioned Generative Adversarial Network (CGAN) [34], in
which the model is built to a conditional form. By using the additional information "y" as we can see in figure
3, both the generator and discriminator are connected to more information which is also labeled or comes from
other modalities. This extra data is added to both the discriminator and generator as a new input layer. The
whole conditioning system gives the model a capability to produce outputs with the specific features or

characteristics on the basis of the provided auxiliary information [34].

Discriminator
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Figure 3. The Architecture of Conditional GAN [34]

3.2 DCGAN

DCGANSs, which was proposed by Radford [13] and currently is the most popular and best performing
GAN architecture that uses convolutional layers, batch normalization, Rectified Linear Unit (ReLU)
activations and strided convolutions as represented in figure 4. Attentive modifications include employing
convolutional layers instead of fully connected layers and comprising particular architectural rules for both
generative and discriminative parts. The intermediate layers in the generator more often use the RelLU
activations, while the output layer uses tanh or sigmoid to make sure the pixel values are within the norm for
image data.
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Figure 4. The Architecture of DCGANSs, adopted from [13]

3.3 InfoGAN

InfoGAN [35], which is an unsupervised learning model, the objective is modified to maximize the mutual
information between a subset of noise variables and observed data. This is done by giving the model extra data
that contains aspects of the desired features and responding random noise which results to an artificial image
creation [36]. In the figure 5, we can see that G(z,c) is generator networks function where z represents a random
noise and c represents additional conditional information. This change indeed leads to the revelation of
interpretable representations, the performance is profitably manifested on multiple image datasets as well,
including MNIST, CelebA, and SVHN. Such method implies that an information cost can be very effective at
teaching the generative model to represent patterns that naturally emerge in data, thereby encouraging
meaningful and disentangled representations.
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Figure 5. The Architecture of InfoGAN, adopted from [35]

3.4 CycleGAN

CycleGAN [38] is an images-to-images translation model that overcomes the challenge of unpaired training
data. As we can see in the architecture of CycleGAN in figure 6, it extends Pix2Pix [39] by introducing a cycle
consistency loss that helps the model to learn mappings between input and output domains without the need of
one-to-one correspondence. Doing so supports numerous applications, for instance, changing SAR imagery
into RGB or the other way around (source to target) by means of one model. The structure involves two
generators and two discriminators that are trained at the same time, providing a variety of handling image
translations with unpaired datasets.
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Figure 6. The Architecture of CycleGAN, adopted from [37]
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3.5 ACGAN

The Auxiliary Classifier Generative Adversarial Network (AC-GAN) is one of the latest models that
introduces the specific cost functions to the latent space structure of a traditional GAN in order to increase its
capabilities for image resolution tasks [40]. Odena et al., 2016 [40] aimed at classifying the structure of the
natural images that would include the down-sampling scheme to extract the basic features. According to
Navidan et al., 2021 [17, 41], one of the main differences between ACGAN and CGAN is about setting class
labels. While CGAN train generator to be classifier itself, ACGAN employ an additional decoder network to
predict the labels. The model's efficacy however did not end there, as it also created malicious code for system
interference, as highlighted in [41].

3.6 BiGAN

A crucial step forward in the development of GANs was the Bi-directional Generative Adversarial Network
(BiGAN), which Donahue et al. [42] presented in 2017. The BiGAN structure incorporates three main
components: a generator (G), a discriminator (D), and an extra encoder (E). They operate in a triangular
relationship between each other. The generator does make the fake data, while the discriminator is responsible
for the scrutinization of the real and the generated data. The last feature to be discussed is the encoder. It
contributes to a bidirectional mapping between the data space and the latent space. This encoder performs not
only real data to latent space mapping, but also synthetic data back to the same latent space fitting. Moreover,
BiGAN [43] version has been studied further in the field of network intrusion detection. The objective here is
to cut down on costs arising from extensive training while at the same time ensuring that the network data is
sufficiently monitored by intrusion detectors.

3.7 TGAN

The model Temporal Generative Adversarial Nets (TGAN) [44] transforms the concept of video generation
by introducing a dual-generator structure. Different with traditional ways, TGAN employs temporal generator
which not only generates one latent variable at time but also changes it for every subsequent video frame. The
purpose is to describe how the generator of the image finally synthesizes a complete video from these latent
variables. The main goal of the inventive method is to make the grasping of momentary connections more
accurate. The TGAN designers used the Wasserstein GAN model and introduced a new end-to-end training
approach to ensure robustness during training. The time- and image-generating units show that the TGAN
reaches a new level in semantic representations of unlabeled video content and generates lots of diversified
and realistic video content. Moreover, Munoz et al., 2020 [45] presented a video generation model in this
research which for the first time incorporated both natural spatiotempor