
494

Yuzuncu Yil University

Journal of the Institute of Natural & Applied Sciences

https://dergipark.org.tr/en/pub/yyufbed

Research Article

Roman Domination in Mycielski Graphs: A Study of Some Graphs

and a Heuristic Algorithm

Derya DOĞAN DURGUN1, Emre Niyazi TOPRAKKAYA*2

1Manisa Celal Bayar University, Arts and Science Faculty, Mathematics, 45110, Manisa, Türkiye
2Manisa Celal Bayar University, Institute of Natural and Applied Sciences, Mathematics, 45110, Manisa,

Türkiye

Derya DOĞAN DURGUN, ORCID No: 0000-0002-9099-5448,

Emre Niyazi TOPRAKKAYA, ORCID No: 0000-0003-1818-4330
*Corresponding author e-mail: toprakkayaemre@gmail.com

Article Info

Received: 25.02.2024

Accepted: 30.05.2024

Online August 2024

DOI:10.53433/yyufbed.1442759

Keywords

Algorithm,

Graph Theory,

Roman Domination

Abstract: Let 𝐺 = (𝑉, 𝐸) be a graph. A function 𝑓: 𝑉 → {0,1,2}, if ∀𝑢 for which

𝑓(𝑢) = 0 is adjacent to ∃𝑣 for which 𝑓(𝑣) = 2, is called a Roman dominating

function, and called in short terms RDF. The weight of an RDF 𝑓 is 𝑓(𝑉) =
∑ 𝑓(𝑣)𝑣∈𝑉 . The Roman domination number of a graph G, denoted by 𝛾𝑅(𝐺), is

the minimum weight of an RDF on 𝐺. This paper presents the results for Roman

domination numbers of the Mycielski graphs obtained through Mycielski's

construction of the comet, double comet, and comb graphs. An algorithm to

determine the Roman domination number of any given graph is also provided.

Mycielski Graflarda Roma Baskınlığı: Bazı Grafların ve Bir Sezgisel Algoritmanın

Çalışması

Makale Bilgileri

Geliş: 25.02.2024

Kabul: 30.05.2024

Online Ağustos 2024

DOI:10.53433/yyufbed.1442759

Anahtar Kelimeler

Algoritma,
Graf Teorisi,

Roma Baskınlığı

Öz: 𝐺 = (𝑉, 𝐸) bir graf olsun. 𝑓(𝑢) = 0 olan her 𝑢 tepesinin, 𝑓(𝑣) = 2 olan en

az bir 𝑣 tepesine bitişik olması koşulunu karşılayan bir Roma baskınlık

fonksiyonu (RDF) 𝑓: 𝑉 → {0, 1, 2}. Bir RDF 𝑓’in ağırlığı 𝑓(𝑉) = ∑ 𝑓(𝑣)𝑣∈𝑉 . Bir

𝐺 grafının Roma baskınlık sayısı, γ𝑅(𝐺) ile gösterilir, 𝐺 de bir RDF’nin

minimum ağırlığıdır. Bu çalışmada, Mycielski'nin kuyruklu yıldız, çift kuyruklu

yıldız ve tarak graflarını oluşturmasıyla elde edilen Mycielski graflarının Roma

baskınlık sayılarına ilişkin sonuçlarını sunmaktadır. Ayrıca, herhangi bir grafın

Roma baskınlık sayısını belirleyen bir algoritma sağlanmıştır.

1. Introduction

Let 𝐺 = (𝑉, 𝐸) be a simple graph. 𝑉(𝐺) is the notation for the vertex set of a graph, and 𝐸(𝐺)
is for the graph's edge set. The order of a graph means the number of the vertices of a graph, denoted by

|𝑉| = 𝑛 . 𝑁(𝑣) = {𝑢 ∈ 𝑉(𝐺)|𝑢𝑣 ∈ 𝐸(𝐺)} is the open neighborhood of a vertex 𝑣 , and closed

neighborhood of it is 𝑁[𝑣] = 𝑁(𝑣) ∪ {𝑣}. The degree of a vertex 𝑣 is the number of edges incident to

