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Graphical/Tabular Abstract (Grafik Özet) 

In this study, various machine learning techniques combined with a new rule-based feature space 

were utilized to identify electricity theft. / Bu araştırmada, yeni bir kural tabanlı özellik uzayıyla 

birleştirilen çeşitli makine öğrenimi yöntemleri elektrik kaçağını belirlemek amacıyla 

kullanılmıştır.  

 
Figure A: The block diagram of proposed method / Şekil A: Önerilen yöntemin blok diyagramı 

Highlights (Önemli noktalar)  

➢ Development of a unique hybrid approach that integrates expert-derived rules with data-

driven models. / Veri modelleri ile uzman kurallarının birleştirilmesinden oluşan özgün 

bir yaklaşım geliştirilmesi. 

➢ Incorporation of nine specific expert-investigated rules into the models. / Modellere 

dokuz özel uzman kuralının eklenmesi. 

➢ Implementation of on-site evaluations to validate the model’s predictions. / Modellerin 

tahminlerini test etmek için saha incelemeleri yapılması. 

➢ Comprehensive evaluation of load histories from both fraudulent and normal cases. / 

Kaçak ve normal vakalardan gelen yük geçmişlerinin kapsamlı değerlendirilmesi. 

➢ Exploration and comparison of eight supervised machine learning models. / Sekiz 

denetimli makine öğrenimi modelinin incelenmesi ve karşılaştırılması. 

Aim (Amaç): The aim of this article is to introduce a novel, rule-based combined machine learning 

technique for detecting electricity theft. / Bu makalenin amacı, elektrik kaçak tüketimini tespit etmek 

için yeni bir kural tabanlı makine öğrenimi tekniği tanıtmaktır. 

Originality (Özgünlük): In this study, unlike traditional approaches that focus solely on 

consumption patterns, our methodology integrates unique, expert-derived insights, significantly 

advancing the effectiveness of fraud detection techniques. / Bu çalışma, geleneksel tüketim odaklı 

yaklaşımların aksine uzman içgörülerini entegre ederek kaçak tespitinde önemli bir yenilik 

sunmaktadır. 

Results (Bulgular): Ensemble Methods, especially Random Forest, dominated in recall 

performance (0.93), while AdaBoost, LGBoost and XGBoost also showed strong results. / Topluluk 

Yöntemleri, özellikle de Rastgele Orman, hatırlama performansında (0,93) üstünlük sağlarken 

AdaBoost, LGBoost ve XGBoost da güçlü sonuçlar göstermiştir. 

Conclusion (Sonuç): Random Forest stood out for its ability to handle diverse data types and 

minimize overfitting, accurately identifying 77% of theft instances in on-site inspections. / Rastgele 

Orman, farklı veri türleriyle başa çıkma ve aşırı uyumu en aza indirme becerisiyle öne çıkarak 

yerinde denetimlerde hırsızlık örneklerinin %77'sini doğru bir şekilde tespit etmiştir. 
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Abstract 

Since electricity theft affects non-technical losses (NTLs) in power distribution systems, power 

companies are genuinely quite concerned about it. Power companies can use the information 

gathered by Advanced Metering Infrastructure (AMI) to create data-driven, machine learning-

based approaches for Electricity Theft Detection (ETD) in order to solve this problem. The 

majority of data-driven methods for detecting power theft do take usage trends into account while 

doing their analyses. Even though consumption-based models have been applied extensively to 

the detection of power theft, it can be difficult to reliably identify theft instances based only on 

patterns of usage. In this paper, a novel rule-based combined machine learning (rML) technique 

is developed for power theft detection to address the drawbacks of systems that rely just on 

consumption patterns. This approach makes use of the load profiles of energy users to establish 

rules, identify the rule or rules that apply to certain situations, and classify the cases as either 

legitimate or fraudulent. The UEDAS smart business power consumption dataset's real-world 

data is used to assess the performance of the suggested technique. Our technique is an innovation 

in theft detection that combines years of intensive theft tracking with the use of rule-based 

systems as feature spaces for traditional machine learning models. With an astounding 93% recall 

rate for the rule-based feature space combination of the random forest classifier, this novel 

approach has produced outstanding results. The acquired results show a noteworthy 

accomplishment in the field of fraud detection, successfully detecting fraudulent consumers 77% 

of the time during on-site examination. 
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Elektrik Tespiti 

Makale Bilgisi 

Araştırma makalesi 

Başvuru: 27/02/2024 

Düzeltme: 12/03/2024 

Kabul: 18/03/2024 

Anahtar Kelimeler 

Kaçak Elektrik Tespiti  
Teknik Olmayan Kayıplar 

İleri Ölçüm Altyapı 

Makine Öğrenimi 

 
Öz 

Elektrik kaçağının güç dağıtım sistemlerinde teknik olmayan kayıplar (NTL'ler) üzerindeki etkisi 

göz önüne alındığında, enerji şirketleri bu soruna büyük bir önem atfetmektedir. Enerji şirketleri, 

bu problemi çözmek amacıyla, Kaçak Elektrik Tespiti (ETD) için İleri Ölçüm Altyapısı (AMI) 

tarafından toplanan verileri kullanarak veriye dayalı, makine öğrenimine dayanan yöntemler 

geliştirebilir. Elektrik kaçağını tespit etmeye yönelik mevcut veriye dayalı metodolojiler, 

analizlerini gerçekleştirirken genellikle kullanım trendlerini hesaba katmaktadır. Tüketim bazlı 

modellerin elektrik kaçağının tespitinde yaygın olarak uygulanmış olmasına rağmen, yalnızca 

kullanım desenlerine dayanarak kaçak vakalarını güvenilir bir şekilde tanımlamak zorluklar 

içerebilir. Bu çalışmada, tüketim desenlerine dayalı sistemlerin kısıtlılıklarını ele almak üzere, 

enerji kullanıcılarının yük profillerini kullanarak kurallar oluşturmak, belirli durumlar için 

uygulanabilir kural veya kuralları belirlemek ve vakaları normal veya kaçak olarak sınıflandırmak 

üzere kural tabanlı birleşik bir makine öğrenimi (rML) tekniği geliştirilmiştir. UEDAŞ akıllı iş 

gücü tüketim veri setinin gerçek dünya verileri, önerilen yöntemin performansının 

değerlendirilmesinde kullanılmıştır. Bu yöntem, geleneksel makine öğrenimi modelleri için 

özellik uzayları olarak kural tabanlı sistemlerin kullanılmasıyla yıllar süren yoğun hırsızlık 

takibinin entegrasyonunu temsil eden kaçak tespitinde bir yeniliktir. Kural tabanlı özellik 

uzayının rastgele orman sınıflandırıcısı ile kombinasyonu için %93 gibi dikkat çekici duyarlılık 

oranı ile bu yeni yaklaşım, saha incelemeleri sırasında kaçak faaliyetlerini %77 oranında başarıyla 

tespit ederek olağanüstü sonuçlar üretmiştir. 

