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In this study, various machine learning techniques combined with a new rule-based feature space
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Highlights (Onemli noktalar)

»  Development of a unique hybrid approach that integrates expert-derived rules with data-
driven models. / Veri modelleri ile uzman kurallarimin birlestirilmesinden olusan ozgiin
bir yaklasim gelistirilmesi.

» Incorporation of nine specific expert-investigated rules into the models. / Modellere
dokuz ozel uzman kuralinin eklenmesi.

» Implementation of on-site evaluations to validate the model’s predictions. | Modellerin
tahminlerini test etmek i¢in saha incelemeleri yapiimast.

» Comprehensive evaluation of load histories from both fraudulent and normal cases. /
Kagak ve normal vakalardan gelen yiik ge¢cmislerinin kapsamli degerlendirilmesi.

» Exploration and comparison of eight supervised machine learning models. / Sekiz
denetimli makine égrenimi modelinin incelenmesi ve karsilastiriimasi.

Aim (Amag): The aim of this article is to introduce a novel, rule-based combined machine learning
technique for detecting electricity theft. / Bu makalenin amaci, elektrik kagak tiiketimini tespit etmek
icin yeni bir kural tabanli makine 6grenimi teknigi tanitmaktir.

Originality (Ozgiinliik): In this study, unlike traditional approaches that focus solely on
consumption patterns, our methodology integrates unique, expert-derived insights, significantly
advancing the effectiveness of fraud detection techniques. / Bu ¢alisma, geleneksel tiiketim odakli
yaklasimlarin aksine uzman i¢goriilerini entegre ederek kacak tespitinde onemli bir yenilik
sunmaktadir.

Results (Bulgular): Ensemble Methods, especially Random Forest, dominated in recall
performance (0.93), while AdaBoost, LGBoost and XGBoost also showed strong results. / Topluluk
Yontemleri, ozellikle de Rastgele Orman, hatirlama performansinda (0,93) iistiinliik saglarken
AdaBoost, LGBoost ve XGBoost da giiglii sonuglar géstermigtir.

Conclusion (Senug): Random Forest stood out for its ability to handle diverse data types and
minimize overfitting, accurately identifying 77% of theft instances in on-site inspections. / Rastgele
Orman, farkl veri tiirleriyle basa ¢ikma ve aswrt uyumu en aza indirme becerisiyle 6ne ¢ikarak
yerinde denetimlerde hirsizlik orneklerinin %77'sini dogru bir sekilde tespit etmistir.
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Abstract

Since electricity theft affects non-technical losses (NTLs) in power distribution systems, power
companies are genuinely quite concerned about it. Power companies can use the information
gathered by Advanced Metering Infrastructure (AMI) to create data-driven, machine learning-
based approaches for Electricity Theft Detection (ETD) in order to solve this problem. The
majority of data-driven methods for detecting power theft do take usage trends into account while
doing their analyses. Even though consumption-based models have been applied extensively to
the detection of power theft, it can be difficult to reliably identify theft instances based only on
patterns of usage. In this paper, a novel rule-based combined machine learning (rML) technique
is developed for power theft detection to address the drawbacks of systems that rely just on
consumption patterns. This approach makes use of the load profiles of energy users to establish
rules, identify the rule or rules that apply to certain situations, and classify the cases as either
legitimate or fraudulent. The UEDAS smart business power consumption dataset's real-world
data is used to assess the performance of the suggested technique. Our technique is an innovation
in theft detection that combines years of intensive theft tracking with the use of rule-based
systems as feature spaces for traditional machine learning models. With an astounding 93% recall
rate for the rule-based feature space combination of the random forest classifier, this novel
approach has produced outstanding results. The acquired results show a noteworthy
accomplishment in the field of fraud detection, successfully detecting fraudulent consumers 77%
of the time during on-site examination.

Kural Tabanh Makine Ogrenimi (rML) Yaklasimi Kullamlarak Kacak
Elektrik Tespiti
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Elektrik kacaginin gii¢ dagitim sistemlerinde teknik olmayan kayiplar (NTL'ler) {izerindeki etkisi
g0z Oniine alindiginda, enerji sirketleri bu soruna biiyiik bir 6nem atfetmektedir. Enerji sirketleri,
bu problemi ¢ézmek amaciyla, Kacak Elektrik Tespiti (ETD) igin ileri Olgiim Altyapis1 (AMI)
tarafindan toplanan verileri kullanarak veriye dayali, makine &grenimine dayanan yontemler
geligtirebilir. Elektrik kagagmi tespit etmeye yonelik mevcut veriye dayali metodolojiler,
analizlerini gergeklestirirken genellikle kullanim trendlerini hesaba katmaktadir. Tiiketim bazli
modellerin elektrik kagaginin tespitinde yaygin olarak uygulanmis olmasina ragmen, yalnizca
kullanim desenlerine dayanarak kagak vakalarini giivenilir bir sekilde tanimlamak zorluklar
icerebilir. Bu caligmada, tiiketim desenlerine dayali sistemlerin kisitliliklarini ele almak {iizere,
enerji kullanicilarmin yiik profillerini kullanarak kurallar olusturmak, belirli durumlar igin
uygulanabilir kural veya kurallar1 belirlemek ve vakalari normal veya kagak olarak siniflandirmak
tizere kural tabanli birlesik bir makine 6grenimi (rML) teknigi gelistirilmistir. UEDAS akill1 is
giicii tiiketim veri setinin gergek diinya verileri, Onerilen yoOntemin performansinin
degerlendirilmesinde kullanilmistir. Bu yontem, geleneksel makine 6grenimi modelleri igin
ozellik uzaylar1 olarak kural tabanli sistemlerin kullanilmasiyla yillar siiren yogun hirsizlik
takibinin entegrasyonunu temsil eden kagak tespitinde bir yeniliktir. Kural tabanli 6zellik
uzayinin rastgele orman siniflandiricist ile kombinasyonu i¢in %93 gibi dikkat gekici duyarlilik
orani ile bu yeni yaklasim, saha incelemeleri sirasinda kagak faaliyetlerini %77 oraninda basariyla
tespit ederek olaganiistii sonuglar liretmistir.
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1. INTRODUCTION (GIRiS)

