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Abstract
In this work, we give some results about the basic properties of the vector-valued Fibonacci sequence spaces.
In general, sequence spaces with Banach space-valued cannot have a Schauder Basis unless the terms of the
sequences are complex or real terms. Instead, we defined the concept of relative basis in [1] by generalizing the
definition of a basis in Banach spaces. Using this definition, we have characterized certain important properties
of vector-term Fibonacci sequence spaces, such as separability, Dunford-Pettis Property, approximation property,
Radon-Riesz Property and Hahn-Banach extension property.
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How to cite this article: Y. Yılmaz, S. Yalçın, On some properties of Banach space-valued Fibonacci sequence spaces, Commun. Adv. Math.
Sci., 7(2) (2024), 80-87.

1. Introduction
Banach spaces with a Schauder basis have many important advantages. The representation of such spaces with the help

of the basis and the ability to approximate the element in countable steps with the help of this representation provide the
opportunity to solve many structural and numerical problems. But in general, vector-valued sequence and function spaces do
not generally have a Schauder basis. The concept of basis, which we defined in [1] tells us that some of these types of spaces
have this type of basis and allows us to examine the structural properties of the space.

In this work we examine certain properties of some Banach space-valued Fibonacci sequence spaces. Their scalar-valued
versions are defined and investigated in [2]-[6]. Fibonacci numbers have several applications in the field of Science, Engineering
and Architecture. Fibonacci sequence is a sequence in which each number is the sum of the two preceding ones. Numbers that
are part of the Fibonacci sequence are known as Fibonacci numbers . Starting from 1 and 1, the sequence begins

1,1,2,3,5,8,13,21,34,55,89,144, ....

The Fibonacci numbers may be defined by the recurrence relation f1 = 1, f2 = 1 and fn+1 = fn + fn−1 for n≥ 2. We refer to
[3] for detailed studies concerning Fibonacci numbers. Fibonacci matrix is define by the Fibonacci numbers as F = ( fnk) such
that
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fn,k =


− fn+1

fn
,

fn
fn+1

,

0,

i f k = n−1
i f k = n
otherwise

.

More explicitly,

F =


f1/ f2 0 0 0 · · ·
− f3/ f2 f2/ f3 0 0 · · ·

0 − f4/ f3 f3/ f4 0 · · ·
0 0 − f5/ f4 f4/ f5 · · ·
...

...
...

...
. . .

 .
By using this sub-triangular infinite matrix Kara [4] introduced the sequence spaces `p (F) , 1≤ p < ∞, and `∞ (F) such that

`p (F ) =

{
u = (un) ∈ w :

∞

∑
n=0

∣∣∣∣ fn

fn+1
un−

fn+1

fn
un−1

∣∣∣∣p < ∞

}
and

`∞ (F ) =

{
u = (un) ∈ w : sup

n

∣∣∣∣ fn

fn+1
un−

fn+1

fn
un−1

∣∣∣∣< ∞

}
.

For any Banach space V, let us define following V -valued Fibonacci sequence spaces

`p (F ,V ) =

{
u = (un) ∈ w(V ) :

∞

∑
n=0

∥∥∥∥ fn

fn+1
un−

fn+1

fn
un−1

∥∥∥∥p

V
< ∞

}
and

`∞ (F ,V ) =

{
u = (un) ∈ w(V ) : sup

n

∥∥∥∥ fn

fn+1
un−

fn+1

fn
un−1

∥∥∥∥
V
< ∞

}
For V = K , the real or complex number, then `p (F ,V ) = `p (F ) and `∞ (F ,V ) = `∞ (F ) . It is easy to prove that

`p (F ,V ) and `∞ (F ,V ) are Banach spaces with norms

‖u‖`p(F ,V ) =

(
∞

∑
n=0

∥∥∥∥ fn

fn+1
un−

fn+1

fn
un−1

∥∥∥∥p

V

)1/p

and

‖u‖`∞(F ,V ) = sup
n

∥∥∥∥ fn

fn+1
un−

fn+1

fn
un−1

∥∥∥∥
V
,

respectively.
F is an invertible triangle matrix, that is F−1 exists and it defines an isomorphism from `∞ (V ) onto `∞ (F ,V ) and from

`p (V ) onto `p (F ,V ) .
We will see in the sequel that `1 (F ,V ) has Dunford-Pettis property and moreover will prove that `p (F ,V ) have the

approximation property for 1≤ p < ∞ in some conditions.
Let us give some known required results from Banach space theory.