𝑣, denoted by 𝑑𝑒𝑔(𝑣). For a set 𝑆 ⊆ 𝑉, 𝑁(𝑆) = ∪𝑣∈𝑆 𝑁(𝑣), and 𝑁[𝑆] = 𝑁(𝑆) ∪ 𝑆. A set 𝑆 of vertices

is a dominating set if every vertex in the graph is either in 𝑆 or adjacent to at least one vertex in 𝑆. The

Yuzuncu Yil University Journal of the Institute of Natural & Applied Sciences, Volume 29, Issue 2 (August), 494-502, 2024

https://dergipark.org.tr/en/pub/yyufbed
https://orcid.org/0000-0002-9099-5448
https://orcid.org/0000-0003-1818-4330
mailto:toprakkayaemre@gmail.com
https://doi.org/10.53433/yyufbed.1442759
https://doi.org/10.53433/yyufbed.1442759

YYU JINAS 29(2): 494-502

Doğan Durgun and Toprakkaya / Roman Domination in Mycielski Graphs: A Study of Some Graphs and a Heuristic Algorithm

495

domination number, denoted as 𝛾(𝐺), is the smallest possible size of a dominating set that can dominate

all the vertices of 𝐺. Such a set of 𝐺 is called a 𝛾(𝐺) − 𝑠𝑒𝑡.
In this paper, we consider an algorithm for the Roman domination number, defined by Ian

Stewart (Stewart, 1999). Roman dominating function (RDF) on a graph 𝐺 = (𝑉, 𝐸) is a function 𝑓: 𝑉 →
{0, 1, 2} satisfying the condition that every vertex 𝑢 for which 𝑓(𝑢) = 0 is adjacent to at least one vertex

𝑣 for which f(v) = 2 (Dreyer, 2000). The weight of an RDF is the value 𝑤(𝑓) = 𝛴𝑣∈𝑉 𝑓(𝑣). The Roman

domination number of a graph is the minimum weight of an RDF on 𝐺, denoted by 𝛾𝑅(𝐺). 𝛾𝑅(𝐺) −
𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 is a Roman dominating function of 𝐺 with weight 𝛾𝑅(𝐺) (Henning & Hedetniemi, 2003). A

Roman dominating function 𝑓 on a vertex set 𝑉 can be represented by the ordered partition (𝑉0, 𝑉1, 𝑉2)
of 𝑉, where 𝑉𝑖 = {𝑣 ∈ 𝑉 |𝑓(𝑣) = 𝑖} and 𝑓(𝑣) ∈ {0, 1, 2} (Chambers et al., 2009). Its weight is 𝑤(𝑓) =
|𝑉1| + 2|𝑉2|. If someone needs additional details about the parameters of domination, as well as the

associated terminologies, can refer to the information provided in the literature (Haynes et al., 1998;

West et al., 2001).

Cockayne et al. who proposed the Roman dominating function on graphs ask the following

questions: “What are the algorithmic, complexity, and approximation properties of Roman

domination?” and, “Can you construct a polynomial algorithm for computing the value γR(G) for any

interval graph G?” (Cockayne et al., 2004). Liedloff et al. showed that there are linear-time algorithms

for obtaining the Roman domination number in interval graphs and cographs. They also introduced a

dynamic programming algorithm for solving the same problem specifically in interval graphs (Liedloff

et al., 2008).

In the context of corporate structures, different departments, whether large or small, have their

distinct chain of command. For smooth and efficient operations, employees and managers must

communicate effectively. To simplify the chain of command, each employee should fall under the

supervision of at least one manager. For instance, consider the organizational chart of a company, where

each person is represented by a vertex. If an employee is supervised by a manager, connect the

corresponding vertices with an edge. In graphs with this property, a selected group of employees (𝑆) or

the complement set of managers (𝑉(𝐺) − 𝑆) can serve as dominating sets, reflecting the organizational

hierarchy. We explore a variant of domination, known as Roman domination.

This manuscript extends our previous research, which we initially shared as a preprint (Durgun

& Toprakkaya, 2021). In this paper, the Roman domination number of some Mycielski graphs is given.

Additionally, an algorithm is presented to obtain the Roman domination number.

