

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci., 2024; 13(4), 1298-1307

 Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi

Niğde Ömer Halisdemir University Journal of Engineering Sciences

Araştırma makalesi / Research article

www.dergipark.org.tr/tr/pub/ngumuh / www.dergipark.org.tr/en/pub/ngumuh

* Sorumlu yazar / Corresponding author, e-posta / e-mail: ahmetayranci58@gmail.com (A. A. Ayrancı)

Geliş / Recieved: 06.03.2024 Kabul / Accepted: 20.08.2024 Yayımlanma / Published: 15.10.2024
doi: 10.28948/ngumuh.1444349

1298

IoT-based fire detection: A comparative study of machine learning techniques

IoT-tabanlı yangın tespiti: Makine öğrenmesi tekniklerinin karşılaştırmalı

çalışması

Ahmet Aytuğ Ayrancı1,* , Burcu Erkmen2

1 İstanbul Kültür University Electrical and Electronics Engineering Department, 34158, İstanbul, Türkiye
2 Yıldız Technical University Electronics and Communications Engineering Department, 34220, İstanbul, Türkiye

Abstract Öz

Fires that cannot be detected quickly become

uncontrollable. The fires that start to spread uncontrollably

pose a significant danger to humans and natural life.

Especially in public and crowded areas, fires can lead to

possible loss of life and massive property damage. Because

of this, it is necessary to detect fires as accurately and

quickly as possible. Smoke detectors used with Internet of

Things (IoT) technology can exchange data with each other.

In this study, data collected from two different types of IoT-

based smoke detectors were processed using machine

learning algorithms. The k-Nearest Neighbor (k-NN),

Multilayer Perceptron (MLP), Radial Basis Function (RBF)

Network, Naïve Bayes (NB), Decision Tree (DT), Random

Forest (RF), and Logistic Model Tree (LMT) algorithms

were used. The data obtained from the smoke detectors

were processed using machine learning algorithms to create

a highly successful model design. The aim of the study is to

design an artificial intelligence-based system that enables

the early detection of fires occurring both indoors and

outdoors.

 Hızlı bir şekilde tespit edilemeyen yangınlar kontrolsüz

hale gelmektedir. Kontrolsüz biçimde yayılmaya başlayan

yangınlar ise insan hayatına ve doğal yaşama büyük tehlike

oluşturmaktadır. Özellikle halka açık ve kalabalık olan

alanlarda başlayan yangınların olası can kayıplarına ve

büyük maddi hasarlara yol açtığı görülmektedir. Bu nedenle

yangınları mümkün olduğunca doğru ve hızlı bir şekilde

tespit etmek büyük önem taşımaktadır. Nesnelerin İnterneti

(IoT) teknolojisi ile birlikte kullanılan duman detektörleri

birbirlerine veri akışı gerçekleştirebilmektedir. Bu

çalışmada IoT-Tabanlı iki farklı tür duman detektöründen

toplanan veriler makine öğrenmesi algoritmaları kullanarak

işlenmiştir. Çok Katmanlı Algılayıcı (MLP), K-En Yakın

Komşu (K-NN), Radyal Tabanlı Fonksiyon (RBF) Ağları,

Naive Bayes (NB), Karar Ağacı (DT), Rastgele Orman (RF)

ve Lojistik Model Ağacı (LMT) algoritmaları

kullanılmıştır. Duman detektörlerinden elde edilen veriler

makine öğrenmesi algoritmalarında işlenerek yüksek

başarıya sahip bir model tasarımı sağlanmıştır. Çalışma

sonucunda hem kapalı alanlarda hem de dış mekanlarda

oluşan yangınların erken tespitinin mümkün olacağı bir

sistem tasarımı hedeflenmektedir.

Keywords: Machine learning, Fire detection system, IoT-

based systems, K-fold cross validation

 Anahtar Kelimeler: Makine öğrenmesi, Yangın tespit

sistemi, IoT-tabanlı sistemler, K-katlı çapraz doğrulama

1 Introduction

Establishing a highly accurate fire safety system is

necessary to prevent potential disasters in living spaces.

Otherwise, major disasters can occur when an uncontrollable

fire breaks out. The faster the fire is detected, the higher the

probability of bringing it under control. Uncontrolled fires

can result in the loss of life and property. With the latest

advancements in IoT technology, it has become easier to

establish a comprehensive fire detection system [1]. The

most commonly used devices in fire detection systems are

smoke detectors. These detectors, integrated with IoT

technology, can share the data they receive with each other

and the control center. By gathering information from

multiple sensors, it is possible to achieve more accurate fire

detection.

There have been numerous studies on disaster

management and prevention in recent years [2-5]. Disasters

pose a threat to human life and can result in the loss of lives

and property if appropriate precautions are not taken. Among

these disasters, fire is regarded as one of the most significant

threats to human life and inhabited spaces [6]. If a fire is not

detected early, it can cause extensive damage. Therefore,

there have been many studies in the literature focusing on the

early detection of fires [7-9]. These studies often revolve

around smoke detection as a means to identify the onset of a

fire. Smoke presence is typically determined either through

image processing or by utilizing data obtained from smoke

detectors [10-11]. Sensor-based methods detect changes in

air temperature and smoke concentration to initiate early fire

warnings. Automatic fire detection systems should be

https://orcid.org/0000-0002-5755-5010
https://orcid.org/0000-0002-5581-9764

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2024; 13(4), 1298-1307

A. A. Ayrancı, B. Erkmen

1299

implemented to achieve faster detection and response to fires

in indoor and outdoor areas. It is crucial to minimize false

alarms in the fire detection system by considering various

parameters. Information regarding fire incidents is collected

using sensors or cameras.

There are two types of smoke detectors commonly used.

These detectors are photoelectric smoke detectors and

ionization smoke detectors. The features of these smoke

detectors are explained in the following parts of the study.

While detecting fire with smoke detectors, the source of the

smoke must be determined correctly. False fire alarms can

occur because smoke detectors have problems distinguishing

whether the smoke source is a fire or another source [12]. To

prevent false fire alarms, many parameters are used in the

dataset to determine that the source of smoke is fire. False

fire alarms cause time and financial losses. To avoid such

losses, the fire detection system established must be reliable.