Suppose that U and V are Banach spaces. A linear operator S from U into V is compact if S(B) is a relatively compact
(means S(B) is compact) subset of V whenever B is a bounded subset of U . The collection of all compact linear operators from
U into V is denoted by K(U,V ), or by just K(U) if U =V . The range of a compact linear operator from a Banach space into a
Banach space is closed if and only if the operator has finite rank, that is, the range of the operator is finite-dimensional [7]. A
Banach space U has the approximation property if, for every Banach space V , the set of all finite-rank operators in B(V,U) is
dense in K(V,U) [8]. The spaces c0 and `p, 1≤ p < ∞, have the approximation property [7].

Let us remember that for any sequence (xn) in a Banach space U converges weakly to U, or briefly xn
w→ x, whenever

f (xn)→ f (xn) for each f ∈ U∗, the dual of U. We refer the reader to [7] for the definition of weak topology and weak
convergence in detail. Suppose that U and V are Banach spaces. A linear operator S from U into V is weakly compact if S(B)
is a relatively weakly compact subset of V whenever B is a bounded subset of U .
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Proposition 1.1. [7] Suppose that S is a linear operator from a Banach space U into a Banach space V . Then S is weakly
compact if and only if for any bounded sequence (xn) in U has a subsequence

(
xn j

)∞

j=0
such that

(
Sxn j

)
converges weakly.

Let us give important definitions of D.Hilbert. Suppose that U and V are Banach spaces. A linear operator S from U into V
is completely continuous or a Dunford-Pettis operator if S(K) is a compact subset of V whenever K is a weakly compact subset
of U [9] .

Definition 1.2. Suppose that U and V are Banach spaces. A Banach space U has the Dunford-Pettis property if, for every
Banach space V , each weakly compact linear operator from U into V is completely continuous [7].

Proposition 1.3. [7] `1 has the Dunford-Pettis Property.

Theorem 1.4. (R.S.Phillips, [10]) Let V be a linear subspace of the Banach space U and suppose T : V → `∞ is a bounded
linear operator. Then T may be extended to a bounded linear operator S : U → `∞ having the same norm as T.

In some cites the operator T in the above theorem is known as a Hahn-Banach operator and then it is said that `∞ has the
Hahn-Banach extension property.

2. Some Properties of Banach Space-Value Fibonacci Sequences

Definition 2.1. [1] Let U and V be Banach spaces and A be a set. A family {ηa : a ∈ A} of continuous linear functions
ηa : V →U is called Y-basis for U if the following condition is satisfied. There exist a unique family {Ra : a ∈ A} of linear
functions Ra from U onto V and a subset D of F , directed by some relation�, such that, for each x ∈U, the net (πF (x) : D)
converges to x in U. Where, for each F ∈D ,

πF (x) = ∑
a∈F

(ηa ◦Ra)(x) ,

and F is the family of all finite subsets of the index set A. Furthermore, {ηa} is called a Y-Schauder basis for U whenever
each Ra is continuous.

Definition 2.2. [1] The family {Ra : a ∈ A} is called associate family of functions (A.F.F.) to the V -basis {ηa : a ∈ A} .

Let {ηa : a ∈ A} be a V -basis for U . Clearly, the finite summation πF (x) defines an operator πF on U for each F ∈D . This
operator is called F-projection on U corresponding V -basis and it is continuous whenever {ηa} is a V -Schauder basis.

Remark 2.3. Let V be a Banach space on the field C possessing a basis {xn} (in the classical manner). Then the sequence
{ηn} of the functions

ηn : C→V : ηn (t) = txn

is a C-basis for V in the sense of above Definition. Indeed; take A= N and

D ={{1} ,{1,2} ,{1,2,3} , . . .}

with the relation inclusion again, and {Rn} as the sequence of associate coordinate functionals (gn) to the basis {xn} . Then
(πF (x) : D) converges to x in U iff

n

∑
k=1

(ηk ◦Rk)(x) =
n

∑
k=1

gk (x)xk,

converges to x =
∞

∑
n=1

gn (x)xn.