2. Roman Domination Numbers of Mycielski Graphs of Some Graphs

In this section, theorems for Roman domination numbers of the Mycielski graphs obtained by

Mycielski’s construction of the comet, double comet, and comb graphs are given. Mycielski graph of a

graph 𝐺 is the graph µ(𝐺) = (𝑉 ′, 𝐸′) with vertex set 𝑉 ′ = 𝑉 ∪ {𝑣′ ∶ 𝑣 ∈ 𝑉 } ∪ {𝑤} and edge set

𝐸′ = 𝐸 ∪ {𝑣𝑢′ ∶ 𝑣𝑢 ∈ 𝐸} ∪ {𝑣′𝑤 ∶ 𝑣′, 𝑤 ∈ 𝑉 ′}.

Theorem 2.1. Let 𝐺 = 𝐶𝑡,𝑟 be a comet graph where 𝑡 ≥ 2 and 𝑟 ≥ 1. Then the Roman domination

number of µ(𝐺) is equal to

𝛾𝑅 (𝜇(𝐶𝑡,𝑟)) = {
(2
𝑡

3
+ 1) + 2 𝑡 ≡ 0 (𝑚𝑜𝑑 3)

2 ⌈
𝑡

3
⌉ + 2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(1)

YYU JINAS 29(2): 494-502

Doğan Durgun and Toprakkaya / Roman Domination in Mycielski Graphs: A Study of Some Graphs and a Heuristic Algorithm

496

Figure 1. Mycielski of a comet graph.

Proposition 2.2. 𝜸𝑹(µ(𝑪𝒕,𝒓)) = 𝜸𝑹(𝑪𝒕,𝒓) + 𝟐

Theorem 2.3. For 𝑝 = 𝑛 − 𝑎 − 𝑏 and 𝑝 ≠ 2, let 𝐺 = 𝐷𝐶(𝑛, 𝑎, 𝑏) be a double comet graph. The

Roman domination number of µ(𝐺) is equal to

𝛾𝑅 (𝜇(𝐷𝐶(𝑛, 𝑎, 𝑏))) =

{

 2 (

𝑝

3
+ 1) + 2 𝑝 ≡ 0 (𝑚𝑜𝑑 3)

2 ⌈
𝑝

3
⌉ + 2 𝑝 ≡ 1 (𝑚𝑜𝑑 3)

(2 ⌈
𝑝

3
⌉ + 1) + 2 𝑝 ≡ 2 (𝑚𝑜𝑑 3)

(2)

Figure 2. Mycielski of a double comet graph.

Proposition 2.4. 𝛾𝑅(µ(𝐷𝐶(𝑛, 𝑎, 𝑏))) = 𝛾𝑅(𝐷𝐶(𝑛, 𝑎, 𝑏)) + 2

Observation 1. We take 𝑝 ≠ 2, unlike the definition of the double comet graph, because in the case of

𝑝 = 2, the graph is a Special Roman graph (Kazemi, 2012). Accordingly, when 𝑝 = 2, the value of

𝛾𝑅(µ(𝐷𝐶(𝑛, 𝑎, 𝑏))) is equal to 𝛾𝑅(𝐷𝐶(𝑛, 𝑎, 𝑏)) + 1.

YYU JINAS 29(2): 494-502

Doğan Durgun and Toprakkaya / Roman Domination in Mycielski Graphs: A Study of Some Graphs and a Heuristic Algorithm

497

Theorem 2.5. Let 𝐺 = 𝑃𝑛
+ be a comb graph. The Roman domination number of µ(𝐺) is equal to

𝛾𝑅(𝜇(𝑃𝑛
+)) =

{

 4

𝑛

3
+ 2 𝑛 ≡ 0 (𝑚𝑜𝑑 3)

(4 ⌊
𝑛

3
⌋ + 2) + 2 𝑛 ≡ 1 (𝑚𝑜𝑑 3)

(4 ⌈
𝑛

3
⌉ − 1) + 2 𝑛 ≡ 2 (𝑚𝑜𝑑 3)

(3)

Figure 3. Mycielski of a comb graph.