Machine learning offers promising solutions for
anti-electricity  stealing by analyzing users'
electricity consumption behavior. However, in the
real world, due to different patterns of electricity
consumption and imbalanced numbers of fraudulent
activities, these solutions may fail to generalize
effectively. Electricity theft is a significant problem
that affects the normal operation of power grids and
causes economic losses for power enterprises. In
developing countries, the electricity theft rate can be
as high as 30%, resulting in substantial financial
impacts on power suppliers [1]. According to recent
research, the global annual loss due to electricity
theft amounts to an astonishing $96 billion [2]. To
combat this issue, efficient anti-electricity theft
measures must be implemented to ensure a
reasonable power supply and rational use of
electricity, thereby reducing economic losses as
much as possible [1]. Electricity theft detection
methods can be broadly categorized into three
categories: manually-driven, physically-driven, and
data-driven. The manually-driven method relies on
technicians manually checking electricity meters
one by one, which is time-consuming and labor-
intensive. The physically-driven method analyzes
physical rules or sensor data in the grid to detect
power theft, but it can be costly and requires specific
sensors and  topology information. The
implementation of advanced metering infrastructure
(AMI) in smart grids has led to an increase in the
use of data-driven methods, which are now more
prevalent. AMI enables the collection of large
amounts of electrical consumption data at high
frequencies, making it useful for electricity theft
detection. Data-driven analysis algorithms can
detect anomalies in the data and play a crucial role
in identifying theft at a lower cost [2]. These
methods can be categorized into unsupervised
learning, semi-supervised learning, and supervised
learning, depending on the level of prior knowledge
required. Unsupervised learning does not require
labeled data, semi-supervised learning uses a small
amount of labeled data, and supervised learning
relies on a significant amount of labeled data for
detection [3]. Several research papers discuss
methods and approaches for detecting electricity

theft using machine learning and data analysis
techniques. These studies focus on analyzing users’
electricity consumption behavior and identifying
anomalies that may indicate fraudulent activities.
By detecting abnormal consumption patterns, it is
possible to identify potential instances of theft and
improve the efficiency of anti-stealing efforts. Deep
learning approaches, such as convolutional neural
networks (CNNs), recurrent neural networks
(RNNs), and generative adversarial networks
(GANS), have also shown promise in detecting
abnormal electricity consumption patterns and
identifying theft [4]. Supervised learning methods
in electricity theft detection such as Support Vector
Machines (SVM), decision trees, and ensemble
learning methods like XG-Boost, have been
employed in this context with differing levels of
success [2]. These methods utilize Atrtificial
Intelligence (Al) techniques to analyze energy
consumption data and identify anomalies that may
indicate theft or other irregularities. By leveraging
large amounts of data from sub-meters and smart
sensors, it becomes possible to detect anomalous
power consumption and understand the causes of
each anomaly [5]. The choice of detection method
depends on factors such as the availability of labeled
data, data quality, complexity of the power grid
environment, and desired detection accuracy.
Researchers continue to explore and develop more
sophisticated and efficient methods for electricity
theft detection to overcome the limitations of
existing approaches [2]. Feature engineering and
structured query language (SQL) analytic functions
have also been proposed as solutions for detecting
electricity frauds using machine learning. These
approaches aim to engineer relevant features from
the data and utilize SQL analytic functions to detect
fraudsters. By improving the correlation between
data features and the target variable, these methods
enhance the model’s ability to identify fraudulent
activities [6]. Table 1 presents the data-driven work
conducted on the detection of electricity theft.
Although machine learning approaches hold
promise for electricity theft detection, the
effectiveness of these methods may vary depending
on the specific patterns of electricity consumption
and the distribution of fraudulent activities in
different regions and contexts.
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Table 1. Literature on electricity theft detection (ETD) studies (Elektrik hirsizlig1 tespiti (ETD) galismalari iizerine

literatiir)

Consumer
type

Definition

Models

Recall

F1-
Score

Precision

Reference

None-public

high-contracted power
consumers in Endesa
Company, Spain,
analyzing their two-year
consumption data when
the consumption exceeds
1000 kW.

Bayesian networks,
decision trees and
Pearson correlation

0.38

[7]

Feeder Data

The data, spanning from
February 1st, 2017 to
April 30th, 2019,
encompass parameters of
power equipment, load,
electricity sales, and
records of electricity
ammeter openings at the
Tianjin Electric Power
Company in China

Support vector
machines

(8]

Industrial and
commercial

Dataset spans 22 months,
covering the period from
May 2014 to February
2016 by the Company of
Electric Energy of
Honduras

Support vector
machines

0.33

0.18

0.13

[0l

None-public

consumption data from
Ireland, solar generation
data from the U.S. and
Australia, and wind
generation data from
France

PCA, kullback-
Leibler divergence,
density-based
clustering

0.87

[10]

Residence

Using the demand data
from more than 4000
households over an 18-
months period

Finite mixture model
clustering, GBM

[11]

None-public

Data are performed using
State Grid Corporation of
China (SGCC) dataset

K-means, local
outlier factor

[12]