Theorem 2.4. Let V be a Banach space for which a family {ηa : a ∈ A} be a V -basis for some Banach space V . Then, V is
separable if A is countable [1].
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Main Results
Let us give some main results on V -valued Fibonacci sequence spaces in this section

Theorem 2.5. Let V be a Banach space. Then `p (F ,V ) has an unconditional V -Schauder basis.

Proof. Take A= N and consider

In : V → `p (V )

In (z) = (0, ...,0,z,0, ...)

for and remember the Fibonacci matrix F . Then obviously each F In defines a bounded linear operator from V into `p (F ,V ) .
Now the linear operator sequence

{F In : n ∈ N}

is a V -Schauder basis for `p (F ,V ) . Let us prove this. First of all consider the sequence of coordinate projections

Pn : `p (F ,V )→V ; Pn (x) = xn,

as {Rn : n ∈ N} in the basis definition, and take D as the family of all F finite subsets of N which is directed by the inclusion
relation ⊆ . Then we must show that the net (πF (x) : D) converges to x in `p (F ,V ) where

πF (x) = ∑
n∈F

(F InPn)(x) = ∑
n∈F

F In (xn) .

Obviously convergence of the above net corresponds to the convergence of the partial sums sequence of the series
∞

∑
n=0

F In (xn) .

Now, consider an arbitrary ε > 0. We must find a finite subset F0 = F0 (ε) ∈D such that, for each finite set F ⊇ F0,

‖x−πF (x)‖`p(F ,V ) ≤ ε.

Since x ∈ `p (F ,V ) there exists an n0 (ε) such that
∞

∑
n>n0

‖(F x)n‖
p
V < ε. Now take F0 as

F0 =

{
n ∈ N :

∞

∑
n>n0

‖(F x)n‖
p
V > ε

}
,

Then we get

‖x−πF (x)‖`p(F ,V ) = ‖{xn : n ∈ N\F}‖`p(F ,V ) ≤ ε,

for each finite F ⊇ F0.This implies (πF (x) : D)→ x in `p (F ,V ) .
Let us show the uniqueness of the sequence {Pn} . Suppose

∑
n∈N

(F InPn)(x) = ∑
n∈N

(
F InP′n

)
(x)

and write

π
◦
F (x) = ∑

n∈N

(
F In

(
Pn−P′n

))
(x) , F ∈D .

Remember that

‖π◦F (x)‖`p(F ,V ) =

(
∑
n∈F

∥∥(F In
(
Pn−P′n

))
(x)
∥∥p

)1/p

and

‖π◦F (x)‖`p(F ,V ) ≤ ‖π
◦
G (x)‖`p(F ,V )
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for F ⊆ G. Since (πF (x) : D)→ x in `p (F ,V ) we get

lim
F∈D
‖π◦F (x)‖`p(F ,V ) = 0.

By this observation we have (Pn−P′n)(x) = 0 for each n and for every x ∈ `p (F ,V ) . This implies, Pn = P′n for each n. This
gives the uniqueness of the basis.

Further, each Pn is continuous because ‖xn‖V ≤ ‖x‖`p(F ,V ) . This proves that sequence {F In : n ∈ N} is a V -Schauder basis
for `p (F ,V ) .

Theorem 2.6. For 1≤ p < ∞, the Banach space `p (F ,V ) has the approximation property if and only if V has.

Proof. Suppose T be a compact linear operator from a Banach space V into `p (F ,V ) . We will find a sequence (Tn) of bounded
linear operators of finite-rank from V into `p (F ,V ) . For any x ∈V, T x ∈ `p (F ,V ) and for any bounded sequence (xn) in V,
the sequence (T xn) has a convergent subsequence

(
T xn j

)∞

j=0
in `p (F ,V ) since T is compact. Hence∥∥T xni −T xn j

∥∥p
`p(F ,V )

=
∥∥T
(
xni − xn j

)∥∥p
`p(F ,V )

=
∞

∑
m=0

∥∥∥∥ fm

fm+1
T
(
xni − xn j

)
m
− fm+1

fm
T
(
xni − xn j

)
m−1

∥∥∥∥p

V

If we remember the definition of the space `p (F ,V ) ,∥∥T
(
xni − xn j

)∥∥p
`p(F ,V )

=
∥∥(FT )

(
xni − xn j

)∥∥p
`p(V )

.