Proposition 2.6. 𝛾𝑅(µ(𝑃𝑛
+)) = 𝛾𝑅(𝑃𝑛

+) + 2

3. An Algorithm for Computing the Roman Domination Number

In this section, we present Algorithm 1 for computing 𝛾𝑅(𝐺) of a graph 𝐺.

Our method for sorting the vertices of a graph involves analyzing their degrees, the degree sum

of adjacent vertices, and the sum of all vertex degrees. This algorithm repeatedly partitions the graph

into smaller sections until it's fully sorted. Once completed, it returns the Roman domination number.

To implement this algorithm for a graph 𝐺, its adjacency matrix is entered as data and, the

number of vertices is stored in a variable. The while loop runs until the counter reaches the total number

of vertices in 𝐺. Initially, each vertex dominates itself, so every element in the ‘roman domination

matrix variable is assigned the value of 1.

 Within the while loop, the matrix 'degree' stores the degrees of each vertex in the graph. The

algorithm calculates the sum of the degrees of all vertices, assigning this value to the variable 'deg sum'.

Additionally, it calculates the sum of the degrees of adjacent vertices for each vertex and stores this in

the 'neighbor deg' matrix. On lines 13-14 of the algorithm, it checks whether the graph's vertices are

isolated. If they are, the value ′ deg 𝑠𝑢𝑚 + 1′ is assigned to the sum of their adjacent vertices' degrees

to keep them separate from others. The indices of the graph's vertices are stored in the 'index' matrix,

ordered in descending order according to their vertex degrees. In rows 16-24, the algorithm sorts vertices

according to their neighbor deg values if their degrees are equal, replacing the 'index' values accordingly.

If the value in the first column of the 'index' variable is not zero, the value ′2′ is written in the

corresponding place in the ‘roman domination matrix, indicating that the vertex held in the 'index'

variable is included in 𝑉2. The algorithm then deletes the vertex and its adjacent vertices from the graph's

adjacency matrix, incrementing the counter by ′1′ . As the while loop runs again, it repeats these

operations on smaller partitions until the counter reaches the total number of vertices.

Upon the termination of the while loop, the summation of all values within the ‘roman

domination matrix is calculated and subsequently assigned to the ‘gamma roman variable. This

YYU JINAS 29(2): 494-502

Doğan Durgun and Toprakkaya / Roman Domination in Mycielski Graphs: A Study of Some Graphs and a Heuristic Algorithm

498

resultant value is then returned as the output. An alternative approach would be to extract the values

contained within the ‘roman domination matrix to identify the vertices belonging to 𝑉0, 𝑉1, and 𝑉2.

Algorithm 1: Roman Domination Algorithm

Input: An undirected graph G = (V, E)

Output: Roman domination number of the graph G

1 begin

Figure 4. Roman Domination Algorithm.

YYU JINAS 29(2): 494-502

Doğan Durgun and Toprakkaya / Roman Domination in Mycielski Graphs: A Study of Some Graphs and a Heuristic Algorithm

499

Example 3.1. The figures below illustrate a step-by-step demonstration of our algorithm. Our

algorithm uses a simple example of 𝐺 graph as input.

Figure 5. Input graph 𝐺 and initial conditions of 𝑉1, 𝑉2. 𝑉2 = ∅ and 𝑉1 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7, 𝑣8}.

Table 1. Initial situation of the graph

a i index roman domination gamma roman

1 8 [0 0 0 0 0 0 0 0] [1 1 1 1 1 1 1 1] 0

Figure 6. First cycle of the algorithm 𝑉2 = {𝑣2}, 𝑉1 = {𝑣1, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7, 𝑣8}.

Table 2. First Iteration

a i index roman domination gamma roman

1 8 [2 5 4 1 3 6 7 8] [1 2 1 1 1 1 1 1] 0

YYU JINAS 29(2): 494-502

Doğan Durgun and Toprakkaya / Roman Domination in Mycielski Graphs: A Study of Some Graphs and a Heuristic Algorithm

500

Figure 7. The reduced graph at the beginning of the second cycle 𝑉2 = {𝑣2}, 𝑉1 = {𝑣3, 𝑣5, 𝑣6, 𝑣8}.