Seven classification algorithms were used for the

analysis of the collected data: Multilayer Perceptron (MLP),

Radial Basis Function (RBF) Network, k-Nearest Neighbor

(k-NN), Naïve Bayes (NB), Decision Tree (DT), Random

Forest (RF), and Logistic Model Tree (LMT). In the

literature, Artificial Intelligence-based studies are becoming

widespread in the early detection of disasters. Various

Artificial Intelligence-based studies have also been

conducted on fire detection systems. Image processing has

been widely utilized in fire detection studies. In [13], the

authors examined the color palette of the images captured

from the suspected fire area for fire detection using the SVM

algorithm. They employed the inter-frame technique to

differentiate the suspected fire area from the background and

extracted flame color moment features and texture features

as inputs to the defined network. In the study presented in

[14], the authors proposed the use of security camera systems

in residential buildings for fire detection. They utilized

Convolutional Neural Networks and Deep Learning to

classify the images obtained from these camera systems. In

[15], the authors investigated the combined use of image

processing and sensor-based fire detection systems. They

analyzed images captured from IP cameras along with data

collected from smoke detectors, aiming to create a more

reliable fire detection system. In [16], a fire detection system

was designed using the Trend Predictive Neural Network

model and data from multiple smoke detectors. The authors

demonstrated that this model operated at a higher speed

compared to conventional Neural Networks.

In this study, the Smoke Detection dataset, which was

created by collecting data from IoT sensors in different fire

scenarios, was used. The smoke Detection dataset includes

15 unique features derived from IoT smoke detectors. The

15 features represent collected sensor data, and 1 represents

the classification result. These 15 features were reduced to

12 using data preprocessing steps. In this way, the aim is to

make the model run faster and reduce the delay. The data

were collected in fire scenarios occurring in open and closed

areas. A comprehensive data set was created by collecting

samples with a frequency of 1Hz under different fire

scenarios. An artificial intelligence-based fire detection

system can be developed using data collected in both indoor

and outdoor fire scenarios. The accuracy of the fire detection

system has been investigated using classification ML

algorithms on the dataset. Results show that the RF

algorithm provides the highest fire detection performance

with a high accuracy rate of 99.98%. The NB algorithm

achieved the lowest accuracy of 79.2%. The RF algorithm

combines multiple decision trees with ensemble learning.

2 Materials and methods

This section discusses IoT smoke detectors, features in

the dataset, and data preprocessing steps. Also, information

about the seven classifier ML algorithms used is explained.

2.1 Smoke detectors

Smoke detectors are electronic devices used to detect

smoke for possible fires. It is used for early detection of fires

and to prevent possible loss of life in work areas and

settlements. Smoke detectors sense smoke, which is the most

common indicator of fires. However, since not all smokes

are a sign of fire, it is important to note more than one

parameter in fire detection. There are two types of commonly

used smoke detectors. These detector types are Photoelectric

and Ionization smoke detectors. In the smoke detection

dataset, a more successful fire detection system design aimed

at combining data from many sensors with sensor fusion

techniques.

Figure 1. Block diagram of smoke sensor

In the smoke detection dataset, a more successful fire

detection system design aimed at combining data from many

sensors with sensor fusion techniques. Additionally, Bosch

BMP388, Sensirion SPS30, Sensirion SHT31, Sensirion

SPG30, and GPS sensors were used externally. The primary

sensing component in the smoke detector is the Sensirion

SPS30. The SPS sensor works similarly to photoelectric

smoke detectors by measuring particles in the air. Particular

matter (PM) in the dataset; PM1.0, PM2.5, and number

concentration (NC): NC0.5, NC1.0, and NC2.0 outputs are

given by the SPS sensor. Based on sensor fusion, the system

is more cost-effective than the fire detection systems focused

on image processing currently in use. Expected to have high

performance, especially in indoor environments, it is

anticipated to significantly enhance the performance of fire

detection systems when used alongside existing systems at a

low cost. The sensors utilized are highly affordable and

accessible. The overall cost of the system is economical

compared to a camera-based system.

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2024; 13(4), 1298-1307

A. A. Ayrancı, B. Erkmen

1300

A photoelectric smoke detector uses an infrared,

ultraviolet, or visible light source to detect the presence of

smoke. A photoelectric detector senses scattering light when

the smoke enters the detector chamber and reaches the

photosensor. The light emitted from the detector's

photosensor is affected by the particles and dust in the

smoke. The smoke detector generates an alarm when the

light intensity coming from the photosensor falls below the

specified threshold level. Photoelectric smoke alarms are

usually more sensitive to smoldering fires.

An ionization smoke detector contains a small amount of

radioactive material between two electrically charged planes.

These detectors ionize the air using the radioactive material

they have. The ionized air causes the electric current to flow

between the plates. If the smoke comes into the detector

chamber, the electric current flow is disturbed, and the

detector starts to sound the alarm. Ionizing smoke detectors

are often more sensitive in detecting flaming fires.

2.2 Dataset information

In this study, the Smoke Detection dataset created with

the help of IoT smoke detectors was used. It is aimed to

design an AI-Based IoT fire detection system using the

smoke detector dataset shared over the Kaggle data

repository [17]. The dataset contains 16 features, and these

features are all numeric. These data in the dataset were

collected under different fire scenarios from IoT smoke

detectors. Three of these features do not affect the model.

These features are timestamp, index and index count. The

features that had no impact on the models were removed

from the dataset through feature reduction method.

Since the index and index count variables specify the

same property, both variables are excluded from the dataset.

Also, the timestamp variable has a low weight on the models.

There is no missing data in the dataset. The dataset contains

information about air temperature, humidity, amount of

CO2, organic compounds, and other gases. Five records are

given in Table 1 to clarify the dataset. The 13 features used

in the dataset show the air temperature, air humidity (%),

volatile organic components (ppb), eCO2 concentration

(ppm), Raw H2, Raw Ethanol, Air Pressure (hPa), Particle

size, and particle concentration. In the fire, class used as

output data, "0" indicates no fire, and "1" indicates fire. Fire

indicates the output variable in the data set. The distribution

of fire variable samples in the dataset is shown in Figure 1.

Figure 2. Distribution of fire feature in the dataset

There are 44757 fire and 17873 no fire examples in the

fire variable used as the classifier variable. As given in

Figure 1. the distribution in the dataset indicates %71 fire

class and %29 no fire class. Ideally, the two classes should

have equal amounts of data. Class imbalance is a common

problem in many real-world datasets where the number of

samples in one or more classes is much smaller than the

others. To address this issue, two widely used techniques are

undersampling and oversampling. Undersampling involves

reducing the size of the majority class(es) to match the size

of the minority class(es), while oversampling involves

increasing the size of the minority class(es) to match the size

of the majority class(es).