Residence

The dataset encompasses
a variety of measurements
from multiple sensors,
capturing energy usage,
occupancy, and ambient
conditions within a
household. The data were
collected over a six-
month period, spanning
from July 5th to
December 5th, 2015

K-Means clustering

[13]

Residence

The Dutch Residential
Energy Dataset (DRED),
specifically its public
residential dataset, is
utilized in this study. This
dataset encompasses a
variety of measurements
from multiple sensors,
capturing energy usage,
occupancy, and ambient

Fuzzy C-means
clustering

0.17

0.83

[14]
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conditions within a
household. The data were
collected over a six-
month period, spanning
from July 5th to
December 5th, 2015

Residence Data of approximately | ANNSs and Fuzzy set 0.99 0.99 0.99 [15]
5000 Irish households theory (ANFIS
monitored for one and a | classification
half years method)
Industrial and | Two private datasets from | Probabilistic OPF - - - [16,17,18,1
commercial | a Brazilian electric utility, 9]
represented by eight
features (Demand Billed,
Demand Contracted,
Maximum Demand,
Reactive Energy, Power
Transformer, Power
Factor, Installed Power,
Load Factor)
Industrial and | Two private datasets from | Genetic algorithms, - - - [20]
commercial | a Brazilian electric utility, | harmony search,
represented by eight OPF, particle swarm
features (Demand Billed, | optimization
Demand Contracted,
Maximum Demand,
Reactive Energy, Power
Transformer, Power
Factor, Installed Power,
Load Factor)
IEEE 34-bus | Electricity consumption Random matrix 0.91 - - [21]
test case dataset theory
None-public | Electricity consumption Rule engine, SVM - - - [22]
dataset
Farmersand | Smart meter data Hierarchical - - - [23]
commercial collected from 171 clustering and
consumers at a 15-minute | decision tree
resolution in Nana
Kajaliyala village,
Gujarat, India.
Residence Master meter and smart Correlation analysis, - 0.8 - [24]
meter dataset (114 single | Pearson correlation
family apartment during
one year) in Western
Massachusetts
Residence In the simulations, the - - - - [25]

load profiles are derived
from actual residential
active power consumption
data. This data is recorded
at a granularity of one
minute, representing the
average power usage
within each minute.
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Hard-ware Numerical experiments on | Correlation analysis [26]
the Irish smart meter
dataset are conducted to
show the good
performance of the
combined method
None-public | Electricity consumption Covariance matrix - - - [27]
data was built at
University of Michigan
Residence The historical electricity DBSCAN - - - [28]
consumption sequence of
users and the relevant
information of similar
users are obtained from
electricity consumption
database
None-public | Real data of 12752 Multivariate 0.75 - - [29]
consumers is used from Gaussian Distribution
the power utilities in
Pakistan on monthly basis
Residence, Theft dataset is injected to | Entropy analysis - - - [30,31]
Commercial the consumption patterns
Residence Real-time electricity theft | Special ETPS unit - - - [32]
detection using
simulated resident energy
consumption data
Residence Real-time electricity theft | Prediction-based - - - [33]
detection using energy regression,
consumption data of 5 prediction-based
residents neural network,
clustered-based, and
projection-based
methods
Residence Dataset from a US electric | Local matrix - - - [34]
utility, represented by five | construction
features (Load rate,
minimum load
coefficient,
load rate during peak load
period, load rate during
stable load period,
load rate during valley
load period)
Residence Massive SM data includes | Deep learning-based 0.80 0.86 0.94 [35]
voltage, current, active Semi-Supervised
power Auto-Encoder
None-public | Real-world-data-based Utilizing unlabeled - - - [36]
case studies are presented, | data to detect
which have shown that electricity fraud in
adding unlabeled samples | AMI: A semi-
into training set has supervised deep
greatly improved the learning approach
performance
None-public | simulations are performed | Self-Attention 0.99 0.9 0.95 [37]

using State Grid

Generative
Adversarial Network
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Corporation of China (SAGAN) is used in
(SGCC) dataset combination with
Convolutional Neural
Network (CNN)
IEEE 123-bus | The functions of acyber- | CNN, GRU-RNN 0.993 0.995 | 0.997 [38]
case attack are implemented on
a benign dataset spanning
one year to generate a
malicious dataset.
Residence Electricity consumption K-means and DWT - - - [39]
patterns of 90 low-voltage
distribution customers
over a three-month period
from January 1st to March
31st, 2013, using a 30-
minute resolution on the
Low Carbon London
smart meter trials dataset
None-public Imbalanced realistic CNN - - - [40]
dataset that presents a
daily electricity
consumption provided by
State Grid Corporation of
China
Residence, Smart meter data set Rule systems, multi- | 0.76 0.755 | - [41]
Commercial provided by the Greek variate Gaussian
DSO, HEDNO and a distribution (MGD),
publicly available smart local outlier factor
meter data set. Frauds are | (LOF), k-means,
simulated and the Twitter | fuzzy c-means,
breakout detection library | DBSCAN and SOM
is used for extracting
features
None-public | State Grid Corporation of | VGG neural network, | 0.97 0.937 | 0.93 [42]
China (SGCC) dataset XGBoost

