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Abstract  Öz  

Fires that cannot be detected quickly become 

uncontrollable. The fires that start to spread uncontrollably 

pose a significant danger to humans and natural life. 

Especially in public and crowded areas, fires can lead to 

possible loss of life and massive property damage. Because 

of this, it is necessary to detect fires as accurately and 

quickly as possible. Smoke detectors used with Internet of 

Things (IoT) technology can exchange data with each other. 

In this study, data collected from two different types of IoT-

based smoke detectors were processed using machine 

learning algorithms. The k-Nearest Neighbor (k-NN), 

Multilayer Perceptron (MLP), Radial Basis Function (RBF) 

Network, Naïve Bayes (NB), Decision Tree (DT), Random 

Forest (RF), and Logistic Model Tree (LMT) algorithms 

were used. The data obtained from the smoke detectors 

were processed using machine learning algorithms to create 

a highly successful model design. The aim of the study is to 

design an artificial intelligence-based system that enables 

the early detection of fires occurring both indoors and 

outdoors. 

 Hızlı bir şekilde tespit edilemeyen yangınlar kontrolsüz 

hale gelmektedir. Kontrolsüz biçimde yayılmaya başlayan 

yangınlar ise insan hayatına ve doğal yaşama büyük tehlike 

oluşturmaktadır. Özellikle halka açık ve kalabalık olan 

alanlarda başlayan yangınların olası can kayıplarına ve 

büyük maddi hasarlara yol açtığı görülmektedir. Bu nedenle 

yangınları mümkün olduğunca doğru ve hızlı bir şekilde 

tespit etmek büyük önem taşımaktadır. Nesnelerin İnterneti 

(IoT) teknolojisi ile birlikte kullanılan duman detektörleri 

birbirlerine veri akışı gerçekleştirebilmektedir. Bu 

çalışmada IoT-Tabanlı iki farklı tür duman detektöründen 

toplanan veriler makine öğrenmesi algoritmaları kullanarak 

işlenmiştir. Çok Katmanlı Algılayıcı (MLP), K-En Yakın 

Komşu (K-NN), Radyal Tabanlı Fonksiyon (RBF) Ağları, 

Naive Bayes (NB), Karar Ağacı (DT), Rastgele Orman (RF) 

ve Lojistik Model Ağacı (LMT) algoritmaları 

kullanılmıştır. Duman detektörlerinden elde edilen veriler 

makine öğrenmesi algoritmalarında işlenerek yüksek 

başarıya sahip bir model tasarımı sağlanmıştır. Çalışma 

sonucunda hem kapalı alanlarda hem de dış mekanlarda 

oluşan yangınların erken tespitinin mümkün olacağı bir 

sistem tasarımı hedeflenmektedir.  

 

Keywords: Machine learning, Fire detection system, IoT-

based systems, K-fold cross validation  

 Anahtar Kelimeler: Makine öğrenmesi, Yangın tespit 

sistemi, IoT-tabanlı sistemler, K-katlı çapraz doğrulama  

1 Introduction  

Establishing a highly accurate fire safety system is 

necessary to prevent potential disasters in living spaces. 

Otherwise, major disasters can occur when an uncontrollable 

fire breaks out. The faster the fire is detected, the higher the 

probability of bringing it under control. Uncontrolled fires 

can result in the loss of life and property. With the latest 

advancements in IoT technology, it has become easier to 

establish a comprehensive fire detection system [1]. The 

most commonly used devices in fire detection systems are 

smoke detectors. These detectors, integrated with IoT 

technology, can share the data they receive with each other 

and the control center. By gathering information from 

multiple sensors, it is possible to achieve more accurate fire 

detection.  