 

 

https://orcid.org/0009-0009-8769-3738
https://orcid.org/0009-0001-0937-6755
https://orcid.org/0000-0002-9131-2274
https://orcid.org/0009-0001-6677-5349
https://orcid.org/0009-0005-1750-7830


Bahrami, Yumuk, Kerem, Topçu, Kaya / GU J Sci, Part C, 12(2): 438-456 (2024) 

439 
 

1. INTRODUCTION (GİRİŞ) 

Machine learning offers promising solutions for 

anti-electricity stealing by analyzing users' 

electricity consumption behavior. However, in the 

real world, due to different patterns of electricity 

consumption and imbalanced numbers of fraudulent 

activities, these solutions may fail to generalize 

effectively. Electricity theft is a significant problem 

that affects the normal operation of power grids and 

causes economic losses for power enterprises. In 

developing countries, the electricity theft rate can be 

as high as 30%, resulting in substantial financial 

impacts on power suppliers [1]. According to recent 

research, the global annual loss due to electricity 

theft amounts to an astonishing $96 billion [2]. To 

combat this issue, efficient anti-electricity theft 

measures must be implemented to ensure a 

reasonable power supply and rational use of 

electricity, thereby reducing economic losses as 

much as possible [1]. Electricity theft detection 

methods can be broadly categorized into three 

categories: manually-driven, physically-driven, and 

data-driven. The manually-driven method relies on 

technicians manually checking electricity meters 

one by one, which is time-consuming and labor-

intensive. The physically-driven method analyzes 

physical rules or sensor data in the grid to detect 

power theft, but it can be costly and requires specific 

sensors and topology information. The 

implementation of advanced metering infrastructure 

(AMI) in smart grids has led to an increase in the 

use of data-driven methods, which are now more 

prevalent. AMI enables the collection of large 

amounts of electrical consumption data at high 

frequencies, making it useful for electricity theft 

detection. Data-driven analysis algorithms can 

detect anomalies in the data and play a crucial role 

in identifying theft at a lower cost [2]. These 

methods can be categorized into unsupervised 

learning, semi-supervised learning, and supervised 

learning, depending on the level of prior knowledge 

required. Unsupervised learning does not require 

labeled data, semi-supervised learning uses a small 

amount of labeled data, and supervised learning 

relies on a significant amount of labeled data for 

detection [3]. Several research papers discuss 

methods and approaches for detecting electricity 

theft using machine learning and data analysis 

techniques. These studies focus on analyzing users’ 

electricity consumption behavior and identifying 

anomalies that may indicate fraudulent activities. 

By detecting abnormal consumption patterns, it is 

possible to identify potential instances of theft and 

improve the efficiency of anti-stealing efforts. Deep 

learning approaches, such as convolutional neural 

networks (CNNs), recurrent neural networks 

(RNNs), and generative adversarial networks 

(GANs), have also shown promise in detecting 

abnormal electricity consumption patterns and 

identifying theft [4]. Supervised learning methods 

in electricity theft detection such as Support Vector 

Machines (SVM), decision trees, and ensemble 

learning methods like XG-Boost, have been 

employed in this context with differing levels of 

success [2]. These methods utilize Artificial 

Intelligence (AI) techniques to analyze energy 

consumption data and identify anomalies that may 

indicate theft or other irregularities. By leveraging 

large amounts of data from sub-meters and smart 

sensors, it becomes possible to detect anomalous 

power consumption and understand the causes of 

each anomaly [5]. The choice of detection method 

depends on factors such as the availability of labeled 

data, data quality, complexity of the power grid 

environment, and desired detection accuracy. 

Researchers continue to explore and develop more 

sophisticated and efficient methods for electricity 

theft detection to overcome the limitations of 

existing approaches [2]. Feature engineering and 

structured query language (SQL) analytic functions 

have also been proposed as solutions for detecting 

electricity frauds using machine learning. These 

approaches aim to engineer relevant features from 

the data and utilize SQL analytic functions to detect 

fraudsters. By improving the correlation between 

data features and the target variable, these methods 

enhance the model’s ability to identify fraudulent 

activities [6]. Table 1 presents the data-driven work 

conducted on the detection of electricity theft. 

Although machine learning approaches hold 

promise for electricity theft detection, the 

effectiveness of these methods may vary depending 

on the specific patterns of electricity consumption 

and the distribution of fraudulent activities in 

different regions and contexts.  
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Table 1. Literature on electricity theft detection (ETD) studies (Elektrik hırsızlığı tespiti (ETD) çalışmaları üzerine 

literatür) 

Consumer 

type 

Definition Models Recall F1-

Score 

Precision Reference 

None-public high-contracted power 

consumers in Endesa 

Company, Spain, 

analyzing their two-year 

consumption data when 

the consumption exceeds 

1000 kW. 

