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Abstract

In the present paper, we first recall the notion of statistical convergence of double sequences
defined on topological spaces and reduced equivalent to the definition, along with some of its
basic properties. Later, we define the concept of statistically continuous as a general case of the
continuous function using the statistical convergence of double sequences. We define strong and
weak statistically continuous functions as final definitions that arise as a direct consequence of
statistically continuous functions. In the rest of the paper, we analyze the implications between the
given definitions and investigate additional conditions for equality.

1. Introduction

The concepts of convergence and continuity, one of the joint research topics of mathematical analysis and topology, are
fundamental issues. These concepts are used to characterize many properties in topological and metric spaces. The usual
convergence studied in many topological spaces has been studied in detail to obtain new results and solve many topological
problems in terms of convergence. From a more general point of view, different types of convergence can be defined to get
new results. Based on this idea, new types of convergence, such as statistical convergence, have emerged.

The notion of statistical convergence, an extension of the usual convergence, was formerly named ”almost convergence”
by Zygmund in the first edition of his celebrated monograph published in Warsaw in 1935 [1]. The concept was formally
introduced by Fast [2] and Steinhaus [3] and later was reintroduced by Schoenberg [4] and also independently by Buck [5].
Maio introduced and studied statistical convergence in topological spaces [6]. The concept of statistical convergence of double
sequences was introduced by Muresaleen and Edely [7] using the double natural density. Later, Renukadevi and Vijayashanthi
[8] applied this notion to topological spaces and showed many topological results. In recent years, many papers have been
written using the idea of statistical and ideal convergence (see [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19],
[20], [21]). Specific to this presented work, we note that for the special case G=st-lim in [22], G-sequentially continuous
function coincides with continuous in the ordinary sense since statistical limit is a subsequential method. Although statistical
convergence was introduced over nearly the last ninety years, it has become an active area of research for forty years with the
contributions by several authors, Salat [23], Fridy [24], Di Maio and Kočinac [6], Çakallı and Khan [25].

First, in the article, we present the notion of statistical convergence of double sequences defined on topological spaces and their
equivalent case. Then, using the statistical convergence of double sequences, we define the notions of statistically continuous
function, weakly statistically continuous function, and strongly statistically continuous function. The rest of the paper analyses
the results between the given definitions.

2. Preliminaries

Basic definitions and theorems regarding statistical convergence of the double sequences in this section are given by Renukadevi
et al. in [8].
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Throughout this paper, unless otherwise stated clearly, all spaces are assumed to be Hausdorff. For the real line with the natural
topology, we use R. We often say just space instead of topological space. A double sequence (xnm)n,m∈N in a topological space
X is said to converge to a point x ∈ X in Pringsheims sense [26] if for every open set U containing x, there exists l ∈ N such
that xnm ∈U for all m > l and n > l.

If A⊂ N×N, then Anm denotes the set

Anm = {(k, l) ∈ A : k ≤ n, l ≤ m}.

The double natural (or double asymptotic) density of A is given by

d(A) = lim
n,m→∞

|Anm|
nm

,

if it exists. A subset A of N×N is statistically dense if d(A) = 1. We also recall that

d((N×N)\A) = 1−d(A)

for A⊂ N×N.

A double sequence (xnm)n,m∈N in a space X is said to statistically convergent to x ∈ X , if for every neighborhood U of x,

d({(n,m) ∈ N×N : xnm /∈U}) = 0.

We denote it by

xnm
st−→ x or st− lim

n,m→∞
xnm = x,

and we call x the statistical limit of (xnm).

Theorem 2.1 ([8]). If a double sequence (xnm)n,m∈N is convergent, then it is statistically convergent.

A double sequence (xnm)n,m∈N is said to be st∗-convergence [8] to x ∈ X if there is A⊂ N×N with d(A) = 1 such that

lim
n,m→∞,(n,m)∈A

xnm = x.

We denote it by

xnm
st∗−→ x or st∗− lim

n,m→∞
xnm = x.

Theorem 2.2 ([8]). If a double sequence (xnm)n,m∈N st∗-convergent to x ∈ X, then (xnm)n,m∈N st-convergent to x.

The converse holds if the space X is first countable.

Theorem 2.3 ([8]). Let X be a first countable space. If a double sequence (xnm)n,m∈N st-convergent to x ∈ X, then (xnm)
st∗-convergence to x .

Due to this theorem, the definition of statistical convergence of a double sequence is equivalently said that for the first countable
space X , there exists a subset A of N×N with d(A) = 1 such that the double sequence (xnm)(n,m)∈A convergent to x, i.e. for
every neighborhood V of x there is n0 ∈ N such that n,m≥ n0 and (n,m) ∈ A imply xnm ∈V .

3. Main results

In this part of this study, we first define the concept of statistical continuity of functions, which is not available in the literature,
by using the idea of statistically convergent double sequences.

Theorem 3.1. If a double sequence (xnm)n,m∈N is statistically convergent, then its statistical limit is unique.

Proof. Suppose that

xnm
st−→ x1 and xnm

st−→ x2

with x1 6= x2. Let x ∈ X . Let U and V be neighborhood of x1 and x2, respectively, such that

U ∩V = /0.
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Since xnm
st−→ x1 and xnm

st−→ x2, then

d(K1) = d({(n,m) ∈ N×N : xnm /∈U}) = 0

and

d(K2) = d({(n,m) ∈ N×N : xnm /∈V}) = 0,

respectively. Let K = K1∪K2. Thus, d(K) = 0 which implies

d((N×N)\K) = 1.

If (k, l) ∈ (N×N)\ K, then

xkl ∈U and xkl ∈V.

This contradicts the fact that U ∩V = /0. Hence x1 = x2.

We denote by Y X the set of all functions from a space X to a space Y .