Undersampling can be advantageous for machine

learning models that are sensitive to class imbalance, as it

helps create a more balanced dataset, thereby potentially

improving their performance. However, undersampling can

also lead to the loss of valuable information and may not

work well if the majority class(es) are already sparse. On the

other hand, oversampling can improve the representation of

the minority class(es) in the dataset, which can lead to better

classification accuracy and generalization performance of

machine learning models. Various oversampling methods

have been proposed, including the synthetic minority

oversampling technique (SMOTE), which creates new

synthetic samples for the minority class(es) based on nearest-

neighbor interpolation. However, it is important to note that

oversampling can potentially introduce noise or bias into the

dataset if the artificially generated samples do not accurately

represent the underlying distribution of the minority

class(es). The study did not employ undersampling or

oversampling techniques for the fire detection task, as the

researchers considered the amount and quality of the

available data to be important factors. Additionally, the

researchers decided against generating synthetic data due to

concerns about potential impacts on the results.

2.3 Data preprocessing

Data preprocessing is the process of preparing raw data

and fitting it into an ML model. Data preprocessing converts

the dataset into a suitable format to work on. It is the first

process to do when creating an ML model. Performing this

process correctly ensures the model works with high

performance. It is desired that the dataset used while ML

modeling is clean and there are no outliers [18]. Otherwise,

obtaining optimum performance in the modeling will not be

possible.

Removing null and unnecessary data from the dataset can

enhance the speed and effectiveness of ML models. While

determining which data to clean, the impact of each variable

on the output is carefully assessed. Fortunately, the dataset

utilized in this study does not contain any null data. While

the original dataset consisted of 16 variables, two of them,

namely CNT and index, were excluded through data

preprocessing as they did not contribute significantly to the

dataset. This decision was based on the realization that CNT

and index represented the same counting operation, resulting

in redundant data. As a result, these variables were

eliminated, resulting in a streamlined dataset.

%71

%29

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2024; 13(4), 1298-1307

A. A. Ayrancı, B. Erkmen

1301

Table 1. 5 example data from the dataset

Temperature Humidity TVOC eCO2 H2 Ethanol Pressure PM1.0 PM2.5 NC0.5 NC1.0 NC2.5 Fire

22.105 54.36 32 437 12552 19637 939.809 0.0 0.01 0.01 0.012 0.006 0

22.725 54.45 18 400 12593 19669 939.806 0.18 0.4 0.67 0.448 0.214 0

17.38 53.66 6 400 13195 20120 939.62 0.79 0.83 5.47 0.853 0.019 0

9.829 49.86 1320 404 12992 19404 938.814 1.75 1.82 12.04 1.877 0.042 1

26.29 50.77 1258 400 12999 19415 928.862 1.87 1.94 12.88 2.009 0.045 1

2.4 Classification algorithms

Classification algorithms assign the output feature to one

of the specified classes based on the inputs in the dataset. In

this study, fire detection analysis was performed by

processing 13 feature in the dataset. Seven classification

algorithms were used for the Artificial intelligence-based fire

detection system. These algorithms are Multi-Layer

Perceptron (MLP), k-Nearest Neighbor (k-NN), Radial Basis

Function (RBF), Naïve Bayes (NB), Decision Tree (DT),

Random Forest (RF), and Logistic Model Tree (LMT).

K-fold cross-validation is applied to the study to ensure

unbiased observations. It is a data partitioning strategy to

ensure model performance. The cross-validation technique

divides the dataset into k parts. In the k-fold cross-validation

technique, k-1 folds are used for training, and one-fold is

used for performance evaluation in the model. To make

unbiased observations dataset was divided randomly.

Choosing a k number high in the k-fold cross-validation

technique makes it easier to design an unbiased model [19].

However, choosing the k number high increases the

computational complexity and causes slower modeling.

Hyperparameter optimizations were conducted to fine-

tune various parameters in the classification algorithms. For

instance, in the Random Forest (RF) algorithm, the "total

number of trees" was tuned to achieve optimal performance.

Similarly, the k parameter that shows the number of

neighbors in the K-NN algorithm was adjusted to find the

most suitable value. In the case of the Multilayer Perceptron

(MLP) algorithm, the "hidden layer number" was optimized

to enhance the model's effectiveness. These hyperparameter

optimizations aimed to maximize the accuracy and overall

performance of the classification algorithms.

2.4.1 Multi-layer perceptron

MLP is one of the basic algorithms widely used in

classification problems. As the name indicates, it is an

artificial neural network algorithm consisting of many

layers. The MLP algorithm consists of an input layer, an

output layer, and one or more hidden layers. The MLP

algorithm can also work on complex datasets using non-

linear functions [20].

The input data is fed into the input layer of the MLP

model. Within this layer, the data is processed and

transmitted to the hidden layer using activation functions for

preprocessing. The sigmoid function generally uses as an

activation function. The number of hidden layers in the MLP

structure is determined as a parameter and can be selected as

single or multiple layers. The data flows from the input layer

to the output layer, resembling a feed-forward network.

During this process, weights are assigned to each data point

using the designated activation functions. The

backpropagation learning algorithm is used to train MLP

neurons. This learning algorithm works by testing backward

errors starting from the output nodes [21].

MLP is one of the classifier algorithms where

hyperparameter tuning has a significant impact. The number

of hidden layers, momentum, and learning rate parameters

are the main optimized parameters in the MLP algorithm.

Hyperparameter optimization has a significant impact on the

MLP algorithm. Although the MLP algorithm seems to have

a simple structure, it needs a lot of time in the modeling and

training phases. In MLP, the testing phase takes less time.

The hidden layer and the number of neurons determine the

complexity and speed of the algorithm. The accuracy of the

model can be increased by optimizing the parameters in the

algorithm structure.

2.4.2 K-nearest neighbor

K-NN, initially introduced by Fix and Hodges in 1951 for

pattern problems, was further developed by Cover and Hart

in 1967 [22]. It is a straightforward machine learning

algorithm known for its simplicity and interpretability. Due

to its uncomplicated structure, K-NN finds application in

both classification and regression problems. K-NN is

classified as a supervised learning algorithm, but it

distinguishes itself from other ML algorithms by not having

a dedicated training stage. As a result, K-NN is considered a

lazy learning algorithm, relying on memorization rather than

conventional learning methods.