Bayesian networks, 

decision trees and 

Pearson correlation 

 

 

0.38 - - [7] 

Feeder Data The data, spanning from 

February 1st, 2017 to 

April 30th, 2019, 

encompass parameters of 

power equipment, load, 

electricity sales, and 

records of electricity 

ammeter openings at the 

Tianjin Electric Power 

Company in China 

Support vector 

machines  

- - - [8] 

Industrial and 

commercial 

Dataset spans 22 months, 

covering the period from 

May 2014 to February 

2016 by the Company of 

Electric Energy of 

Honduras 

Support vector 

machines  

0.33 0.18 0.13 [9] 

None-public consumption data from 

Ireland, solar generation 

data from the U.S. and 

Australia, and wind 

generation data from 

France 

PCA, kullback-

Leibler divergence, 

density-based 

clustering 

0.87 - - [10] 

Residence Using the demand data 

from more than 4000 

households over an 18-

months period 

Finite mixture model 

clustering, GBM 

- - -       [11] 

 

 

None-public Data are performed using 

State Grid Corporation of 

China (SGCC) dataset 

K-means, local 

outlier factor  

- - - [12] 

Residence The dataset encompasses 

a variety of measurements 

from multiple sensors, 

capturing energy usage, 

occupancy, and ambient 

conditions within a 

household. The data were 

collected over a six-

month period, spanning 

from July 5th to 

December 5th, 2015 

K-Means clustering - - - [13] 

 

 

 

 

 

 

 

Residence The Dutch Residential 

Energy Dataset (DRED), 

specifically its public 

residential dataset, is 

utilized in this study. This 

dataset encompasses a 

variety of measurements 

from multiple sensors, 

capturing energy usage, 

occupancy, and ambient 

Fuzzy C-means 

clustering 

0.17 - 0.83 [14] 
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conditions within a 

household. The data were 

collected over a six-

month period, spanning 

from July 5th to 

December 5th, 2015 

Residence Data of approximately 

5000 Irish households 

monitored for one and a 

half years 

ANNs and Fuzzy set 

theory (ANFIS 

classification 

method) 

0.99 0.99 0.99 [15] 

Industrial and 

commercial 

Two private datasets from 

a Brazilian electric utility, 

represented by eight 

features (Demand Billed, 

Demand Contracted, 

Maximum Demand, 

Reactive Energy, Power 

Transformer, Power 

Factor, Installed Power, 

Load Factor) 

Probabilistic OPF - - - [16,17,18,1

9] 

 

 

 

 

 

 

 

 

Industrial and 

commercial 

Two private datasets from 

a Brazilian electric utility, 

represented by eight 

features (Demand Billed, 

Demand Contracted, 

Maximum Demand, 

Reactive Energy, Power 

Transformer, Power 

Factor, Installed Power, 

Load Factor) 

Genetic algorithms, 

harmony search, 

OPF, particle swarm 

optimization 

- - - [20] 

IEEE 34-bus 

test case 

Electricity consumption 

dataset 

Random matrix 

theory 

0.91 - - [21] 

None-public Electricity consumption 

dataset 

Rule engine, SVM - - - [22] 

Farmers and 

commercial  

Smart meter data 

collected from 171 

consumers at a 15-minute 

resolution in Nana 

Kajaliyala village, 

Gujarat, India.  

Hierarchical 

clustering and 

decision tree 

 

- - - [23] 

Residence Master meter and smart 

meter dataset (114 single 

family apartment during 

one year) in Western 

Massachusetts  

Correlation analysis, 

Pearson correlation 

- 0.8 - [24] 

 

 

Residence In the simulations, the 

load profiles are derived 

from actual residential 

active power consumption 

data. This data is recorded 

at a granularity of one 

minute, representing the 

average power usage 

within each minute. 

- - - - [25] 
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Hard-ware Numerical experiments on 

the Irish smart meter 

dataset are conducted to 

show the good 

performance of the 

combined method 

Correlation analysis    [26] 

None-public Electricity consumption 

data was built at 

University of Michigan 

Covariance matrix - - - [27] 

Residence The historical electricity 

consumption sequence of 

users and the relevant 

information of similar 

users are obtained from 

electricity consumption 

database 

DBSCAN - - - [28] 

None-public Real data of 12752 

consumers is used from 

the power utilities in 

Pakistan on monthly basis 

Multivariate 

Gaussian Distribution 

 

0.75 - - [29] 

Residence, 

Commercial 

Theft dataset is injected to 

the consumption patterns 

Entropy analysis - - - [30,31] 

Residence Real-time electricity theft 

detection using  

simulated resident energy 

consumption data 

 

Special ETPS unit - - - [32] 

Residence Real-time electricity theft 

detection using energy 

consumption data of 5 

residents 

 

Prediction-based 

regression,  

prediction-based 

neural network, 

clustered-based, and 

projection-based 

methods 

 

- - - [33] 

Residence Dataset from a US electric 

utility, represented by five 

features (Load rate, 

minimum load 

coefficient, 

load rate during peak load 

period, load rate during 

stable load period, 

load rate during valley 

load period) 

Local matrix 

construction 

- - - [34] 

 

 

Residence Massive SM data includes 

voltage, current, active 

power 

Deep learning-based 

Semi-Supervised 

Auto-Encoder 

0.80 0.86 0.94 [35] 

None-public Real-world-data-based 

case studies are presented, 

which have shown that 

adding unlabeled samples 

into training set has 

greatly improved the 

performance 

Utilizing unlabeled 

data to detect 

electricity fraud in 

AMI: A semi-

supervised deep 

learning approach 

- - - [36] 

None-public simulations are performed 

using State Grid 

Self-Attention 

Generative 

Adversarial Network 

0.99 0.9 0.95 [37] 
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Corporation of China 

(SGCC) dataset 

(SAGAN) is used in 

combination with 

Convolutional Neural 

Network (CNN) 

IEEE 123-bus 

case  

The functions of a cyber-

attack are implemented on 

a benign dataset spanning 

one year to generate a 

malicious dataset. 

CNN, GRU-RNN 0.993 0.995 0.997 [38] 

Residence Electricity consumption 

patterns of 90 low-voltage 

distribution customers 

over a three-month period 

from January 1st to March 

31st, 2013, using a 30-

minute resolution on the 

Low Carbon London 

smart meter trials dataset 

K-means and DWT - - - [39] 

None-public Imbalanced realistic 

dataset that presents a 

daily electricity 

consumption provided by 

State Grid Corporation of 

China 

CNN - - - [40] 

Residence, 

Commercial 

Smart meter data set 

provided by the Greek 

DSO, HEDNO and a 

publicly available smart 

meter data set. Frauds are 

simulated and the Twitter 

breakout detection library 

is used for extracting 

features 

Rule systems, multi-

variate Gaussian 

distribution (MGD), 

local outlier factor 

(LOF), k-means, 

fuzzy c-means,  

DBSCAN and SOM 

0.76 0.755 - [41] 

None-public State Grid Corporation of 

China (SGCC) dataset 

VGG neural network, 

XGBoost 

0.97 0.937 0.93 [42] 

 