Table 3. Situation at the beginning of the second cycle

a i index roman domination gamma roman

2 8 [2 5 4 1 3 6 7 8] [0 2 1 0 1 1 0 1] 0

Figure 8. Second cycle of the algorithm 𝑉2 = {𝑣2, 𝑣5}, 𝑉1 = {𝑣3, 𝑣6, 𝑣8}.

Table 4. Second Iteration

a i index roman domination gamma roman

2 8 [5 6 3 8 0 0 0 0] [0 2 1 0 2 1 0 1] 0

Figure 9. The reduced graph at the beginning of the third cycle 𝑉2 = {𝑣2, 𝑣5}, 𝑉1 = {𝑣8}.

Table 5. Situation at beginning of the third cycle

a i index roman domination gamma roman

3 8 [5 6 3 8 0 0 0 0] [0 2 0 0 2 0 0 1] 0

YYU JINAS 29(2): 494-502

Doğan Durgun and Toprakkaya / Roman Domination in Mycielski Graphs: A Study of Some Graphs and a Heuristic Algorithm

501

In the end, our algorithm exits the loops by doing no changes in the roman domination matrix

when only isolated vertices left because the 𝑖𝑛𝑑𝑒𝑥[1] variable will be equal to 0 in every cycle. Then it

calculates the result of the equation 𝛾𝑅(𝐺) = min{|𝑉1| + 2|𝑉2|} and returns the value, 𝛾𝑅(𝐺) = 5.

Table 6. Situation at the end

a i index roman domination gamma roman

8 8 [0 0 0 0 0 0 0 0] [0 2 0 0 2 0 0 1] 5

3.1. Correctness of the Roman domination algorithm

The algorithm's correctness will be proven by demonstrating the dominance and minimality

properties. Loop invariants and mathematical reasoning will be used to prove these properties.

Proof. Consider the input graph 𝐺 = (𝑉, 𝐸) and set of vertices 𝐷 selected by the algorithm. At

the outset, all vertices in the Roman domination matrix of 𝐺 are initially dominated by 1. During each

iteration of the while loop, the algorithm chooses the remaining vertex with the highest degree, except

in the case of equality when it also looks for the neighbor degree. The algorithm then updates the Roman

domination values of the selected vertex and its adjacent vertices, setting the former to 2 and the latter

to 0. This process continues until all vertices are removed. At each iteration, the algorithm sets the

Roman domination value of the selected vertex to 2, which is greater than the value of any previously

unselected vertex (which is 1). The algorithm terminates when all vertices have been removed from G.

At this point, the set of vertices 𝐷 selected by the algorithm dominates all other vertices. Every vertex

has either been selected and given a Roman domination value of 2, or has been adjacent to a selected

vertex, or has a Roman domination value of 1 , and therefore dominates itself. Thus, we have

demonstrated that the Dominance Property holds.

Let's assume there's a vertex, 𝑣 ∈ 𝐷, that, if removed from 𝐷, would result in a new set 𝐷′ that

doesn't dominate all other vertices. Since 𝑣 is in 𝐷, it must've been picked by the algorithm at some

point during iteration 𝑘. If we were to remove 𝑣 from 𝐷, no vertex adjacent to 𝑣 would have its Roman

domination value set to 0 in subsequent iterations. This means there's a vertex, 𝑢, adjacent to 𝑣 where

𝑟𝑜𝑚𝑎𝑛 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛[𝑢] = 2. However, this contradicts the algorithm's procedure, which ensures that

the Roman domination value of any vertex adjacent to the selected vertex is set to 0. Therefore, our

assumption was incorrect, and the set of vertices selected by the algorithm is minimal.

Applying the Dominance Property and Minimality Property, it can be inferred that the Roman

Domination Algorithm accurately calculates the Roman domination number for any input graph. This

algorithm guarantees that the chosen vertex set dominates all other vertices and is the smallest possible

set.

□

3.2. Complexity of the Roman domination algorithm

The Roman Domination Algorithm's time complexity increases quadratically with the number

of vertices in the input graph, which can cause performance issues when dealing with large graphs.