Now V has the approximation property if and only if `p (V ) has. Hence∥∥(FT )
(
xni − xn j

)∥∥p
`p(V )

→ 0 as i, j→ ∞.

This means the operator FT : V → `p (V ) is well-defined and compact. The matrix transformation F is clearly bounded linear
and so is FT . Since `p (V ) have the approximation property, there exits a sequence (Am)

∞

m=0 of bounded linear operators of
finite-rank from V to `p (V ) such that ‖FT −Am‖→ 0 as m→ ∞. Now the sequence

(
F−1Am

)∞

m=0 is the desired sequence
of finite-rank operators from V to `p (F ,V ) . Easily we can see that each F−1Am is bounded linear and has the finite-rank.
Further∥∥T −F−1Am

∥∥ = sup
‖x‖=1

∥∥(T −F−1Am
)

x
∥∥
`p(F ,V )

= sup
‖x‖=1

∥∥T x−
(
F−1Am

)
x
∥∥p
`p(F ,V )

= sup
‖x‖=1

∥∥FT x−F
(
F−1Am

)
x
∥∥p
`p(V )

= sup
‖x‖=1

‖(FT −Am)x‖p
`p(V )

→ 0 as m→ ∞.

This completes the proof.

Theorem 2.7. `1 (F ,V ) has the Dunford-Pettis Property if and only if V has.

Proof. Let T be any weakly compact linear operator from `1 (F ,V ) into V and compose T with F−1. Then TF−1 is
obviously a bounded linear operator from `1 (V ) into V. Further it is weakly compact if and only if V is. Let us prove this:
Suppose U is a bounded in `1 (V ) . By the boundedness of the matrix operator F−1 we have F−1 (U) is a bounded subset of
`1 (F ,V ) . Therefore

T
(
F−1 (U)

)
=
(
TF−1)(U)

is a relatively weakly compact set in V. As a result TF−1 : `1 (V )→V is a weakly compact operator if and only if V is. Now,
since `1 (V ) has the Dunford-Pettis Property if and only if V has, we get TF−1 is completely continuous. Let W be a weakly
compact subset of `1 (F ,V ). Then F (W ) is a weakly compact subset of `1 (V ), and so(

TF−1)F (W ) = T (W )

is a compact subset in V.
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Theorem 2.8. Let V be a linear subspace of the Banach space U and suppose T : V → `∞ (F ,V ) is a bounded linear operator.
Then T may be extended to a bounded linear operator H : U→ `∞ (F ,V ) having the same norm as T if V has the Hahn-Banach
extension property.

Proof. Consider any bounded linear operator T : V → `∞ (F ,V ) . Now FT : V → `∞ (V ) is a bounded linear operator since
the Fibonacci matrix is. Now `∞ (V ) has the Hahn-Banach extension property since V has.

For any x ∈V, FT x ∈ `∞ (V ) and

FT x = ((FT x)1 ,(FT x)2 , ...)

= ((P1FT )(x) ,(P2FT )(x) , ...) .

Note that each Pn is coordinate projection from `∞ (V ) into V such that Pn (x) = xn. By the Hahn-Banach extension property
of `∞ (V ) , the operator FT : V → `∞ (V ) can be extended the bounded linear operator S : U → `∞ (V ) with the same norm as
FT , that is ‖S‖= ‖FT‖ . Let us define the operator H from U into `∞ (F ,V ) such that for x ∈U,

Hx =
(
F−1S

)
(x) .

H is well-defined and linear since S and F−1 are. Further

‖Hx‖`∞(F ,V ) =
∥∥F−1 (S (x))

∥∥
`∞(F ,V )

=
∥∥F (

F−1 (S (x))
)∥∥

`∞(V )

= ‖S (x)‖
`∞(V )

≤ ‖S‖ .‖x‖

so that H is bounded. Now for x ∈V,

‖Hx‖`∞(F ,V ) = ‖S (x)‖
`∞(V )

= ‖(FT )(x)‖
`∞(V )

= ‖T x‖
`∞(F ,V )

so that H is an extension of T. Finally

‖H‖ = sup
‖x‖U=1

‖Hx‖`∞(F ,V )

= sup
‖x‖U=1

∥∥F−1 (S (x))
∥∥
`∞(F ,V )

= sup
‖x‖U=1

∥∥F (
F−1 (S (x))

)∥∥
`∞(V )

= sup
‖x‖U=1

‖S (x)‖
`∞(V )

= sup
‖x‖U=1

‖T x‖
`∞(F ,V )

= ‖T‖ .