Achieving generalization across diverse scenarios 

remains a challenge. Further research and 

development are necessary to improve the 

robustness and accuracy of these models in real-

world applications. In this paper, we propose a 

method that surpasses AI methods solely reliant on 

consumption patterns. Our approach aims to 

identify fraudulent consumers by leveraging rules 

developed in collaboration with experts. These rules 

are extracted from the load profiles of fraudulent 

consumers. It is worth emphasizing that our method 

incorporates consumption-based rules, which 

constitute just one part of the 14 rules under 

consideration. Our approach in detecting electricity 

theft represents a significant advancement over 

many existing studies, which often emphasize data-

driven methodologies based on analyzing 

consumption patterns. A notable limitation in these 

studies, is their reliance on datasets that simulate 

electricity theft scenarios rather than reflecting 

actual incidents. These simulated datasets may not 

accurately capture the real-world nuances of 

electricity theft. Moreover, a critical aspect often 

overlooked in data-driven methodologies is the lack 

of on-site investigation. By relying solely on 

theoretical or simulated data, these models miss the 

opportunity to incorporate crucial empirical insights 

that can only be derived from physical verification 

and real-world observations. This gap results in a 

significant disconnect between the model outputs 

and the actual on-ground scenarios of electricity 

theft, limiting the practical applicability and 

effectiveness of these models in real-life situations. 

In contrast, our model distinguishes itself by 

integrating 9 specific rules, thoroughly investigated 

by experts, as key features. This inclusion of expert 

insights allows for a more nuanced and informed 

analysis of consumption data, directly targeting the 

complexities of real-world theft patterns. Moreover, 

our model extends beyond mere data analytics. 

Following the predictive analysis, we conduct on-

site evaluations to verify the model’s results. This 
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dual approach of integrating expert-derived rules 

and conducting physical verifications on-site 

ensures a comprehensive and accurate detection of 

electricity theft. To effectively determine the rules 

that fraudulent consumers adhere to, we evaluate the 

load histories of fraudulent and normal cases. 

Subsequently, these rules are treated as feature 

spaces, enabling us to classify consumers as either 

theft or benign. The trained model is then deployed 

for real-world electricity theft detection. 

Throughout this study, we explore 8 supervised 

models to identify the most optimal one. Among 

these models, the random forest algorithm exhibits 

the highest performance, delivering accurate results.  

The key contributions of this study are as follows: 

• Development of a unique hybrid approach 

that integrates expert-derived rules with 

data-driven models for electricity theft 

detection. 

• Incorporation of nine specific expert-

investigated rules into the model, 

enhancing its accuracy and applicability to 

real-world scenarios. 

• Implementation of on-site evaluations to 

validate the model’s predictions, bridging 

the gap between theoretical analysis and 

practical fieldwork. 

• Comprehensive evaluation of load histories 

from both fraudulent and normal cases, 

providing a more nuanced understanding of 

electricity theft patterns. 

• Exploration and comparison of eight 

supervised machine learning models to 

determine the most effective algorithm for 

this application. 

• Demonstration of the superiority of the 

random forest algorithm in our context, 

backed by empirical evidence from real-

world data. 

The rest of the articles are as follows. Section 2 

describes the models. The method and analysis of 

experiment results is shown in Section 3. Finally, 

results and concluding remarks are presented in 

Section 4 and Section 5, respectively. 

2. AI MODELS IN NON-TECHNICAL LOSS 

DETECTION (TEKNİK OLMAYAN KAYIP 

TESPİTİNDE YAPAY ZEKA MODELLERİ) 

We examined a range of machine learning 

algorithms for NTL (Non-Technical Loss) 

detection, including Light-GBM, XG-Boost, 

Random Forest, Support Vector Machine (SVM), 

AdaBoost, K-Nearest Neighbors, Decision Trees 

and Multi-Layer Perceptron. Our goal was to 

identify the most effective classifiers for NTL 

detection. 

2.1 ENSEMBLE METHODS (TOPLULUK 

YÖNTEMLERİ) 

Ensemble methods in machine learning involve 

combining predictions from multiple base models to 

enhance overall performance. There are two main 

categories of ensemble methods: 

a. Averaging-Based Ensembles: These methods 

aggregate results from individual models by 

averaging their predictions, resulting in superior 

performance compared to single models. Random 

forest [43] is an example of this category, which 

combines predictions from randomized decision 

trees. 

b. Boosting-Based Ensembles: These techniques 

combine weak learners to create a robust ensemble, 

reducing prediction bias. Examples include 

AdaBoost [44], Light-GBM [45], and XG-Boost. 

AdaBoost assigns greater weights to incorrectly 

predicted instances, guiding the model towards 

better performance. Light-GBM uses a depth-first 

approach for quicker training but may overfit on 

smaller datasets. XG-Boost [45] requires 

preprocessing for categorical features and handles 

missing data. 

Ensemble methods improve predictive performance 

by combining outputs from multiple models. Each 

method has its strengths and considerations, making 

them suitable for different machine learning use 

cases. 

2.2 SUPPORT VECTOR MACHINE (DESTEK 

VEKTÖR MAKİNESİ) 

Support Vector Machines (SVM) [46] are a 

versatile class of machine learning techniques used 

for tasks such as outlier detection, regression, and 

classification. They are widely adopted in data 

mining due to their strong predictive capabilities 

and reliability in supervised learning. In our data 

classification, we used the Linear Support Vector 

Classifier (Linear SVC). 

2.3 DECISION TREES (KARAR AĞAÇLARI) 

Decision Trees are a fundamental machine learning 

technique used for both classification and 
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regression tasks. They work by creating a tree-like 

structure where each node represents a decision 

based on specific features of the data.  Decision 

Trees are easy to understand and interpret, require 

minimal data preprocessing (no need for data 

normalization), and can handle both numerical and 

categorical data. They can create overly complex 

trees prone to overfitting. Ensuring optimal tree 

structure can be computationally intensive, and they 

may not perform well on very small datasets [23]. 

2.4 NEURAL NETWORK MODEL (SİNİR AĞI 

MODELİ) 

A multi-layer perceptron (MLP) is a type of 

artificial neural network designed for various 

machine learning tasks, particularly in deep 

learning. It consists of multiple interconnected 

layers of artificial neurons, each layer playing a 

unique role in information processing. Typically, an 

MLP includes an input layer, one or more hidden 

layers, and an output layer. The input layer receives 

the initial data, which is then passed through the 

hidden layers. Neurons in these hidden layers apply 

mathematical transformations to the input data, 

learning and extracting complex patterns and 

features. The final output layer produces the 

network’s prediction or classification. MLPs are 

known for their ability to model complex 

relationships in data and are used in tasks such as 

image recognition, natural language processing, and 

predictive modeling. They are a fundamental 

component of deep learning, contributing to the 

success of modern artificial intelligence 

applications [47]. 