Achieving generalization across diverse scenarios
remains a challenge. Further research and
development are necessary to improve the
robustness and accuracy of these models in real-
world applications. In this paper, we propose a
method that surpasses Al methods solely reliant on
consumption patterns. Our approach aims to
identify fraudulent consumers by leveraging rules
developed in collaboration with experts. These rules
are extracted from the load profiles of fraudulent
consumers. It is worth emphasizing that our method
incorporates consumption-based rules, which
constitute just one part of the 14 rules under
consideration. Our approach in detecting electricity
theft represents a significant advancement over
many existing studies, which often emphasize data-
driven methodologies based on analyzing
consumption patterns. A notable limitation in these
studies, is their reliance on datasets that simulate
electricity theft scenarios rather than reflecting
actual incidents. These simulated datasets may not

accurately capture the real-world nuances of
electricity theft. Moreover, a critical aspect often
overlooked in data-driven methodologies is the lack
of on-site investigation. By relying solely on
theoretical or simulated data, these models miss the
opportunity to incorporate crucial empirical insights
that can only be derived from physical verification
and real-world observations. This gap results in a
significant disconnect between the model outputs
and the actual on-ground scenarios of electricity
theft, limiting the practical applicability and
effectiveness of these models in real-life situations.
In contrast, our model distinguishes itself by
integrating 9 specific rules, thoroughly investigated
by experts, as key features. This inclusion of expert
insights allows for a more nuanced and informed
analysis of consumption data, directly targeting the
complexities of real-world theft patterns. Moreover,
our model extends beyond mere data analytics.
Following the predictive analysis, we conduct on-
site evaluations to verify the model’s results. This
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dual approach of integrating expert-derived rules
and conducting physical verifications on-site
ensures a comprehensive and accurate detection of
electricity theft. To effectively determine the rules
that fraudulent consumers adhere to, we evaluate the
load histories of fraudulent and normal cases.
Subsequently, these rules are treated as feature
spaces, enabling us to classify consumers as either
theft or benign. The trained model is then deployed
for real-world electricity theft detection.
Throughout this study, we explore 8 supervised
models to identify the most optimal one. Among
these models, the random forest algorithm exhibits
the highest performance, delivering accurate results.

The key contributions of this study are as follows:

o Development of a unique hybrid approach
that integrates expert-derived rules with
data-driven models for electricity theft
detection.

e Incorporation of nine specific expert-
investigated rules into the model,
enhancing its accuracy and applicability to
real-world scenarios.

e Implementation of on-site evaluations to
validate the model’s predictions, bridging
the gap between theoretical analysis and
practical fieldwork.

e Comprehensive evaluation of load histories
from both fraudulent and normal cases,
providing a more nuanced understanding of
electricity theft patterns.

e Exploration and comparison of eight
supervised machine learning models to
determine the most effective algorithm for
this application.

o Demonstration of the superiority of the
random forest algorithm in our context,
backed by empirical evidence from real-
world data.

The rest of the articles are as follows. Section 2
describes the models. The method and analysis of
experiment results is shown in Section 3. Finally,
results and concluding remarks are presented in
Section 4 and Section 5, respectively.

2. Al MODELS IN NON-TECHNICAL LOSS

DETECTION  (TEKNIiK  OLMAYAN  KAYIP
TESPITINDE YAPAY ZEKA MODELLERI)

We examined a range of machine learning
algorithms for NTL (Non-Technical Loss)

detection, including Light-GBM, XG-Boost,
Random Forest, Support Vector Machine (SVM),
AdaBoost, K-Nearest Neighbors, Decision Trees
and Multi-Layer Perceptron. Our goal was to
identify the most effective classifiers for NTL
detection.

2.1 ENSEMBLE METHODS (TOPLULUK
YONTEMLER()

Ensemble methods in machine learning involve
combining predictions from multiple base models to
enhance overall performance. There are two main
categories of ensemble methods:

a. Averaging-Based Ensembles: These methods
aggregate results from individual models by
averaging their predictions, resulting in superior
performance compared to single models. Random
forest [43] is an example of this category, which
combines predictions from randomized decision
trees.

b. Boosting-Based Ensembles: These techniques
combine weak learners to create a robust ensemble,
reducing prediction bias. Examples include
AdaBoost [44], Light-GBM [45], and XG-Boost.
AdaBoost assigns greater weights to incorrectly
predicted instances, guiding the model towards
better performance. Light-GBM uses a depth-first
approach for quicker training but may overfit on
smaller datasets. XG-Boost [45] requires
preprocessing for categorical features and handles
missing data.

Ensemble methods improve predictive performance
by combining outputs from multiple models. Each
method has its strengths and considerations, making
them suitable for different machine learning use
cases.

2.2 SUPPORT VECTOR MACHINE (DESTEK
VEKTOR MAKINESI)

Support Vector Machines (SVM) [46] are a
versatile class of machine learning techniques used
for tasks such as outlier detection, regression, and
classification. They are widely adopted in data
mining due to their strong predictive capabilities
and reliability in supervised learning. In our data
classification, we used the Linear Support Vector
Classifier (Linear SVC).

2.3 DECISION TREES (KARAR AGACLARI)

Decision Trees are a fundamental machine learning
technique wused for both classification and
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regression tasks. They work by creating a tree-like
structure where each node represents a decision
based on specific features of the data. Decision
Trees are easy to understand and interpret, require
minimal data preprocessing (no need for data
normalization), and can handle both numerical and
categorical data. They can create overly complex
trees prone to overfitting. Ensuring optimal tree
structure can be computationally intensive, and they
may not perform well on very small datasets [23].

2.4 NEURAL NETWORK MODEL (SiNiR AGI
MODELI)

A multi-layer perceptron (MLP) is a type of
artificial neural network designed for various
machine learning tasks, particularly in deep
learning. It consists of multiple interconnected
layers of artificial neurons, each layer playing a
unique role in information processing. Typically, an
MLP includes an input layer, one or more hidden
layers, and an output layer. The input layer receives
the initial data, which is then passed through the
hidden layers. Neurons in these hidden layers apply
mathematical transformations to the input data,
learning and extracting complex patterns and
features. The final output layer produces the
network’s prediction or classification. MLPs are
known for their ability to model complex
relationships in data and are used in tasks such as
image recognition, natural language processing, and
predictive modeling. They are a fundamental
component of deep learning, contributing to the
success of modern artificial intelligence
applications [47].