The K-NN structure predicts the class of a given data

sample based on the concept of feature similarity. This

similarity is determined by selecting the value of k, which is

a crucial factor influencing the accuracy of the K-NN model.

In the K-NN model k parameter specifies the number of

nearest neighbors to check. It is essential to carefully choose

the value of k to prevent overfitting or misclassification.

Selecting a small k value may lead to overfitting while

choosing a large k value increases the risk of

misclassification. Therefore, determining the optimal k value

is crucial in the K-NN structure. Depending on the problem

at hand, a higher k value is preferred to reduce overall noise.

However, as the k increases, the probability of

misclassification also rises. To determine the optimal k

number cross-validation method can be utilized. In this

study, a k value of 3 was selected as the optimal parameter.

Euclidean and Manhattan distance functions are widely

used while calculating the distance in the K-NN structure.

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2024; 13(4), 1298-1307

A. A. Ayrancı, B. Erkmen

1302

The average value is assigned to the unknown nodes when

using the Euclidean distance function. The Euclidean

distance function tries to predict missing nodes from

neighboring node values. The formula for the Euclidean

distance function is given below.

 d(x, y) = √∑ (𝑥𝑖 − 𝑦𝑖)
2𝑛

𝑖=1 (1)

In Equation (1), n represents number of data points, d

represents distance, xi indicates the incoming data, and yi

indicates the selected data. In the Manhattan distance

formula, the distance between two nodes is the sum of the

absolute value of the difference in the cartesian coordinates.

The Manhattan distance formula is defined in Equation (2).

d(x, y) = ∑ (𝑥𝑖 − 𝑦𝑖)
𝑛
𝑖=1 (2)

Manhattan distance formula uses same abbreviations

with Euclidian distance formula. In Equation (2), n

represents number of data points, d represents distance, xi

indicates the incoming data, and yi indicates the selected

data. Euclidian and Manhattan distance functions can be

used for continuous data. If the dataset consists of categorical

data, Hamming distance function should be used. In case of

numerical and categorical data exist together, then numerical

data should be standardized.

2.4.3 Radial basis function

RBF network is an Artificial Neural Network (ANN)

developed by Moody and Darken in 1989 [23]. The design

of the RBF network was inspired by biological nerve cells.

RBF networks, which are artificial neural networks model,

have a different structure from other artificial neural network

models. In comparison to other artificial neural networks,

RBF networks have a different structure. RBF networks have

an input layer, a single hidden layer, and an output layer. The

point that distinguishes RBF networks from other artificial

neural networks is the operation happens in this single

hidden layer. The data converted to feature vectors in the

hidden layer are extracted to higher dimensions with the help

of non-linear transfer functions. Then the classification

process is performed in the output layer.

2.4.4 Naïve bayes

Naïve Bayes (NB) classifier is a mathematical ML

algorithm based on conditional probabilities in estimation.

As mentioned in the name of the algorithm, it is based on the

Bayesian formula used in conditional probability

calculations [24]. NB classifier can do both numerical and

categorical classification. NB provides high accuracy in

complex classification problems. The main advantages of the

algorithm are that it can quickly model complex problems

and require very little data for training. NB calculates the

probability of each state for an element and classifies it

according to the highest probability value. Algorithm

considers each feature in the dataset as independent from the

other. Since the features are assumed to be independent of

each other, the relations between the variables cannot be

modeled.

One of the crucial problems with the NB algorithm is

zero frequency. It means that the desired sample from the

model cannot be found in the dataset. Zero frequency occurs

when any condition having zero probability in the whole

multiplication of the likelihood makes the complete

probability zero. The simplest way to solve this is to

eliminate this possibility by adding the minimum value to all

values. This solution is called the Laplace Estimator.

2.4.5 Decision tree

DT is an ML algorithm widely used in both classification

and regression problems in supervised learning. DT is a

simple algorithm that applies some rules when making

decisions. Tree-based ML algorithms are the most widely

used supervised learning algorithms. The DT algorithm can

be used for classifying both numerical and categorical data.

The structure of DT is similar to the thought system of

people. DT algorithm defines the dataset by dividing it into

small decision nodes. A set of rules is applied at the decision

nodes to create a structure that divides into different branches

[25].

The first node in the algorithm is called the root node.

From this node, the downstream decision nodes are designed

then the leaf nodes follow. The DT algorithm is structurally

in the form of a tree, and probabilities of all classification

sets are defined in its branches. Leaf nodes are the final

decision points in the DT algorithm. Splitting the data in the

DT algorithm has a significant impact on the accuracy of the

model. As a result of dividing the data into sub-nodes, the

model becomes more homogeneous. DT uses various

techniques to split a decision node into two or more nodes.

The most used techniques in the DT algorithm are entropy

and information gain. Entropy can be defined as a measure

of randomness and uncertainty. If the samples are ordered

and homogeneously separated, the entropy is zero.

Therefore, it is desirable to arrange the data in such a way

that the entropy is minimal. Information gain is subtracting

all entropy after dividing a dataset over a feature. The

importance of the feature increases if the entropy value is

small.

2.4.6 Random forest

In 2001 Leo Breiman developed Random Forest (RF)

algorithm [26]. It utilizes an ensemble learning technique

that combines many classifiers to solve complex problems.

RF algorithm contains many decision trees in its structure.

As the number of decision trees used in the algorithm

increases, the possibility of creating a more successful model

increase. One of the important differences between it and the

DT algorithm is that finding the root node and splitting the

nodes in the RF algorithm is random. This way, there is no

need to use entropy and information gain techniques.

Overfitting, which is the most significant problem of DT,

decreases in the RF classifier. RF eradicates the limitations

of the DT algorithm. It reduces the overfitting of datasets and

increases accuracy. Overfitting can be overcome by using

enough decision trees in the RF algorithm. Another

advantage of the RF algorithm is that it displays the weights

of the classes. RF needs less data and preparation time for

training. It is also successful on datasets with noisy and

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2024; 13(4), 1298-1307

A. A. Ayrancı, B. Erkmen

1303

outlier samples. The RF algorithm utilizes the GINI index to

assess the effectiveness of trees and branches, which

measures the success rates of the samples assigned to each

node. A low GINI index value indicates the homogeneous

distribution of the dataset and the successful creation of

branch nodes. The GINI index in the RF algorithm is used

similarly to the information gain technique in the DT

algorithm [27].