There have been numerous studies on disaster 

management and prevention in recent years [2-5]. Disasters 

pose a threat to human life and can result in the loss of lives 

and property if appropriate precautions are not taken. Among 

these disasters, fire is regarded as one of the most significant 

threats to human life and inhabited spaces [6]. If a fire is not 

detected early, it can cause extensive damage. Therefore, 

there have been many studies in the literature focusing on the 

early detection of fires [7-9]. These studies often revolve 

around smoke detection as a means to identify the onset of a 

fire. Smoke presence is typically determined either through 

image processing or by utilizing data obtained from smoke 

detectors [10-11]. Sensor-based methods detect changes in 

air temperature and smoke concentration to initiate early fire 

warnings. Automatic fire detection systems should be 
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implemented to achieve faster detection and response to fires 

in indoor and outdoor areas. It is crucial to minimize false 

alarms in the fire detection system by considering various 

parameters. Information regarding fire incidents is collected 

using sensors or cameras.  

There are two types of smoke detectors commonly used. 

These detectors are photoelectric smoke detectors and 

ionization smoke detectors. The features of these smoke 

detectors are explained in the following parts of the study. 

While detecting fire with smoke detectors, the source of the 

smoke must be determined correctly. False fire alarms can 

occur because smoke detectors have problems distinguishing 

whether the smoke source is a fire or another source [12]. To 

prevent false fire alarms, many parameters are used in the 

dataset to determine that the source of smoke is fire. False 

fire alarms cause time and financial losses. To avoid such 

losses, the fire detection system established must be reliable. 

Seven classification algorithms were used for the 

analysis of the collected data: Multilayer Perceptron (MLP), 

Radial Basis Function (RBF) Network, k-Nearest Neighbor 

(k-NN), Naïve Bayes (NB), Decision Tree (DT), Random 

Forest (RF), and Logistic Model Tree (LMT). In the 

literature, Artificial Intelligence-based studies are becoming 

widespread in the early detection of disasters. Various 

Artificial Intelligence-based studies have also been 

conducted on fire detection systems. Image processing has 

been widely utilized in fire detection studies. In [13], the 

authors examined the color palette of the images captured 

from the suspected fire area for fire detection using the SVM 

algorithm. They employed the inter-frame technique to 

differentiate the suspected fire area from the background and 

extracted flame color moment features and texture features 

as inputs to the defined network. In the study presented in 

[14], the authors proposed the use of security camera systems 

in residential buildings for fire detection. They utilized 

Convolutional Neural Networks and Deep Learning to 

classify the images obtained from these camera systems. In 

[15], the authors investigated the combined use of image 

processing and sensor-based fire detection systems. They 

analyzed images captured from IP cameras along with data 

collected from smoke detectors, aiming to create a more 

reliable fire detection system. In [16], a fire detection system 

was designed using the Trend Predictive Neural Network 

model and data from multiple smoke detectors. The authors 

demonstrated that this model operated at a higher speed 

compared to conventional Neural Networks. 

In this study, the Smoke Detection dataset, which was 

created by collecting data from IoT sensors in different fire 

scenarios, was used. The smoke Detection dataset includes 

15 unique features derived from IoT smoke detectors. The 

15 features represent collected sensor data, and 1 represents 

the classification result. These 15 features were reduced to 

12 using data preprocessing steps. In this way, the aim is to 

make the model run faster and reduce the delay. The data 

were collected in fire scenarios occurring in open and closed 

areas. A comprehensive data set was created by collecting 

samples with a frequency of 1Hz under different fire 

scenarios. An artificial intelligence-based fire detection 

system can be developed using data collected in both indoor 

and outdoor fire scenarios. The accuracy of the fire detection 

system has been investigated using classification ML 

algorithms on the dataset. Results show that the RF 

algorithm provides the highest fire detection performance 

with a high accuracy rate of 99.98%. The NB algorithm 

achieved the lowest accuracy of 79.2%. The RF algorithm 

combines multiple decision trees with ensemble learning.  

2 Materials and methods  

This section discusses IoT smoke detectors, features in 

the dataset, and data preprocessing steps. Also, information 

about the seven classifier ML algorithms used is explained. 