3. METHODOLOGY (METODOLOIJI)

3.1. FEATURE EXTRACTION (OzELLIiK
CIKARIMI)

To effectively combat electricity theft, it is
necessary to extract comprehensive features from
abnormal electricity consumption phenomena and
quantifiable characteristics caused by various
electricity theft behaviors.

Our team of experts has conducted a comprehensive
and methodical examination of electricity theft
patterns. Through this diligent analysis, we have
formulated the following 14 rules to accurately
assess the characteristics of a user’s electricity
consumption:

1. Meter tampering warning: Someone might have
physically tampered with the smart meter to

445

modify its internal components, leading to
inaccurate readings. In these cases, the warning
of the body lid being opened is checked. For
suspicion of fraud, it should be evaluated along
with sudden decrease in consumption.

. Virtual meter Control: The accuracy of the

measurements made by the meter is regularly
verified. Every 15 minutes, the product of the
current, voltage, and power factor (cosine of the
angle between current and voltage) is calculated
and compared with the instantaneous value
measured by the meter. Due to the nature of the
meter, which provides instantaneous readings,
and the control being performed every 15
minutes, there may be deviations with a
tolerance of 10%. These deviations are
considered acceptable and are not flagged as out
of control. The active and reactive power
progress, calculated based on the current,
voltage, and power factor, is continuously
monitored. If the calculated value exceeds the
measurement value by 10%, it is flagged for
further investigation. This step is taken to ensure
that any significant discrepancies are promptly
identified and addressed.

. Daily average voltage V: In the context of

normal users, the voltage typically exhibits
minimal fluctuations, indicating a relatively
stable power consumption pattern. However, if
there are noticeable abnormalities or deviations
from the expected voltage levels, it could be an
indication of irregular power consumption
behavior by the user. These fluctuations may
arise from various factors, such as faulty
electrical equipment, overloading of circuits, or
improper power usage. As such, monitoring the
daily average voltage becomes crucial in
identifying potential issues and ensuring the
efficient and reliable operation of the electrical
system.

. Excessive number of frozen electricity amounts:

If one of the voltage phases is continuously
removed, the number of interruptions will
increase. Increasing the number of interruptions
will give a clue that one of the voltage phases has
been removed repeatedly. The case of more than
500 interruptions in a month is checked. If the
number of interruptions exceeds 500 times in a
month, it should be considered as a suspicious



Bahrami, Yumuk, Kerem, Top¢u, Kaya | GU J Sci, Part C, 12(2): 438-456 (2024)

indicator of potential electricity theft. Frequent
and excessive interruptions in the power supply,
especially in such high numbers, could signal
irregularities in electricity consumption.

. General Current Control: In a typical electrical
system, the metering current exhibits irregular
fluctuations depending on the user’s load access.
However, under normal operating conditions,
the phase line current and neutral line current for
a user should be nearly equal. This means that
the total current flowing through the user’s
electrical circuit should be balanced, with
minimal deviation between the current in the
phase line and the neutral line. By closely
monitoring and comparing the phase line and
neutral line currents, it becomes possible to
detect any discrepancies or imbalances in the
system. Significant differences between these
currents may indicate electrical faults, leakage,
or other issues that warrant attention.

. Installed Power-Demand Control: In a well-
functioning electrical system, the installed
power should not surpass the demand (maximum
consumption during a month). Any instance
where the demand exceeds the installed power
requires immediate attention. Specifically, the
system continuously monitors the power
demand, and in cases where it exceeds the
installed capacity or reaches more than 20%
beyond the contracted limit for the day, specific
measures are taken to rectify the situation

. Demand Correlation Evaluation: The demand
correlation analysis is performed by comparing
data from corresponding months over a span of
two years. In this study, the Grey Correlation
Grade (GCG) [48] method is employed to
calculate the correlation coefficient. This
approach helps us identify and assess the level of
correlation between the demand patterns of
different subscribers during similar months over
the two-year period. If the resulting correlation
coefficient is found to be below 0.6, the
subscribes data is classified as a potential
candidate for the illegal suspect list. Given two
data series Xpand Xj, the GCG can be calculated:;

Xo(k)—min (Xq(k))

where min (X, (k) and min (X;(k)represent the
minimum values in X, and X;, and max (X;(k)
and max (X;(k) represent the maximum values
in X, and X;, respectively.

__ &max(A)+min (A) _
(k) = s T M) fork=1,2,...,n 3)
where & is the distinguishing coefficient, set to
0.5 as per reference [8], A= |X;(k) — X[ (k)|,
and Ag; (k) = [Xo (k) -X; (k).

GCG = 37, 30 )

8. Demand Consumption Control (Shift Control):

If the operating hours calculated based on
demand and consumption data result in 3 hours
for a facility that normally consumes 50,000
kWh by operating 8 hours a day, the reason for
this decrease in scale should be investigated. The
working hours of the sectors are determined by
experts.

. Current-demand Control: It is not possible that a

meter records current without demand. During
the first reading of the month, there might be
instances where a "current available, no
demand" alarm is received due to the fact that
demand data has not been formed yet. In cases
where there is a current of 0.1 A or more in any
phase, the meter will be checked to ensure that
demand recording is functioning correctly.

10.Consumption Correlation in Two Years:

Comparing consumption over two years helps
see if a customer's consumption patterns
changed or not. This correlation is quantified as
a number between -1 and 1, where -1 indicates a
perfect negative correlation, O indicates no
correlation, and 1 indicates a perfect positive
correlation.