RF is a very suitable algorithm for hyperparameter

optimization. It has several hyperparameters to be set. These

parameters are the number of trees, the number of random

features, the number of nodes, and the splitting rule. The high

number of trees enables to build of a successful model. The

selection of the number of random features is one of the most

crucial parameters. This hyperparameter is hard to pick

without experimenting. Choosing a low number of features

means that fewer features are considered when splitting data.

Adjusting the number of nodes influences reducing

overfitting in the model. RF uses GINI and Entropy

techniques for data splitting. Hyperparameter tuning is

essential for RF algorithms.

2.4.7 Logistic model tree

Logistic Model Tree (LMT) is a supervised learning

algorithm classification model. It has high accuracy in binary

and multiple classification problems. LMT combines the

features of Logistic Regression (LR) and DT algorithms.

Unlike the decision trees method, the leaf nodes in the LMT

algorithm have logistic regression functions of related

attributes as well as class labels [28]. Logit Boost enables

leaf nodes to utilize logistic regression functions. However,

logistic regression has a complex structure. Due to its

complex structure, the construction of the tree model takes

time.

2.4.8 K-fold cross validation

In classification problems, the initial step is to divide the

dataset into training and testing sets. It is crucial to be aware

that challenges may arise during this process of splitting the

dataset into training and testing sets. One potential issue is

the uneven distribution of classes, which can lead to a biased

model. The K-fold cross-validation technique's goal is to

create unbiased observation sets. K-fold cross-validation

divides the dataset into k sets [29]. In K-fold cross-

validation, all subsets are treated as equal in terms of size and

quality. One of the divided subsets is designated as the test

set, while the remaining k-1 subsets are used for training the

data. This validation process is repeated k times, with each

subset taking turns as the test set.

Increasing the number of k in the K-fold cross-validation

technique increases the possibility of creating an unbiased

model. However, increasing the k number also causes a loss

of computation and time. Using more than one k value

provides us to see the performance of the k-fold cross-

validation technique. Thus, it is possible to find the optimum

value of k. As a result of K-fold cross-validation, the success

of the designed model can be seen by examining the

performance metrics. K-fold cross-validation shows

unbiased prediction accuracy. Cross-validation can be

utilized to identify the presence of overfitting in a model.

3 Performance evaluation

A classification study was conducted on the Smoke

Detection dataset using the Python 3.11 program. The study

utilized seven machine learning classifier algorithms. The

main objective of this research was to create an efficient fire

detection system by implementing ML algorithms on the

data collected from IoT smoke detectors. The performance

of the designed system was evaluated using various ML

performance metrics.

3.1 Performance metrics

In this section, we will provide a brief explanation of the

performance metrics used to evaluate the performance of the

models employed. Performance metrics have a significant

role in assessing the effectiveness of ML models. These

metrics are utilized to measure the success of classifier

models on the dataset. The primary performance metrics

employed in classifiers include accuracy, precision, recall, F-

score, and kappa statistics. These metrics indicate the

percentage of correct classification predictions made by the

model. When evaluating the performance of the classifier,

key parameters to consider are True Positive (TP), True

Negative (TN), False Positive (FP), and False Negative (FN).

These parameters are essential for assessing both

performance and error metrics accurately.

3.1.1 Accuracy

The most crucial performance metric in classification

problems is accuracy, which indicates the rate of correct

classifications. Accuracy measures not only TP

classifications but also TN classifications [30]. It can be

succinctly stated as the correct classification divided by the

total classification. Equation (3) states the accuracy value of

the model.

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (3)

Accuracy is the first performance metric to look at in

classification problems. Higher accuracy value usually

indicates the model's success. In some cases, achieving high

accuracy values can be attributed to overfitting. In such

situations, it is essential to examine the presence of

overfitting.

3.1.2 Precision

Precision is a performance metric employed in both

classification and regression problems. It reflects the

accuracy of correctly made classifications. Precision is a

metric that measures the ratio of TP samples to all positive

samples. Precision measures the positive classification

success of the model. It can be obtained as shown in Equation

(4).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (4)

Precision has a significant impact when examining the

performance of the model. TP samples are important for the

fire detection system designed in this study. When the FP

classification rate is high, the fire alarm may activate in the

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2024; 13(4), 1298-1307

A. A. Ayrancı, B. Erkmen

1304

absence of fire, causing unnecessary panic and disruption in

both living and working areas. Also, it may cause a waste of

time and intervention to other possible fires by the

firefighters in charge of fire extinguishing. Because of this,

the Precision metric wanted to be as high as possible in the

model created.

3.1.3 Recall

Recall indicates how accurately the positive samples

were measured. The recall metric has similarities with the

precision metric. Precision and recall are performance

metrics used for pattern recognition and classification in

machine learning. These performance metrics are crucial for

building a good ML model. When determining the recall of

a model, it focuses solely on positive values while ignoring

negative values. The recall metric reveals the effectiveness

of correctly classifying instances in all fire-related scenarios.

Recall can be calculated using Equation (5).

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (5)

Recall helps us to see how accurately the relevant data in

the dataset is classified. The recall metric demonstrates the

accuracy of the fire alarm activation in the event of a fire. In

this study, it can be stated that recall is the most critical

performance metric, as it reflects the accuracy in fire-related

cases.

3.1.4 F-score

The F-score metric is used to measure the accuracy value

of the classifier model. The F-score metric uses precision and

recall. Since these two metrics are not comprehensive on

positive classifications, we can examine positive classified

samples with the F-score metric. F-score takes the harmonic

average of precision and recall metrics. The F-score can be

found using Equation (6).

𝐹 − 𝑆𝑐𝑜𝑟𝑒 =
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (6)

F-score has the same weight as it is the average of the

precision and recall metrics.