2.1 Smoke detectors 

Smoke detectors are electronic devices used to detect 

smoke for possible fires. It is used for early detection of fires 

and to prevent possible loss of life in work areas and 

settlements. Smoke detectors sense smoke, which is the most 

common indicator of fires. However, since not all smokes 

are a sign of fire, it is important to note more than one 

parameter in fire detection. There are two types of commonly 

used smoke detectors. These detector types are Photoelectric 

and Ionization smoke detectors. In the smoke detection 

dataset, a more successful fire detection system design aimed 

at combining data from many sensors with sensor fusion 

techniques. 

 

 
Figure 1. Block diagram of smoke sensor 

 

In the smoke detection dataset, a more successful fire 

detection system design aimed at combining data from many 

sensors with sensor fusion techniques. Additionally, Bosch 

BMP388, Sensirion SPS30, Sensirion SHT31, Sensirion 

SPG30, and GPS sensors were used externally. The primary 

sensing component in the smoke detector is the Sensirion 

SPS30. The SPS sensor works similarly to photoelectric 

smoke detectors by measuring particles in the air. Particular 

matter (PM) in the dataset; PM1.0, PM2.5, and number 

concentration (NC): NC0.5, NC1.0, and NC2.0 outputs are 

given by the SPS sensor. Based on sensor fusion, the system 

is more cost-effective than the fire detection systems focused 

on image processing currently in use. Expected to have high 

performance, especially in indoor environments, it is 

anticipated to significantly enhance the performance of fire 

detection systems when used alongside existing systems at a 

low cost. The sensors utilized are highly affordable and 

accessible. The overall cost of the system is economical 

compared to a camera-based system. 
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A photoelectric smoke detector uses an infrared, 

ultraviolet, or visible light source to detect the presence of 

smoke. A photoelectric detector senses scattering light when 

the smoke enters the detector chamber and reaches the 

photosensor. The light emitted from the detector's 

photosensor is affected by the particles and dust in the 

smoke. The smoke detector generates an alarm when the 

light intensity coming from the photosensor falls below the 

specified threshold level. Photoelectric smoke alarms are 

usually more sensitive to smoldering fires. 

An ionization smoke detector contains a small amount of 

radioactive material between two electrically charged planes. 

These detectors ionize the air using the radioactive material 

they have. The ionized air causes the electric current to flow 

between the plates. If the smoke comes into the detector 

chamber, the electric current flow is disturbed, and the 

detector starts to sound the alarm. Ionizing smoke detectors 

are often more sensitive in detecting flaming fires. 

2.2 Dataset information 

In this study, the Smoke Detection dataset created with 

the help of IoT smoke detectors was used. It is aimed to 

design an AI-Based IoT fire detection system using the 

smoke detector dataset shared over the Kaggle data 

repository [17]. The dataset contains 16 features, and these 

features are all numeric. These data in the dataset were 

collected under different fire scenarios from IoT smoke 

detectors. Three of these features do not affect the model. 

These features are timestamp, index and index count. The 

features that had no impact on the models were removed 

from the dataset through feature reduction method.  

Since the index and index count variables specify the 

same property, both variables are excluded from the dataset. 

Also, the timestamp variable has a low weight on the models. 

There is no missing data in the dataset. The dataset contains 

information about air temperature, humidity, amount of 

CO2, organic compounds, and other gases. Five records are 

given in Table 1 to clarify the dataset. The 13 features used 

in the dataset show the air temperature, air humidity (%), 

volatile organic components (ppb), eCO2 concentration 

(ppm), Raw H2, Raw Ethanol, Air Pressure (hPa), Particle 

size, and particle concentration. In the fire, class used as 

output data, "0" indicates no fire, and "1" indicates fire. Fire 

indicates the output variable in the data set. The distribution 

of fire variable samples in the dataset is shown in Figure 1. 