11.Eight Month Consumption Correlation: For each

consumer, the correlation between the last eight
months of electricity consumption across two
consecutive years has been calculated. The
values of this correlation are expressed on a scale
similar to the one outlined in item 10, where the
strength of the relationship between the
consumption patterns is quantified numerically.

Xo(k) =

_ fork=12,...,n (1) . .
max (Xo (k)—min (Xo (k) 12. Daily Average Consumption: The average

consumption of consumers during peak hours
is calculated and then compared with their

Xi(k)~min (X;(k))
max (X;(k)-min (X;(k))

X; (k) =

fork=1,2,...,n (2
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installed power capacity. If this average
consumption falls below 33% of the installed
power, the consumer is flagged as potentially
suspicious.

13. Three Month Consumption Correlation: As
described in item 10, this involves a calculation
of the correlation of electricity consumption.
However, instead of spanning eight months,
this assessment focuses on a three-month
period.

14. Daily Average Demand: The daily average
demand for electricity is calculated for two
consecutive years and compared. If the value
from the most recent year is at least 33% lower
than that of the previous year, this may indicate
that the consumer's usage is malignant.

3.2 ELECTRICITY THEFT DETECTION
BASED ON EXTRACTED FEATURES
(CIKARILAN OZELLIKLERE DAYALI ELEKTRIK
HIRSIZLIGI TESPITI)

With the guidance and expertise of industry
specialists 14 rules were instantiated within a Java-
based analytical framework. Over an observation
period, we deployed these rules against our dataset

to scrutinize the inter-correlations present among
them. Notably, a subset of these rules exhibited a
high degree of correlation, prompting an analysis-
driven decision to excise the redundant rules from
our framework. Consequently, we distilled our
feature space down to 9 core rules. Despite the high
correlation observed among certain rules, expert
consultation reinforced the decision to preserve
them. This strategic choice was underpinned by the
nuanced domain knowledge of our experts, ensuring
that the integrity and depth of our analytical
capabilities remain robust. Subsequent to the
refinement of our feature space, the 9 retained rules
were employed as inputs for our classification
model. This approach was predicated on the
hypothesis that a more streamlined and pertinent set
of features would enhance the model's predictive
performance. By leveraging a targeted feature set,
informed by empirical evidence and domain
expertise, we aimed to strike a balance between
model complexity and classification accuracy. The
results of this methodology are anticipated to
validate the efficacy of our feature selection process
in the realm of data-driven predictive modeling.
Figure 1 illustrates the flowchart, and Figure 2
presents the block diagram of our method,
respectively.

Dataset from smart meters collected at regular intervals (15, 30, or 60 Minutes)

EDA done on dataset; highly correlated rules removed

Feature spaces become ready for all consumers

Datasets are labeled based on past on-site investigations

Data is ready for classification purpose

ML models are trained and tested

‘

Figure 1. Flowchart of research methodology (Arastirma metodolojisinin akis semas1)
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Figure 2. The block diagram of proposed method (Onerilen yontemin blok diyagramr)

3.2.1 FEATURE EXPLANATION (OZELLIK
ACIKLAMASTI)

The detailed explanation of the nine features
extracted from section 3.1 is informed by expert
experience, revealing their lack of intercorrelation.
This insight leads to the creation of distinct feature
spaces for individual consumers. Utilizing their
historical data and conducting on-site inspections,
consumers are then categorized as either fraudulent
or normal.

3.2.2 DATA PREPARATION (VERI HAZIRLAMA)

This study uses electricity consumption data of
UEDAS (Uludag Elektrik Dagitim A.S.) in Turkey.
The data set consists of business consumers of
electricity (8,586), differentiating them into two
distinct categories: 2,041 theft consumers and 6,545
normal consumers. Figure 3 shows the number of
consumers and the load profile collection

research. This methodology guarantees an
exhaustive assessment of all pertinent and
interconnected characteristics, thus augmenting the
resilience and dependability of the complete study.
Subsequent to rigorous expert scrutiny, a selection
of features exhibiting high intercorrelations were

frequencies. To prepare a dataset as input for
machine learning models, we examined the
behavior of each consumer and applied the 14 rules
to each consumer individually. Subsequently, we
constructed feature spaces for all consumers based
on the results of these rule evaluations.

A correlation analysis was performed to look at the
correlations between the 14 features once the
feature spaces were developed. Cases where the
correlation coefficients were higher than the cutoff
of 0.5 were found by this study. Considering the
importance of these high correlation values,
professional advice was sought to decide on the best
course of action. Experts agreed that these
relationships could not be ignored because of their
possible importance and influence. It was therefore
suggested that all characteristics showing a
correlation coefficient more than 0.5 be kept for
additional examination and thought out in the

judiciously excised from the dataset. Consequently,
a refined subset of nine features was retained,
deemed most pertinent for serving as inputs to the
machine learning model. Figure 4 presents a
heatmap illustrating the correlations among the
various features.
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Features are categorized as either categorical or
numerical. Categorical features are represented as
binary values, 0 or 1, to indicate specific conditions
or states. Numerical features, on the other hand, are
scaled using a standard scaler, adjusting their values

to fall within a range of 0 to 1. This standardization
ensures consistency and comparability across
different scales and measurements. Table 2 shows
the extracted data after removing the unwanted
features.

Table 2. Extracted features (Cikarilan 6zellikler)

Feature Data Type Description

1.Meter Tampering Categorical Assign a value of 1 if a meter tamper alarm is received and consumption has
Warning decreased, otherwise assign 0

2.Virtual Meter Control Categorical Assign a value of 1 if the virtual meter control is correct, otherwise assign 0
3.Daily Average Numerical Record and count the number of times the voltage surpasses a predetermined
Voltage threshold set by experts.