3. METHODOLOGY (METODOLOJİ) 

3.1. FEATURE EXTRACTION (ÖZELLİK 

ÇIKARIMI) 

To effectively combat electricity theft, it is 

necessary to extract comprehensive features from 

abnormal electricity consumption phenomena and 

quantifiable characteristics caused by various 

electricity theft behaviors. 

Our team of experts has conducted a comprehensive 

and methodical examination of electricity theft 

patterns. Through this diligent analysis, we have 

formulated the following 14 rules to accurately 

assess the characteristics of a user’s electricity 

consumption: 

1. Meter tampering warning: Someone might have 

physically tampered with the smart meter to 

modify its internal components, leading to 

inaccurate readings. In these cases, the warning 

of the body lid being opened is checked. For 

suspicion of fraud, it should be evaluated along 

with sudden decrease in consumption. 

 

2. Virtual meter Control: The accuracy of the 

measurements made by the meter is regularly 

verified. Every 15 minutes, the product of the 

current, voltage, and power factor (cosine of the 

angle between current and voltage) is calculated 

and compared with the instantaneous value 

measured by the meter. Due to the nature of the 

meter, which provides instantaneous readings, 

and the control being performed every 15 

minutes, there may be deviations with a 

tolerance of 10%. These deviations are 

considered acceptable and are not flagged as out 

of control. The active and reactive power 

progress, calculated based on the current, 

voltage, and power factor, is continuously 

monitored. If the calculated value exceeds the 

measurement value by 10%, it is flagged for 

further investigation. This step is taken to ensure 

that any significant discrepancies are promptly 

identified and addressed. 

 

3. Daily average voltage V: In the context of 

normal users, the voltage typically exhibits 

minimal fluctuations, indicating a relatively 

stable power consumption pattern. However, if 

there are noticeable abnormalities or deviations 

from the expected voltage levels, it could be an 

indication of irregular power consumption 

behavior by the user. These fluctuations may 

arise from various factors, such as faulty 

electrical equipment, overloading of circuits, or 

improper power usage. As such, monitoring the 

daily average voltage becomes crucial in 

identifying potential issues and ensuring the 

efficient and reliable operation of the electrical 

system.  

 

4. Excessive number of frozen electricity amounts: 

If one of the voltage phases is continuously 

removed, the number of interruptions will 

increase. Increasing the number of interruptions 

will give a clue that one of the voltage phases has 

been removed repeatedly. The case of more than 

500 interruptions in a month is checked. If the 

number of interruptions exceeds 500 times in a 

month, it should be considered as a suspicious 
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indicator of potential electricity theft. Frequent 

and excessive interruptions in the power supply, 

especially in such high numbers, could signal 

irregularities in electricity consumption. 

 

5. General Current Control: In a typical electrical 

system, the metering current exhibits irregular 

fluctuations depending on the user’s load access. 

However, under normal operating conditions, 

the phase line current and neutral line current for 

a user should be nearly equal. This means that 

the total current flowing through the user’s 

electrical circuit should be balanced, with 

minimal deviation between the current in the 

phase line and the neutral line. By closely 

monitoring and comparing the phase line and 

neutral line currents, it becomes possible to 

detect any discrepancies or imbalances in the 

system. Significant differences between these 

currents may indicate electrical faults, leakage, 

or other issues that warrant attention.  

 

6. Installed Power-Demand Control: In a well-

functioning electrical system, the installed 

power should not surpass the demand (maximum 

consumption during a month). Any instance 

where the demand exceeds the installed power 

requires immediate attention. Specifically, the 

system continuously monitors the power 

demand, and in cases where it exceeds the 

installed capacity or reaches more than 20% 

beyond the contracted limit for the day, specific 

measures are taken to rectify the situation 

 

7. Demand Correlation Evaluation: The demand 

correlation analysis is performed by comparing 

data from corresponding months over a span of 

two years. In this study, the Grey Correlation 

Grade (GCG) [48] method is employed to 

calculate the correlation coefficient. This 

approach helps us identify and assess the level of 

correlation between the demand patterns of 

different subscribers during similar months over 

the two-year period. If the resulting correlation 

coefficient is found to be below 0.6, the 

subscribes data is classified as a potential 

candidate for the illegal suspect list. Given two 

data series X0 and Xi, the GCG can be calculated; 

𝑋0
∗(𝑘) =  

𝑋0(𝑘)−min (𝑋0(𝑘))

max (𝑋0(𝑘)−min (𝑋0(𝑘))
  for k =1,2, ..., n    (1) 

𝑋𝑖
∗(𝑘) =  

𝑋𝑖(𝑘)−min (𝑋𝑖(𝑘))

max (𝑋𝑖(𝑘)−min (𝑋𝑖(𝑘))
  for k=1,2, ..., n      (2) 

where min (𝑋0(𝑘) and min (𝑋𝑖(𝑘)represent the 

minimum values in 𝑋0 and 𝑋𝑖, and max (𝑋𝑖(𝑘) 

and max (𝑋𝑖(𝑘) represent the maximum values 

in 𝑋0 and 𝑋𝑖, respectively. 

ζ(k) =
ξ max(∆)+min (∆)

∆𝑜𝑖(𝑘)+ ξ mac(∆) 
 for k=1,2,…, n            (3) 

where ξ is the distinguishing coefficient, set to 

0.5 as per reference [8],  ∆= |𝑋0
∗(𝑘) −  𝑋𝑖

∗(𝑘)|,  

and ∆𝑜𝑖(𝑘) = |𝑋0(𝑘) -𝑋𝑖(𝑘)|. 

GCG = 
1

𝑛
∑ ζ(k)𝑛

𝑘=1                                           (4) 

8. Demand Consumption Control (Shift Control): 

If the operating hours calculated based on 

demand and consumption data result in 3 hours 

for a facility that normally consumes 50,000 

kWh by operating 8 hours a day, the reason for 

this decrease in scale should be investigated. The 

working hours of the sectors are determined by 

experts. 