However, for simple, undirected, and planar graphs, the overall time complexity can be estimated as

𝑂(|𝑉|) + 𝑂(|𝑉| log|𝑉|). Planar graphs have a limited degree, which enables quick degree calculation

in linear time, resulting in a lower time complexity compared to the general case where degree

calculation has a complexity of 𝑂(|𝑉|2).
In practice, the time complexity of the Roman Domination Algorithm for planar graphs is

dominated by the sorting term O(|V |log|V |) due to the necessity of sorting the vertices based on their

degrees.

4. Conclusion

Our algorithm has undergone thorough testing on various established graph categories,

including paths, cycles, and trees. Moreover, we have conducted tests on graph classes that have been

YYU JINAS 29(2): 494-502

Doğan Durgun and Toprakkaya / Roman Domination in Mycielski Graphs: A Study of Some Graphs and a Heuristic Algorithm

502

explored in the context of Roman domination numbers, as well as on their Mycielski graph counterparts.

In addition, we have tested our algorithm on any graph generated by the Watts-Strogatz model using the

MATLAB program, and we have validated the accuracy of our results through manual verification. In

a recent publication, we conducted extensive calculations for different classes of graphs, with different

numbers of vertices (Durgun & Toprakkaya, 2023). Our findings provided conclusive evidence

regarding the algorithm’s effectiveness.

It has been crafted to handle intricate data structures with ease, delivering top-notch results every

time. By following our intuitive, user-friendly instructions and leveraging our helpful visual aids, our

algorithm empowers users to interpret and analyze complex data structures with greater ease, ultimately

resulting in more informed decisions and increased productivity.

References

Chambers, E. W., Kinnersley, B., Prince, N., & West, D. B. (2009). Extremal problems for Roman

domination. SIAM Journal on Discrete Mathematics, 23(3), 1575-1586.

https://doi.org/10.1137/070699688
Cockayne, E. J., Dreyer Jr, P. A., Hedetniemi, S. M., & Hedetniemi, S. T. (2004). Roman domination

in graphs. Discrete Mathematics, 278(1-3), 11-22. https://doi.org/10.1016/j.disc.2003.06.004
Dreyer, P. A. (2000). Applications and variations of domination in graphs. (PhD), Rutgers University,

New Jersey.

Durgun, D. D., & Toprakkaya, E. N. (2021). Roman domination of the Comet, Double Comet, and

Comb Graphs. arXiv preprint arXiv:2102.07902. https://doi.org/10.48550/arXiv.2102.07902

Durgun, D. D., & Toprakkaya, E. N. (2023). Roman domination on some graphs. Journal of Modern

Technology and Engineering, 8(2), 96-104.
Haynes, T. W., Hedetniemi, S., & Slater, P. (1998). Fundamentals of domination in graphs. CRC Press.

https://doi.org/10.1201/9781482246582
Henning, M. A., & Hedetniemi, S. T. (2003). Defending the Roman Empire - A new strategy. Discrete

Mathematics, 266(1-3), 239-251. https://doi.org/10.1016/S0012-365X(02)00811-7
Kazemi, A. P. (2012). Roman domination and Mycielski’s structure in graphs. Ars Combinatoria, 106,

277-287.
Liedloff, M., Kloks, T., Liu, J., & Peng, S. (2008). Efficient algorithms for Roman domination on some

classes of graphs. Discrete Applied Mathematics, 156(18), 3400-3415.

https://doi.org/10.1016/j.dam.2008.01.011
Stewart, I. (1999). Defend the Roman Empire!, Scientific American, 281(6), 136-138.

https://doi.org/10.1038/scientificamerican1299-136
West, D. B. (2001). Introduction to graph theory. Prentice Hall Upper Saddle River.

https://doi.org/10.1137/070699688
https://doi.org/10.1016/j.disc.2003.06.004
https://doi.org/10.48550/arXiv.2102.07902
https://doi.org/10.1201/9781482246582
https://doi.org/10.1016/S0012-365X(02)00811-7
https://doi.org/10.1016/j.dam.2008.01.011
https://doi.org/10.1038/scientificamerican1299-136