4.Excessive Number of Numerical Record the number of times freezing conditions are observed

Frozen Electricity

Amounts

5.General Current Numerical Count and record the number of times imbalances are detected.

Control

6.Installed Power- Numerical Record the number of times the installed power capacity surpasses the
Demand Control demand

7.Demand Correlation Numerical Record values that fall within a range of 0 to 1

Evaluation

8.Demand Consumption Numerical Calculate and record the total work hours for each sector

Control

9.Current-Demand Numerical Check for the existence of demand in any phase and record the number of
Control times demand is lacking

This structured approach to feature selection and
preprocessing facilitates a more accurate and
efficient analysis, enabling better insights and
decision-making based on the data.

In other words, we analyzed the behavior of each
consumer using the nine rules and used the
outcomes of these rule-based evaluations to create

feature sets or feature spaces for every consumer.
These features can then be used as input data for
machine learning models. Experts assisted in
labeling the data to transform it into a classification
problem. Table 3 presents the descriptive statistical
metrics for the aforementioned nine features,
offering a comprehensive overview of their
distributional characteristics.

Table 3. Descriptive statistical values for the gained data (Elde edilen veriler igin tanimlayicr istatistiksel degerler)

Std.
Parameters | Mean Median Mode Minimum | Maximum | Deviation | Skewness | Kurtosis
1 0.001 0 0 0 2 0.03 33.19 1227.98
2 0.07 0 0 0 3 0.26 3.35 12.67
3 230.86 231 230 0 447 10.95 -12.99 266.04
4 0.06 0 0 0 9 0.39 9.67 125.80
5 0.40 0 0 0 29 2.4 6.98 55.25
6 0.48 0 0 0 10 0.3 10.02 152.06
7 8.1 4.1 0 0 804.1 11.24 2.91 17.45
8 0.059 0 0 0 3 0.23 3.91 17.51
9 0.005 0 0 0 11 0.19 35.89 1402.02
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3.2.3 EVALUATION METRICS
(DEGERLENDIRME OLCUTLERI)

Electricity theft detection presents a challenge
within the domain of imbalanced datasets. In this
scenario, the dataset heavily leans towards one
specific outcome of the target variable, leaving the
other outcome(s) underrepresented. It’s worth
noting that our primary focus is on the less common
outcome. Consequently, the choice of an
appropriate evaluation metric becomes crucial.

The majority of consumers are not involved in theft
(True Negatives), while a small number are
potential thieves (True Positives). Opting for
accuracy as the evaluation metric would be ill-
advised since the results would be skewed towards
the more prevalent class, which is True Negatives.
Instead, what we need is a metric that provides a
comprehensive understanding of both the actual
number of thieves (recall) and the actual number of
predicted thieves (precision), considering both
aspects together. To address this need, we utilize the
F-measure, which combines precision and recall
into a single metric. In our research, we employ
recall, precision, and the F-measure as our
performance evaluation metrics. Equations 5-7
within our work precisely define these terms.

TP

R R

ecall N (5)
Precision = F 6
recision (6)

1 02X (Precision X Recall) 7
score = Precision + Recall 7

4. RESULTS AND DISCUSSIONS (BULGULAR
VE TARTISMALAR)

In this segment, we establish the credibility of our
research by conducting rigorous evaluations within
the Python 3.10 environment. Our experimentation
took place on a Windows Server running a 64-bit
operating system, powered by robust hardware
featuring an Intel) processor clocking in at 2.8 GHz
and an ample 32 GB of RAM. The foundation of our
analysis relies on the utilization of nine carefully
selected features that serve as the basis for assessing
the performance of various machine learning
classifiers, yielding valuable insights into their
effectiveness. Our evaluation process encompasses
the computation of essential performance metrics,
including precision, recall, and F-measure. These
metrics provide a comprehensive perspective on the
classifiers capabilities and their ability to
distinguish between different classes. For clarity
and reference, we present metrices summarizing the
outcomes of all classifiers in Table 4 and Figure 5.
This matrix encapsulates vital information
regarding the models prediction accuracy and
misclassification tendencies, contributing to a
comprehensive assessment of their overall
performance.

Table 4. Recall, F1-Score and Precision of all classifiers (Tiim simflandiricilarin Recall, F1-Score ve Precision

degerleri)

Classifier Type Classifiers Recall F1-Score Precision
Ensemble Methods RandomForest 0.93 0.65 0.50

AdaBoost 0.87 0.65 0.52

LGBoost 0.85 0.67 0.55

XGBoost 0.74 0.56 0.45
Support Vector Machine LinearSVC 0.89 0.59 0.44
Decision Tree DecisionTreeClassifier 0.90 0.61 0.46
Nearest Neighbors KNeigboursClassifier 0.81 0.67 0.56
Neural Network MLPClassifier 0.84 0.62 0.50
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Figure 5. Recall, F1-Score and Precision of all classifiers (Tiim simiflandiricilarin Recall, F1-Score ve Precision
degerleri)

In the quest for the optimal classifier, we have
conducted a comprehensive analysis of various
machine learning models, each with its own unique
strengths and weaknesses. Table 4 summarizes the
key performance metrics, including recall, F1-
score, and precision, for each classifier type:

Ensemble Methods have shown promising results,
with Random Forest leading the pack in terms of
recall (0.93). However, it is worth noting that
AdaBoost, LGBoost, and XGBoost also exhibit
respectable performance metrics, making them
valuable contenders in our classification task.
Support Vector Machine (LinearSVC)
demonstrates a commendable recall of 0.89,
although it falls short in terms of Fl-score and
precision, indicating potential room  for
improvement. Decision Tree classifiers, represented
by Decision Tree Classifier, provide a reliable
balance between recall (0.90) and F1-score (0.61),
making them a competitive choice in our analysis.
When it comes to Nearest Neighbor using K-
Neigbours Classifier, we see a good recall (0.81)
and a high Fl-score (0.67), suggesting a strong
ability to correctly identify positive cases in our
dataset. Finally, the Neural Network model,
implemented as MLP Classifier, presents a recall of
0.84, with a reasonable F1-score and precision,
making it a versatile choice for our classification
problem.