3.1.5 Kappa statistics

Kappa statistics works similarly to the accuracy metric in

the classification model. It is used especially in multi-

classification models because accuracy, precision, and recall

metrics do not represent the model comprehensively. This

metric works on a probability basis. The Kappa statistic

value is calculated based on expected and observed

probabilities. The value of the Kappa metric is one or less

than one. A Kappa value close to 1 indicates that the model

is successful. In general, kappa values exceeding 0.75

indicate a successful model, while values close to 0 suggest

an unsuccessful model. If the Kappa value is 0 or less than 0,

it is assumed that there is a random relationship between the

raters, and the model is considered unsuccessful.

3.2 Error metrics

Error metrics are used for identifying failed

classifications made by the model. To analyze the

classification accuracy of the model, we should also

investigate misclassifications. The error performance of the

models was analyzed by examining the Mean Absolute Error

(MAE) and Root Mean Square Error (RMSE) metrics.

3.2.1 Mean absolute error

Mean Absolute Error (MAE) is a metric that measures

the errors that occur in the model statistically. The MAE

error level is directly related to the accuracy of the model. It

shows the average difference between the true value of the

classified variable and the predicted variable. MAE is more

robust towards outliers than RMSE metrics since the changes

in MAE are linear and, therefore intuitive [31]. While MSE

and RMSE metrics perform better against large-scale errors,

MAE analyzes errors linearly, so there is no performance

change based on error level. The MAE provides a measure

of the model's ability to predict actual values. A lower MAE

indicates higher accuracy, while a higher MAE indicates

lower accuracy. The MAE is a useful metric due to its

simplicity and comparability across different models.

However, it has a limitation in that it treats all errors equally,

regardless of their magnitude. It means that both large and

small errors carry the same weight in the calculation. For

certain applications, this may not be desirable, and

alternative metrics like the Root Mean Squared Error

(RMSE) may be more suitable.

3.2.2 Root mean square error

The Root Mean Square Error (RMSE) measures the

standard deviation of the error, providing insight into the

dispersion of values. The standard deviation is employed in

classifiers to detect outliers. When evaluating error

performance, the RMSE value is utilized. To obtain the

RMSE value, the variance value must first be determined,

which represents deviations from the mean. The RMSE

value is obtained by taking the square root of the calculated

variance value. It is also equivalent to the square root of the

Mean Square Error (MSE) metric. In ML models, the

deviation of data from the mean line is utilized instead of

variance. RMSE metric is employed to assess performance

in both classification and regression models. A smaller

RMSE value indicates a better-performing classification

model, signifying a stronger fit of the model to the data.

3.3 Classification model’s performance

A fire detection system has been designed with ML

algorithms in IoT-based smoke detectors. The performance

of accuracy, recall, and precision metrics in the ML models

is significant for the system.

To the authors' knowledge, there is no study yet using this

dataset. In this study, seven ML models were tested on the

dataset using the Python Jupyter Notebook environment.

While testing the models, the dataset was randomly divided

into 80% training and 20% testing data. The dataset was

divided in this ratio to obtain the most optimal result.

Accuracy, Precision, and Recall results obtained in the

models are given in Table 2.

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2024; 13(4), 1298-1307

A. A. Ayrancı, B. Erkmen

1305

Table 2. Accuracy, precision, and recall results of algorithms

Algorithms Accuracy Precision Recall

MLP 96.02 93.00 96.00

K-NN 97.87 97.90 98.00

RBF 86.93 87.70 87.00

NB 81.50 82.40 81.50

DT 99.76 99.80 99.90

RF 99.98 99.90 100

LMT 98.95 99.00 99.00

The models' accuracy, precision, and recall values are

shown in the Table 2. The results show that tree-structured

algorithms perform better than other classifier models. The

performance results of the models also show that the dataset

is suitable for the used models. The RF model achieved the

highest classification performance. Also, DT and LMT

algorithms achieved similar performance to the RF model.

This proves the suitability of tree classifier algorithms for the

dataset. F-score and Kappa statistic metrics were also

examined while comparing the performance of the models.

These performance metrics verify the relative weight of

precision and recall metrics and the quality of the model. F-

score and Kappa statistic values of the algorithms are given

in Table 3.

Table 3. F-score and kappa statistic results of algorithms

Algorithms F-score Kappa statistics

MLP 98.00 97.17

K-NN 99.15 97.90

RBF 89.20 72.90

NB 79.20 57.70

DT 99.88 99.82

RF 100 99.98

LMT 99.90 99.75

The results of the performance metrics for the designed

models are presented in Table 2 and Table 3. The findings

indicate that tree-based algorithms demonstrate high

performance, while the NB algorithm exhibits the lowest

model performance. However, despite its lower

performance, the NB algorithm still achieves a high accuracy

of 81.5%, suggesting its usability. Figure 3 provides a

graphical representation of the accuracy, precision, and

recall metric values for the models.

Figure 3. Performance metrics values of models

Error performance metrics in machine learning are

crucial for assessing and improving the accuracy and

robustness of models. These metrics provide quantitative

measures of a model's prediction errors. These performance

metrics are crucial for evaluating the effectiveness of

designed ML models. When investigating the accuracy of the

models, it is necessary to examine the performance metrics

and error metrics together. Two error metrics were assessed

to determine the rates of unsuccessful classification and

which class had more classification errors. This study

examines the MAE and RMSE error metrics to show the

error performance of the models. Table 4 shows the MAE

and RMSE values of the algorithms.

Table 4. Error performance of algorithms

Algorithms MAE RMSE

MLP 4.95 16.10

K-NN 2.40 12.50

RBF 18.10 29.75

NB 21.10 41.50

DT 0.08 0.18

RF 0.02 0.32

LMT 0.03 0.827

Table 4 indicates the error performance of the used

algorithms. It is seen that tree-structured algorithms exhibit

higher error performance.

Table 5. Accuracy values obtained using the K-fold cross-validation.

Algorithms K=2 K=3 K=4 K=5 K=6 K=7 K=8 K=9 K=10

MLP 95.56 95.90 96.00 96.50 96.30 96.58 96.15 95.75 96.40

K-NN 97.65 97.85 98.00 98.00 98.10 98.15 98.15 98.20 98.10

RBF 87.50 86.50 86.10 87.40 88.15 86.70 87.65 87.00 87.00

NB 78.20 78.40 78.25 78.30 78.25 78.20 78.00 77.90 77.50

DT 99.84 99.86 99.89 99.90 99.97 99.95 99.98 99.97 99.95

RF 99.90 99.92 99.94 99.95 99.97 99.98 99.99 99.98 99.95

LMT 99.70 99.50 97.50 97.90 98.40 99.00 99.50 97.90 97.50

0

25

50

75

100

MLP K-NN RBF NB DT RF LMT

Accuracy Precision Recall

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2024; 13(4), 1298-1307

A. A. Ayrancı, B. Erkmen

1306

Since the tree-structured algorithms have better

performance than other algorithms, the error performance of

these algorithms is also expected to be higher than others. RF

achieved the highest error performance among the used

models, and NB showed the lowest error performance.