This completes the proof.

The following property is another desired property of Banach spaces. Now we see that `2 (F ,V ) has this property whenever
V has, which we call it as the Radon-Riesz Property. The Radon-Riesz property is named after J. Radon and F. Riesz proved
that the spaces Lp(Ω,Σ,µ) for 1 < p < ∞ have this property [11]-[13]. Radon-Riesz Property also known as the Kadets-Klee
property since their further investigation and application of this concept [14]-[16].

Definition 2.9. [7] A normed space has the Radon-Riesz property or the Kadets-Klee property, and is called a Radon-Riesz
space, if it satisfies the following condition: Whenever (xn) is a sequence in the space and x an element of the space such that
xn

w→ x and ‖xn‖→ ‖x‖, it follows that xn→ x.

The proof of the following lemma is routine.
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Lemma 2.10. Let V is a Hilbert space. Then `2 (F ,V ) is a Hilbert space with the inner-product

〈u,v〉`2(F ,V ) = 〈Fu,F v〉
`2(V )

=
∞

∑
k=1
〈(Fu)k ,(F v)k〉V .

Theorem 2.11. `2 (F ,V ) has the Radon-Riesz Property whenever V is a Hilbert space possessing the Radon-Riesz Property.

Proof. Let (un) be a sequence in `2 (F ,V ) and u be an element of `2 (F ,V ) . Assume that un
w→ u in `2 (F ,V ) and assume

that ‖un‖`2(F ,V )→‖u‖`2(F ,V ) . We will prove that (un) norm convergent to u that is un→ u in `2 (F ,V ) . Now the assumption

un
w→ u means f (un)→ f (un) for each f ∈ `2 (F ,V )∗ . Let us show that ‖un−u‖`2(F ,V )→ 0 to complete the proof:

‖un−u‖2
`2(F ,V ) = ‖Fun−Fu‖2

`2(V )

= 〈Fun−Fu,Fun−Fu〉`2(V )

= 〈Fun,Fun〉
`2(V )
−〈Fun,Fu〉`2(V )

−〈Fu,Fun〉`2(V )+ 〈Fu,Fu〉`2(V )

= ‖Fun‖2
`2(V )+‖Fu‖2

`2(V )−〈Fun,Fu〉`2(V )−〈Fu,Fun〉`2(V )

Let z = Fu ∈ `2 (V ) = `2 (V )∗ and let us consider z◦F such that (z◦F )u = 〈Fu,Fu〉`2(V ) . Then from the properties of the
matrix F and by the Riesz’s Theorem (on `2 (V )) we have z◦F is a continuous linear functional on `2 (F ,V ) and

(z◦F )un = z(Fun) = 〈Fun,Fu〉`2(V ) .

By the assumption un
w→ u we have

(z◦F )(un) = 〈Fun,Fu〉`2(V )

→ 〈Fu,Fu〉`2(V ) , as n→ ∞,

= (z◦F )(u)

= ‖Fu‖2
`2(V )

Dually, let us now take zn = Fun ∈ `2 (V )∗ = `2 (V ) , for each n, then

(zn ◦F )u = zn (Fu) = 〈Fu,Fun〉`2(V ) .

Now again each zn ◦F is a continuous linear functional on `2 (F ,V ) and again by the assumption un
w→ u we have

(zn ◦F )(u) = zn (Fu)

= 〈Fu,Fun〉`2(V )

= 〈Fun,Fu〉`2(V )

→ 〈Fu,Fu〉`2(V ), as n→ ∞,

= ‖Fu‖2
`2(V ) .

Eventually, by the assumption ‖un‖`2(F ,V )→‖u‖`2(F ,V ) , we have

‖un−u‖2
`2(F ,V ) = ‖Fun‖2

`2(V )+‖Fu‖2
`2(V )−〈Fun,Fu〉`2(V )−〈Fu,Fun〉`2(V )

→ ‖Fu‖2
`2(V )+‖Fu‖2

`2(V )−‖Fu‖2
`2(V )−‖Fu‖2

`2(V )

= 0, as n→ ∞.
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