Ultimately, the choice of classifier should depend
on the specific requirements and constraints of the
task at hand. Ensemble methods like Random Forest
and AdaBoost might be preferred for maximizing
recall, while Decision Tree and Nearest Neighbors
offer a balanced trade-off between recall and F1-
score. The Support Vector Machine and Neural
Network classifiers also provide competitive
options for different use cases. To make a final
decision, further experimentation and consideration

of the specific goals and data characteristics are
necessary.

In addition to our comprehensive analysis of
machine learning classifiers, our research
introduces three novel aspects:

e Expert-Driven Rule-Based Features: We enrich
our models with nine expert-defined rules,
adding depth and precision beyond typical
consumption data-based approaches. This
strategy enhances interpretability and aligns with
current trends in machine learning.

e On-Site  Investigation Integration:  Our
methodology includes real-world data from on-
site investigations, ensuring practical relevance
and applicability in real-life scenarios, a feature
often missing in theoretical models.

o Real vs. Synthetic Theft Patterns: Unlike
common practices using synthetic data, our
study focuses on genuine theft patterns, offering
a more accurate representation of real-world
electricity  theft  scenarios,  significantly
improving the reliability and practicality of our
detection models.

These innovative elements provide our research
with a unique edge in the field of electricity theft
detection, combining theoretical robustness with
practical applicability.

In electricity theft studies, various methodologies
and models have been employed to enhance
detection accuracy while preserving privacy.
Richardson et al. [50] utilized consumption data
with an SVM model, injecting anomalies in feeders
to detect irregularities. This approach was
particularly focused on privacy preservation. In
contrast, Figueroa et al. [9] enhanced the SVM
model for datasets that are not balanced, addressing
the challenge of skewed data distributions. Qu et al.
[51] adopted the Random Forest method, with a
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specific focus on handling class imbalance issues.
They employed the k-means and SMOTE methods
for oversampling before applying the classifier,
demonstrating an innovative approach to improving
data representation. Nagi et al. [52] utilized expert-
written rules to filter output results from the SVM
model. This approach leveraged domain expertise
for more precise anomaly detection. Punmiya and
Choe [53] explored the use of a Gradient Boosting
classifier, where synthetic theft cases were
generated based on historical theft data. This
method was compared against various algorithms
like SVM, Backpropagation Neural Network
(BPNN), Extreme Learning Machine (ELM), Deep
ELM (DELM), Logistic Regression (LR), Decision
Tree (DT), Random Forest (RF), AdaBoost, Naive
Bayes (NB), and k-Nearest Neighbors (kNNs). The
comparison aimed to evaluate which algorithms
could detect electricity theft with higher accuracy or
lower False Positive Rate (FPR).

It is noteworthy that in the above-mentioned
studies, there appears to be a lack of on-site
investigations and a sufficient number of real theft
datasets. This limitation suggests an opportunity for
future research to incorporate more comprehensive
data and validation methods in electricity theft
detection studies.

5. CONCLUSIONS (SONUGLAR)

In conclusion, the realm of electricity theft detection
is inundated with various supervised and
unsupervised models, all claiming efficacy in
identifying theft based on consumption patterns.
However, real-world complexities such as sector
variations, consumer dynamics (such as hiring new
staff, acquiring new devices, vacancies, and
changing business structures without altering power
contracts), economic downturns, and other factors
render relying solely on consumption data
impractical for on-site inspections.

Our study addresses this challenge by emphasizing
the significance of data preprocessing and post-
processing, conducted with expert guidance, to
mitigate the impact of false positive detections.
Unlike many existing approaches, our methodology
extended beyond consumption analysis. We
meticulously crafted features to encapsulate theft
indicators, employing them as inputs for our
models. Subsequently, on-site inspections were
carried out, enhancing the accuracy of our findings.

Among the models tested, Random Forest emerged
as the standout performer, particularly due to its
robustness in minimizing false positives and its
strength in reducing overfitting—a key advantage
that helped us to detect more instances of electricity
theft accurately during on-site investigations. Its
effectiveness is further enhanced by its ability to
adeptly handle mixed numeric and categorical
features without the need for extensive
preprocessing or scaling, making it exceptionally
versatile across different data types. Additionally,
Random Forest exhibits remarkable resilience when
dealing with imbalanced data, ensuring that
minority classes are adequately represented. This
model also benefits from requiring less
hyperparameter tuning compared to other
algorithms, making it both a powerful and user-
friendly option for tackling complex classification
tasks. By leveraging Random Forest, we achieved a
substantial success rate, detecting 77% of anomalies
as instances of electricity theft.  This
accomplishment underscores the importance of not
only the choice of the model but also the thoughtful
integration  of  domain  knowledge and
comprehensive  feature  engineering,  which
collectively enhance the effectiveness of theft
detection efforts.

In the future work, we aim to expand our approach
by incorporating additional features derived from
elaborated smart meter datasets. This will involve
analyzing more granular data points to better
understand consumption patterns. The goal is to
further decrease the rate of false positives, which
will be instrumental in reducing the costs associated
with on-site investigations. By refining our
detection algorithms and integrating more detailed
data, we hope to increase the efficiency and
accuracy of electricity theft detection, providing
significant cost savings for companies and
improving the overall effectiveness of theft
identification.
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