3.4 K-fold cross validation results

This section presents the test results using the K-Fold

cross-validation technique to assess the performance of the

models. The performance of the models was evaluated for

various k parameters. Table 5 displays the accuracy values

obtained from the k-fold cross-validation technique across

different k parameters. Upon analyzing the results of the k-

fold cross-validation, it can be inferred that the dataset

exhibits independence and lack of bias. The results indicate

that RF algorithms achieve the highest performance, whereas

NB algorithms exhibit the lowest. These findings align with

the results obtained from the model created by partitioning

the dataset into train and test sets.

4 Results and discussion

This study aims to design a system that can detect fires

early using AI-based IoT smoke detectors. It includes an

examination of the dataset derived from IoT smoke

detectors, followed by the application of data preprocessing

steps. Data preprocessing steps were applied dataset to

evaluate the quality of the data. Three features that do not

affect the models are removed for faster processing speed

and less complexity on the model. There is no missing data.

The data values in the attributes shows a balanced

distribution.

To the best of the authors' knowledge, the Smoke

Detection dataset used in the study has not yet been used in

any other studies in the literature. Therefore, we evaluated

studies on similar datasets to analyze the study's performance

improvement. In [15], the authors gathered data from various

sensors and conducted a study on fire detection using Trend

Predictive Neural Network (TPNN) and MLP algorithms.

The TPNN algorithm achieved the highest accuracy of

99.7%. In our research, 99.98% accuracy is obtained with the

RF algorithm. The training time of the RF model was seen

as 1 second, while the testing time of the model was 0.02

seconds. The results obtained indicate that the models are

appropriate for real-time usage.

This study aimed to achieve early fire detection by

applying seven classification algorithms to a smoke

detection dataset. The results demonstrate that the RF

algorithm achieved the highest level of success, while the

NB algorithm displayed the lowest performance. These

findings hold significant implications for the design and

implementation of IoT-based smoke detectors, indicating

that ML models can improve accuracy and reliability. Upon

thorough examination of the results, it becomes evident that

AI-based fire detection systems have the potential to

facilitate the early identification of fires, mitigating the

potential for extensive damage in both indoor and outdoor

environments. Implementation of such systems can

effectively minimize the impact on human life and the

environment. Future research endeavors will incorporate

visual sensors in conjunction with smoke detectors to

enhance reliability and precision. By integrating data from

both smoke detectors and cameras and leveraging sensor

fusion algorithms, it becomes feasible to develop a system

that ensures more dependable and timely fire detection.

Conflict of Interest

The authors declare that there is no conflict of interest.

Similarity Rate (iThenticate): 12%

References

[1] K. Mehta, S. Sharma, and D. Mishra, Internet-of-

Things enabled forest fire detection system, 2021 Fifth

International Conference on I-SMAC (IoT in Social

Mobile Analytics and Cloud), pp. 20-23, Palladam,

India, 2021.

[2] J. Lu, J. Guo, Z. Jian, X. Xu, Optimal Allocation of Fire

Extinguishing Equipment for a Power Grid Under

Widespread Fire Disasters, IEEE Access, vol.6, pp.

6382-6389, 2018. https://doi.org/10.1109/ACCESS.20

17.2788893.

[3] Y. Hirohara, T. Ishida, N. Uchida and Y. Shibata,

Proposal of a Disaster Information Cloud System for

Disaster Prevention and Reduction, WAINA 2017, pp.

664-667, 2017.

[4] Ö. Doğan, O. Şahin, and E. Karaaslan, Digital twin

based disaster management system proposal: DT-DMS.

Journal of Emerging Computer Technologies, 1(2), 25-

30, 2021.

[5] E. N. Soysal, H. Gürkan, and E. Yavşan, IoT Band: A

wearable sensor system to track vital data and location

of missing or earthquake victims. International Journal

of Computational and Experimental Science and

Engineering, 9(3), 213-218, 2023. https://doi.org/10

.22 399/ijcesen.1317040.

[6] J. Qiu, J. Wang, T. He, B. Chen and X. Chen, Research

on intelligent fire rating evaluation and rapid rescue

plan optimization strategy, 2020 International

Conference on Urban Engineering and Management

Science (ICUEMS), pp. 446-453, 2020.

[7] K. Muhammad, J. Ahmad, Z. Lv, P. Bellavista, P.

Yang, and S. W. Baik, Efficient deep CNN-based fire

detection and localization in video surveillance

applications. IEEE Transactions on Systems, Man, and

Cybernetics: Systems, 49(7), 1419-1434, 2018.

https://doi.org/10.1109/TSMC.2018.2830099.

[8] A. Sungheetha and R. Sharma, Real time monitoring

and fire detection using internet of things and cloud

based drones. Journal of Soft Computing Paradigm

(JSCP), 2(03), 168-174, 2020. https://doi.org/10.36548

/jscp.2020.3.004.

[9] A. F. Önal, B. Ulver, A. Durusoy, and Erkmen, B.,

Intelligent wireless sensor networks for early fire

warning system. Electrica, 2020. https://doi.10.26650

/electrica.2019.19019.

[10] T. Çelik, H. Özkaramanlı, and H. Demirel, Fire and

smoke detection without sensors: Image processing

https://doi.org/10.1109/ACCESS.20%2017.2788893
https://doi.org/10.1109/ACCESS.20%2017.2788893
https://doi.org/10
https://doi.org/10.36548%20/jscp.2020.3.004
https://doi.org/10.36548%20/jscp.2020.3.004
https://doi.10.26650/

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2024; 13(4), 1298-1307

A. A. Ayrancı, B. Erkmen

1307

based approach, 2007 15th European Signal Processing

Conference, pp. 1794-1798, 2007.

[11] F. M. A. Hossain, Y. Zhang, C. Yuan, and C. Y. Su,

Wildfire flame and smoke detection using static image

features and artificial neural network, 2019 1st

International Conference on Industrial Artificial

Intelligence (IAI), pp. 1-6, 2019.