 

9. Current-demand Control: It is not possible that a 

meter records current without demand. During 

the first reading of the month, there might be 

instances where a "current available, no 

demand" alarm is received due to the fact that 

demand data has not been formed yet. In cases 

where there is a current of 0.1 A or more in any 

phase, the meter will be checked to ensure that 

demand recording is functioning correctly. 

 

10. Consumption Correlation in Two Years: 

Comparing consumption over two years helps 

see if a customer's consumption patterns 

changed or not. This correlation is quantified as 

a number between -1 and 1, where -1 indicates a 

perfect negative correlation, 0 indicates no 

correlation, and 1 indicates a perfect positive 

correlation.  

 

11. Eight Month Consumption Correlation: For each 

consumer, the correlation between the last eight 

months of electricity consumption across two 

consecutive years has been calculated. The 

values of this correlation are expressed on a scale 

similar to the one outlined in item 10, where the 

strength of the relationship between the 

consumption patterns is quantified numerically. 

 

12. Daily Average Consumption: The average 

consumption of consumers during peak hours 

is calculated and then compared with their 
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installed power capacity. If this average 

consumption falls below 33% of the installed 

power, the consumer is flagged as potentially 

suspicious.  

 

13. Three Month Consumption Correlation: As 

described in item 10, this involves a calculation 

of the correlation of electricity consumption. 

However, instead of spanning eight months, 

this assessment focuses on a three-month 

period.  

 

14. Daily Average Demand: The daily average 

demand for electricity is calculated for two 

consecutive years and compared. If the value 

from the most recent year is at least 33% lower 

than that of the previous year, this may indicate 

that the consumer's usage is malignant. 

3.2 ELECTRICITY THEFT DETECTION 

BASED ON EXTRACTED FEATURES 

(ÇIKARILAN ÖZELLİKLERE DAYALI ELEKTRİK 

HIRSIZLIĞI TESPİTİ) 

With the guidance and expertise of industry 

specialists 14 rules were instantiated within a Java-

based analytical framework. Over an observation 

period, we deployed these rules against our dataset 

to scrutinize the inter-correlations present among 

them. Notably, a subset of these rules exhibited a 

high degree of correlation, prompting an analysis-

driven decision to excise the redundant rules from 

our framework. Consequently, we distilled our 

feature space down to 9 core rules. Despite the high 

correlation observed among certain rules, expert 

consultation reinforced the decision to preserve 

them. This strategic choice was underpinned by the 

nuanced domain knowledge of our experts, ensuring 

that the integrity and depth of our analytical 

capabilities remain robust. Subsequent to the 

refinement of our feature space, the 9 retained rules 

were employed as inputs for our classification 

model. This approach was predicated on the 

hypothesis that a more streamlined and pertinent set 

of features would enhance the model's predictive 

performance. By leveraging a targeted feature set, 

informed by empirical evidence and domain 

expertise, we aimed to strike a balance between 

model complexity and classification accuracy. The 

results of this methodology are anticipated to 

validate the efficacy of our feature selection process 

in the realm of data-driven predictive modeling. 

Figure 1 illustrates the flowchart, and Figure 2 

presents the block diagram of our method, 

respectively.  

 

Figure 1. Flowchart of research methodology (Araştırma metodolojisinin akış şeması)



Bahrami, Yumuk, Kerem, Topçu, Kaya / GU J Sci, Part C, 12(2): 438-456 (2024) 

448 
 

 
Figure 2. The block diagram of proposed method (Önerilen yöntemin blok diyagramı) 

 

3.2.1 FEATURE EXPLANATION (ÖZELLİK 

AÇIKLAMASI) 

The detailed explanation of the nine features 

extracted from section 3.1 is informed by expert 

experience, revealing their lack of intercorrelation. 

This insight leads to the creation of distinct feature 

spaces for individual consumers. Utilizing their 

historical data and conducting on-site inspections, 

consumers are then categorized as either fraudulent 

or normal. 

3.2.2 DATA PREPARATION (VERİ HAZIRLAMA) 

This study uses electricity consumption data of 

UEDAS (Uludağ Elektrik Dağıtım A.Ş.) in Turkey. 

The data set consists of business consumers of 

electricity (8,586), differentiating them into two 

distinct categories: 2,041 theft consumers and 6,545 

normal consumers. Figure 3 shows the number of 

consumers and the load profile collection 

frequencies. To prepare a dataset as input for 

machine learning models, we examined the 

behavior of each consumer and applied the 14 rules 

to each consumer individually. Subsequently, we 

constructed feature spaces for all consumers based 

on the results of these rule evaluations. 

A correlation analysis was performed to look at the 

correlations between the 14 features once the 

feature spaces were developed. Cases where the 

correlation coefficients were higher than the cutoff 

of 0.5 were found by this study. Considering the 

importance of these high correlation values, 

professional advice was sought to decide on the best 

course of action. Experts agreed that these 

relationships could not be ignored because of their 

possible importance and influence. It was therefore 

suggested that all characteristics showing a 

correlation coefficient more than 0.5 be kept for 

additional examination and thought out in the 

research. This methodology guarantees an 

exhaustive assessment of all pertinent and 

interconnected characteristics, thus augmenting the 

resilience and dependability of the complete study. 

Subsequent to rigorous expert scrutiny, a selection 

of features exhibiting high intercorrelations were 

judiciously excised from the dataset. Consequently, 

a refined subset of nine features was retained, 

deemed most pertinent for serving as inputs to the 

machine learning model. Figure 4 presents a 

heatmap illustrating the correlations among the 

various features.  
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(a) 

 

(b) 

Figure 3. Distribution of electricity consumers (a) electricity consumer categories (b) electricity 

consumer categories and data collection frequencies (Elektrik tüketicilerinin dağılımı (a) elektrik tüketicisi 

kategorileri (b) elektrik tüketicisi kategorileri ve veri toplama sıklıkları) 

 
Figure 4. Heatmap of correlations among features (Özellikler arasındaki korelasyonların ısı haritası) 
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Features are categorized as either categorical or 

numerical. Categorical features are represented as 

binary values, 0 or 1, to indicate specific conditions 

or states. Numerical features, on the other hand, are 

scaled using a standard scaler, adjusting their values 

to fall within a range of 0 to 1. This standardization 

ensures consistency and comparability across 

different scales and measurements. Table 2 shows 

the extracted data after removing the unwanted 

features. 