Definition 3.2. f ∈ Y X is called a statistically continuous function if for every double sequence (xnm)n,m∈N in X statistically
converging to x, ( f (xnm))n,m∈N statistically convergent to f (x).

Proposition 3.3. Every continuous function is statistically continuous.

Proof. Let f ∈ Y X be continuous and xnm
st−→ x. Then, for every neighborhood U of x,

d({(n,m) ∈ N×N : xnm /∈U}) = 0.

Since for every open neighbourhood V of f (x), there exists an open neighbourhood U of x such that U = f−1(V ) (due to
continuity), hence

d({(n,m) ∈ N×N : f (xnm) /∈ f (U) =V}) = 0.

Therefore, f (xnm)
st−→ f (x).

The converse of Proposition 3.3 does not hold.

Example 3.4. For the usual topology U and the countable complement topology τ on R, the identity function I : (R,τ)→
(R,U) is statistically continuous, but not continuous.

Now, we define the notion of weak statistical continuity, which is a general case of statistically continuous function for double
sequences.

Definition 3.5. f ∈ Y X is called a weakly statistically continuous function if for every double sequence (xnm)n,m∈N in X
converging to x, ( f (xnm))n,m∈N statistically convergent to f (x).

Proposition 3.6. Every statistically continuous function is weakly statistically continuous.

Proof. Let f ∈ Y X be statistically continuous and xnm −→ x. Then from Theorem 2.1

xnm
st−→ x.

Since f is statistically continuous, it follows from

f (xnm)
st−→ f (x).

Hence, f is weakly statistically continuous.

Considering Proposition 3.3, it can give the following result.

Corollary 3.7. Every continuous function is weakly statistically continuous.

Theorem 3.8. For the first countable spaces X and Y , a double sequence ( fnm)n,m∈N and a function f ∈ Y X be given. Then
the following are equivalent:

1. f is continuous.
2. f is statistically continuous.
3. f is weakly statistically continuous.
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Proof. The implications (1)⇒ (2) and (2)⇒ (3) are given in Proposition 3.3 and Proposition 3.6, respectively.
(3)⇒ (1). Let K be a closed set in the space Y . It is enough to show that the set f−1(K) is closed in the space X . Take any
x ∈ f−1(K). Since X first countable space, there exists a double sequence (xnm)n,m∈N in X such that

xnm −→ x.

By using the weak statistical continuity of f , we get

f (xnm)
st−→ f (x).

From Theorem 2.3, there exists a subset A of N×N with d(A) = 1 such that

f (xnkml )−→ f (x).

Due to f (xnkml ) ∈ K and f (x) ∈ K = K, we have x ∈ f−1(K) and as a result, f−1(K) is closed in the space X . As can be seen
from here, f is continuous.

Now, we define the notion of strong statistical continuity, which is a special case of statistically continuous functions for double
sequences.

Definition 3.9. f ∈ Y X is called a strongly statistically continuous function if for every double sequence (xnm)n,m∈N in X
statistically converging to x, ( f (xnm))n,m∈N convergent to f (x).

Proposition 3.10. Every strongly statistically continuous function is statistically continuous.

Proof. Let f ∈ Y X be strongly statistically continuous and xnm
st−→ x. As f is strongly statistically continuous,

f (xnm)−→ f (x).

Then from Theorem 2.1

f (xnm)
st−→ f (x).

This shows that f is statistically continuous.

The converse of Proposition 3.10 does not hold.

Example 3.11. Consider the statistically continuous function I in Example 3.4. it is not strongly statistically continuous
because, when xnm

st−→ x, the convergence xnm −→ x does not satisfy.

Theorem 3.12. For the first countable spaces X and Y , every strongly statistically continuous function f ∈ Y X is continuous.

Proof. Let f be astrongly statistically continuous function. Since xnm −→ x, then we have xnm
st−→ x from Theorem 2.1 and so,

from the definition of strong statistical continuity,

f (xnm)−→ f (x).

This means that f is sequentially continuous. We know that continuity and sequential continuity are equivalent in the first
countable space. Therefore, f is continuous.

Theorem 3.13. Let f ∈ Y X and g ∈ ZY be statistical continuous functions. Then g◦ f is a statistical continuous function.

Proof. Let xnm
st−→ x in X . Since f ∈ Y X is statistical continuous function, then

f (xnm)
st−→ f (x)

in Y . Since f (xnm)
st−→ f (x) in Y and g ∈ ZY is a statistically continuous function, then we have

g( f (xnm))
st−→ g( f (x))

in Z. As a result, the g◦ f is shown to be statistically continuous.

Theorem 3.14. Let f ,g ∈ RX be real-valued statistical continuous functions. Then the following is provided.

1. g+ f is a statistical continuous function.
2. g. f is a statistical continuous function.
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Proof. (1). Let xnm
st−→ x in X . Since f and g are real-valued statistical continuous functions,

f (xnm)
st−→ f (x) and g(xnm)

st−→ g(x)

in R, respectively. Therefore,

f (xnm)+g(xnm)
st−→ f (x)+g(x)

and so

( f +g)(xnm)
st−→ ( f +g)(x).

Hence, g+ f is a statistical continuous function.

(2). The proof is similar to (1)

4. Conclusion

Continuous functions have an essential place in the study of topological spaces. Convergence can also be used to investigate
the continuity of a function. Therefore, studies on these two concepts further research on topological spaces.

In this study, we investigated the continuity of topological valued functions using the statistical convergence of double
sequences. A more general view of the continuity of real-valued functions is introduced by taking topological valued functions.

Since continuous functions are essential in mathematical studies, further research is required. Studies can be extended by
using different convergence types and topological open-closed sets. As a continuation of this study, in future studies, uniform
continuity with change in the value set can be defined and compared with this work.
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