[12] K. Chen, Y. Cheng, H. Bai, C. Mou and Y. Zhang,

Research on image fire detection based on support

vector machine, 2019 9th International Conference on

Fire Science and Fire Protection Engineering

(ICFSFPE), pp. 1-7, 2019.

[13] N. A. Mwedzi, N. I. Nwulu and S. L. Gbadamosi,

Machine learning applications for fire detection in a

residential building, 2019 IEEE 6th International

Conference on Engineering Technologies and Applied

Sciences (ICETAS), pp. 1-4, 2019.

[14] N. Chowdhury, D. R. Mushfiq and A. E. Chowdhury,

Computer vision and smoke sensor based fire detection

system, 2019 1st International Conference on

Advances in Science, Engineering and Robotics

Technology (ICASERT), pp. 1-5, 2019.

[15] M. Nakıp and C. Güzeliş, Multi-sensor fire detector

based on trend predictive neural network, 2019 11th

International Conference on Electrical and Electronics

Engineering (ELECO), pp. 600-604, 2019.

[16] M. Nakip, C. Güzelíş and O. Yildiz, Recurrent Trend

predictive neural network for multi-sensor fire

detection, in IEEE Access, vol. 9, pp. 84204-84216,

2021. https://doi.org/10.1109/ACCESS.2021.3087736.

[17] Kaggle. Smoke Detection Dataset. Available from:

https://www.kaggle.com/datasets/deepcontractor/smok

e-detection-dataset September 04, 2022.

[18] A. A. Ayrancı, S. Atay and T. Yıldırım, Speaker accent

recognition using machine learning algorithms, 2020

Innovations in Intelligent Systems and Applications

Conference (ASYU), pp. 1-6, Istanbul, Turkey, 2020.

https://doi.org/10.1109/ASYU50717.20 20.9259902.

[19] J. D. Rodriguez, A. Perez and J. A. Lozano, Sensitivity

analysis of k-fold cross validation in prediction error

estimation in IEEE transactions on pattern analysis and

machine intelligence, vol. 32, no. 3, 569-575, 2010.

https://doi.10.1109/10.1109/TPAMI.2009.187.

[20] F. Murtagh, Multilayer perceptrons for classification

and regression, Neurocomputing, 2(5-6), 183-197,

1991.

[21] M. K. Alsmadi, K. B. Omar, S. A. Noah and I.

Almarashdah, performance comparison of multi-layer

perceptron (back propagation, delta rule and

perceptron) algorithms in neural networks, 2009 IEEE

International Advance Computing Conference, pp.

296-299, Patiala, India, 2009.

[22] T. Cover and P. Hart, Nearest neighbor pattern

classification, in IEEE Transactions on Information

Theory, vol. 13, no. 1, pp. 21-27, January 1967.

https://doi.10.1109/TIT.1967.1053964.

[23] J. Moody and C. J. Darken, Fast learning in networks

of locally-tuned processing units, Neural computation,

vol. 1, no. 2, pp. 281-294, 1989. https://doi.10.1162/

neco.1989.1.2.281.

[24] R. Irina. An empirical study of the naive Bayes

classifier. In IJCAI 2001 workshop on empirical

methods in artificial intelligence, vol. 3, no. 22, pp. 41-

46, 2001.

[25] S. R. Safavian, and D. Landgrebe, A survey of decision

tree classifier methodology. IEEE transactions on

systems, man, and cybernetics, 21(3), 660-674, 1991.

https://doi.org/10.1109/21.97458.

[26] L. Breiman, Random forests. Machine learning, 45(1),

2001. https://doi.org/10.1109/COMST.2015.2494502.

[27] H. Han, X. Guo, and H. Yu, Variable selection using

mean decrease accuracy and mean decrease gini based

on random forest. In 2016 7th IEEE international

conference on software engineering and service

science, pp. 219-224, 2016.

[28] D. L. Gupta, A. K. Malviya, and S. Satyendra,

Performance analysis of classification tree learning

algorithms. International Journal of Computer

Applications, 2012. https://doi.org/10.1007/978-3-319-

03844-5_9.

[29] J. D. Rodriguez, A. Perez, and J. A. Lozano, Sensitivity

analysis of k-fold cross validation in prediction error

estimation. IEEE transactions on pattern analysis and

machine intelligence, 32(3), 569-575, 2009. https://doi.

org/ 10.1109/TPAMI.2009.187.

[30] S. Garcia, A. Fernández, J. Luengo, and F. Herrera, A

study of statistical techniques and performance

measures for genetics-based machine learning:

accuracy and interpretability. Soft Computing, 13, 959-

977, 2009. https://doi.org/10.1007/s00500-008-0392-y.

[31] T. Chai, and R. R. Draxler, Root mean square error

(RMSE) or mean absolute error (MAE) Arguments

against avoiding RMSE in the literature. Geoscientific

model development, 7(3), 1247-1250, 2014. https://doi

.org /10.5194/gmd-7-1247-2014.

https://www.kaggle.com/datasets/deepcontractor/smoke-detection-dataset
https://www.kaggle.com/datasets/deepcontractor/smoke-detection-dataset
https://doi.org/10.1109/ASYU50717.20
https://doi.ieeecomputersociety.org/10.1109/TPAMI.2009.187
https://doi.10.1/
https://doi/
https://doi/

	1 Introduction
	2 Materials and methods
	2.1 Smoke detectors
	2.2 Dataset information
	2.3 Data preprocessing
	2.4 Classification algorithms
	2.4.1 Multi-layer perceptron
	2.4.2 K-nearest neighbor
	2.4.3 Radial basis function
	2.4.4 Naïve bayes
	2.4.5 Decision tree
	2.4.6 Random forest
	2.4.7 Logistic model tree
	2.4.8 K-fold cross validation

	3 Performance evaluation
	3.1 Performance metrics
	3.1.1 Accuracy
	3.1.2 Precision
	3.1.3 Recall
	3.1.4 F-score
	3.1.5 Kappa statistics

	3.2 Error metrics
	3.2.1 Mean absolute error
	3.2.2 Root mean square error

	3.3 Classification model’s performance
	3.4 K-fold cross validation results

	4 Results and discussion
	Conflict of Interest
	Similarity Rate (iThenticate): 12%
	References