Table 2. Extracted features (Çıkarılan özellikler)

Feature Data Type Description 

1.Meter Tampering 

Warning 

 

Categorical Assign a value of 1 if a meter tamper alarm is received and consumption has 

decreased, otherwise assign 0 

2.Virtual Meter Control 

 

Categorical Assign a value of 1 if the virtual meter control is correct, otherwise assign 0 

 

3.Daily Average 

Voltage 

 

Numerical Record and count the number of times the voltage surpasses a predetermined 

threshold set by experts. 

4.Excessive Number of 

Frozen Electricity 

Amounts 

 

Numerical Record the number of times freezing conditions are observed 

5.General Current 

Control 

 

Numerical Count and record the number of times imbalances are detected. 

 

6.Installed Power-

Demand Control 

 

Numerical Record the number of times the installed power capacity surpasses the 

demand 

 

7.Demand Correlation 

Evaluation 

Numerical Record values that fall within a range of 0 to 1 

8.Demand Consumption 

Control 

Numerical Calculate and record the total work hours for each sector 

 
9.Current-Demand 

Control 

 

Numerical Check for the existence of demand in any phase and record the number of 

times demand is lacking 

 

This structured approach to feature selection and 

preprocessing facilitates a more accurate and 

efficient analysis, enabling better insights and 

decision-making based on the data. 

In other words, we analyzed the behavior of each 

consumer using the nine rules and used the 

outcomes of these rule-based evaluations to create 

feature sets or feature spaces for every consumer. 

These features can then be used as input data for 

machine learning models. Experts assisted in 

labeling the data to transform it into a classification 

problem. Table 3 presents the descriptive statistical 

metrics for the aforementioned nine features, 

offering a comprehensive overview of their 

distributional characteristics. 

Table 3. Descriptive statistical values for the gained data (Elde edilen veriler için tanımlayıcı istatistiksel değerler) 

Parameters Mean Median Mode Minimum Maximum 

Std. 

Deviation Skewness Kurtosis 

1 0.001 0 0 0 2 0.03 33.19 1227.98 

2 0.07 0 0 0 3 0.26 3.35 12.67 

3 230.86 231 230 0 447 10.95 -12.99 266.04 

4 0.06 0 0 0 9 0.39 9.67 125.80 

5 0.40 0 0 0 29 2.4 6.98 55.25 

6 0.48 0 0 0 10 0.3 10.02 152.06 

7 8.1 4.1 0 0 804.1 11.24 2.91 17.45 

8 0.059 0 0 0 3 0.23 3.91 17.51 

9 0.005 0 0 0 11 0.19 35.89 1402.02 
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3.2.3 EVALUATION METRICS 
(DEĞERLENDIRME ÖLÇÜTLERİ) 

Electricity theft detection presents a challenge 

within the domain of imbalanced datasets. In this 

scenario, the dataset heavily leans towards one 

specific outcome of the target variable, leaving the 

other outcome(s) underrepresented. It’s worth 

noting that our primary focus is on the less common 

outcome. Consequently, the choice of an 

appropriate evaluation metric becomes crucial. 

The majority of consumers are not involved in theft 

(True Negatives), while a small number are 

potential thieves (True Positives). Opting for 

accuracy as the evaluation metric would be ill-

advised since the results would be skewed towards 

the more prevalent class, which is True Negatives. 

Instead, what we need is a metric that provides a 

comprehensive understanding of both the actual 

number of thieves (recall) and the actual number of 

predicted thieves (precision), considering both 

aspects together. To address this need, we utilize the 

F-measure, which combines precision and recall 

into a single metric. In our research, we employ 

recall, precision, and the F-measure as our 

performance evaluation metrics. Equations 5-7 

within our work precisely define these terms.  

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                   (5) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                               (6)  

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  
2 × (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 
        (7) 

 

4. RESULTS AND DISCUSSIONS (BULGULAR 

VE TARTIŞMALAR) 

In this segment, we establish the credibility of our 

research by conducting rigorous evaluations within 

the Python 3.10 environment. Our experimentation 

took place on a Windows Server running a 64-bit 

operating system, powered by robust hardware 

featuring an InteI) processor clocking in at 2.8 GHz 

and an ample 32 GB of RAM. The foundation of our 

analysis relies on the utilization of nine carefully 

selected features that serve as the basis for assessing 

the performance of various machine learning 

classifiers, yielding valuable insights into their 

effectiveness. Our evaluation process encompasses 

the computation of essential performance metrics, 

including precision, recall, and F-measure. These 

metrics provide a comprehensive perspective on the 

classifiers capabilities and their ability to 

distinguish between different classes. For clarity 

and reference, we present metrices summarizing the 

outcomes of all classifiers in Table 4 and Figure 5. 

This matrix encapsulates vital information 

regarding the models prediction accuracy and 

misclassification tendencies, contributing to a 

comprehensive assessment of their overall 

performance. 

 

Table 4. Recall, F1-Score and Precision of all classifiers (Tüm sınıflandırıcıların Recall, F1-Score ve Precision 

değerleri)

Classifier Type Classifiers Recall F1-Score Precision 

Ensemble Methods RandomForest 

AdaBoost 

LGBoost 

XGBoost 

0.93 

0.87 

0.85 

0.74 

0.65 

0.65 

0.67 

0.56 

0.50 

0.52 

0.55 

0.45 

Support Vector Machine LinearSVC 0.89 0.59 0.44 

Decision Tree DecisionTreeClassifier 0.90 0.61 0.46 

Nearest Neighbors KNeigboursClassifier 0.81 0.67 0.56 

Neural Network MLPClassifier 0.84 0.62 0.50 
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Figure 5. Recall, F1-Score and Precision of all classifiers (Tüm sınıflandırıcıların Recall, F1-Score ve Precision 

değerleri)

In the quest for the optimal classifier, we have 

conducted a comprehensive analysis of various 

machine learning models, each with its own unique 

strengths and weaknesses. Table 4 summarizes the 

key performance metrics, including recall, F1-

score, and precision, for each classifier type: 

Ensemble Methods have shown promising results, 

with Random Forest leading the pack in terms of 

recall (0.93). However, it is worth noting that 

AdaBoost, LGBoost, and XGBoost also exhibit 

respectable performance metrics, making them 

valuable contenders in our classification task. 

Support Vector Machine (LinearSVC) 

demonstrates a commendable recall of 0.89, 

although it falls short in terms of F1-score and 

precision, indicating potential room for 

improvement. Decision Tree classifiers, represented 

by Decision Tree Classifier, provide a reliable 

balance between recall (0.90) and F1-score (0.61), 

making them a competitive choice in our analysis. 

When it comes to Nearest Neighbor using K-

Neigbours Classifier, we see a good recall (0.81) 

and a high F1-score (0.67), suggesting a strong 

ability to correctly identify positive cases in our 

dataset. Finally, the Neural Network model, 

implemented as MLP Classifier, presents a recall of 

0.84, with a reasonable F1-score and precision, 

making it a versatile choice for our classification 

problem. 

Ultimately, the choice of classifier should depend 

on the specific requirements and constraints of the 

task at hand. Ensemble methods like Random Forest 

and AdaBoost might be preferred for maximizing 

recall, while Decision Tree and Nearest Neighbors 

offer a balanced trade-off between recall and F1-

score. The Support Vector Machine and Neural 

Network classifiers also provide competitive 

options for different use cases. To make a final 

decision, further experimentation and consideration 

of the specific goals and data characteristics are 

necessary. 

In addition to our comprehensive analysis of 

machine learning classifiers, our research 

introduces three novel aspects: 

• Expert-Driven Rule-Based Features: We enrich 

our models with nine expert-defined rules, 

adding depth and precision beyond typical 

consumption data-based approaches. This 

strategy enhances interpretability and aligns with 

current trends in machine learning. 

• On-Site Investigation Integration: Our 

methodology includes real-world data from on-

site investigations, ensuring practical relevance 

and applicability in real-life scenarios, a feature 

often missing in theoretical models. 

• Real vs. Synthetic Theft Patterns: Unlike 

common practices using synthetic data, our 

study focuses on genuine theft patterns, offering 

a more accurate representation of real-world 

electricity theft scenarios, significantly 

improving the reliability and practicality of our 

detection models. 

These innovative elements provide our research 

with a unique edge in the field of electricity theft 

detection, combining theoretical robustness with 

practical applicability. 

In electricity theft studies, various methodologies 

and models have been employed to enhance 

detection accuracy while preserving privacy. 

Richardson et al. [50] utilized consumption data 

with an SVM model, injecting anomalies in feeders 

to detect irregularities. This approach was 

particularly focused on privacy preservation. In 

contrast, Figueroa et al. [9] enhanced the SVM 

model for datasets that are not balanced, addressing 

the challenge of skewed data distributions. Qu et al. 

[51] adopted the Random Forest method, with a 
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specific focus on handling class imbalance issues. 

They employed the k-means and SMOTE methods 

for oversampling before applying the classifier, 

demonstrating an innovative approach to improving 

data representation. Nagi et al. [52] utilized expert-

written rules to filter output results from the SVM 

model. This approach leveraged domain expertise 

for more precise anomaly detection. Punmiya and 

Choe [53] explored the use of a Gradient Boosting 

classifier, where synthetic theft cases were 

generated based on historical theft data. This 

method was compared against various algorithms 

like SVM, Backpropagation Neural Network 

(BPNN), Extreme Learning Machine (ELM), Deep 

ELM (DELM), Logistic Regression (LR), Decision 

Tree (DT), Random Forest (RF), AdaBoost, Naïve 

Bayes (NB), and k-Nearest Neighbors (kNNs). The 

comparison aimed to evaluate which algorithms 

could detect electricity theft with higher accuracy or 

lower False Positive Rate (FPR). 

It is noteworthy that in the above-mentioned 

studies, there appears to be a lack of on-site 

investigations and a sufficient number of real theft 

datasets. This limitation suggests an opportunity for 

future research to incorporate more comprehensive 

data and validation methods in electricity theft 

detection studies. 

5. CONCLUSIONS (SONUÇLAR) 

In conclusion, the realm of electricity theft detection 

is inundated with various supervised and 

unsupervised models, all claiming efficacy in 

identifying theft based on consumption patterns. 

However, real-world complexities such as sector 

variations, consumer dynamics (such as hiring new 

staff, acquiring new devices, vacancies, and 

changing business structures without altering power 

contracts), economic downturns, and other factors 

render relying solely on consumption data 

impractical for on-site inspections. 

Our study addresses this challenge by emphasizing 

the significance of data preprocessing and post-

processing, conducted with expert guidance, to 

mitigate the impact of false positive detections. 

Unlike many existing approaches, our methodology 

extended beyond consumption analysis. We 

meticulously crafted features to encapsulate theft 

indicators, employing them as inputs for our 

models. Subsequently, on-site inspections were 

carried out, enhancing the accuracy of our findings. 

Among the models tested, Random Forest emerged 

as the standout performer, particularly due to its 

robustness in minimizing false positives and its 

strength in reducing overfitting—a key advantage 

that helped us to detect more instances of electricity 

theft accurately during on-site investigations. Its 

effectiveness is further enhanced by its ability to 

adeptly handle mixed numeric and categorical 

features without the need for extensive 

preprocessing or scaling, making it exceptionally 

versatile across different data types. Additionally, 

Random Forest exhibits remarkable resilience when 

dealing with imbalanced data, ensuring that 

minority classes are adequately represented. This 

model also benefits from requiring less 

hyperparameter tuning compared to other 

algorithms, making it both a powerful and user-

friendly option for tackling complex classification 

tasks. By leveraging Random Forest, we achieved a 

substantial success rate, detecting 77% of anomalies 

as instances of electricity theft. This 

accomplishment underscores the importance of not 

only the choice of the model but also the thoughtful 

integration of domain knowledge and 

comprehensive feature engineering, which 

collectively enhance the effectiveness of theft 

detection efforts. 

In the future work, we aim to expand our approach 

by incorporating additional features derived from 

elaborated smart meter datasets. This will involve 

analyzing more granular data points to better 

understand consumption patterns. The goal is to 

further decrease the rate of false positives, which 

will be instrumental in reducing the costs associated 

with on-site investigations. By refining our 

detection algorithms and integrating more detailed 

data, we hope to increase the efficiency and 

accuracy of electricity theft detection, providing 

significant cost savings for companies and 

improving the overall effectiveness of theft 

identification. 
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