 

 

Figure 2. Distribution of fire feature in the dataset 

 

There are 44757 fire and 17873 no fire examples in the 

fire variable used as the classifier variable. As given in 

Figure 1. the distribution in the dataset indicates %71 fire 

class and %29 no fire class. Ideally, the two classes should 

have equal amounts of data. Class imbalance is a common 

problem in many real-world datasets where the number of 

samples in one or more classes is much smaller than the 

others. To address this issue, two widely used techniques are 

undersampling and oversampling. Undersampling involves 

reducing the size of the majority class(es) to match the size 

of the minority class(es), while oversampling involves 

increasing the size of the minority class(es) to match the size 

of the majority class(es). 

Undersampling can be advantageous for machine 

learning models that are sensitive to class imbalance, as it 

helps create a more balanced dataset, thereby potentially 

improving their performance. However, undersampling can 

also lead to the loss of valuable information and may not 

work well if the majority class(es) are already sparse. On the 

other hand, oversampling can improve the representation of 

the minority class(es) in the dataset, which can lead to better 

classification accuracy and generalization performance of 

machine learning models. Various oversampling methods 

have been proposed, including the synthetic minority 

oversampling technique (SMOTE), which creates new 

synthetic samples for the minority class(es) based on nearest-

neighbor interpolation. However, it is important to note that 

oversampling can potentially introduce noise or bias into the 

dataset if the artificially generated samples do not accurately 

represent the underlying distribution of the minority 

class(es). The study did not employ undersampling or 

oversampling techniques for the fire detection task, as the 

researchers considered the amount and quality of the 

available data to be important factors. Additionally, the 

researchers decided against generating synthetic data due to 

concerns about potential impacts on the results. 

2.3 Data preprocessing 

Data preprocessing is the process of preparing raw data 

and fitting it into an ML model. Data preprocessing converts 

the dataset into a suitable format to work on. It is the first 

process to do when creating an ML model. Performing this 

process correctly ensures the model works with high 

performance. It is desired that the dataset used while ML 

modeling is clean and there are no outliers [18]. Otherwise, 

obtaining optimum performance in the modeling will not be 

possible. 

Removing null and unnecessary data from the dataset can 

enhance the speed and effectiveness of ML models. While 

determining which data to clean, the impact of each variable 

on the output is carefully assessed. Fortunately, the dataset 

utilized in this study does not contain any null data. While 

the original dataset consisted of 16 variables, two of them, 

namely CNT and index, were excluded through data 

preprocessing as they did not contribute significantly to the 

dataset. This decision was based on the realization that CNT 

and index represented the same counting operation, resulting 

in redundant data. As a result, these variables were 

eliminated, resulting in a streamlined dataset. 
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Table 1. 5 example data from the dataset 

Temperature Humidity TVOC eCO2 H2 Ethanol Pressure PM1.0 PM2.5 NC0.5 NC1.0 NC2.5 Fire 

22.105 54.36 32 437 12552 19637 939.809 0.0 0.01 0.01 0.012 0.006 0 

22.725 54.45 18 400 12593 19669 939.806 0.18 0.4 0.67 0.448 0.214 0 

17.38 53.66 6 400 13195 20120 939.62 0.79 0.83 5.47 0.853 0.019 0 

9.829 49.86 1320 404 12992 19404 938.814 1.75 1.82 12.04 1.877 0.042 1 

26.29 50.77 1258 400 12999 19415 928.862 1.87 1.94 12.88 2.009 0.045 1 

 

2.4 Classification algorithms 

Classification algorithms assign the output feature to one 

of the specified classes based on the inputs in the dataset. In 

this study, fire detection analysis was performed by 

processing 13 feature in the dataset. Seven classification 

algorithms were used for the Artificial intelligence-based fire 

detection system. These algorithms are Multi-Layer 

Perceptron (MLP), k-Nearest Neighbor (k-NN), Radial Basis 

Function (RBF), Naïve Bayes (NB), Decision Tree (DT), 

Random Forest (RF), and Logistic Model Tree (LMT).  

K-fold cross-validation is applied to the study to ensure 

unbiased observations. It is a data partitioning strategy to 

ensure model performance. The cross-validation technique 

divides the dataset into k parts. In the k-fold cross-validation 

technique, k-1 folds are used for training, and one-fold is 

used for performance evaluation in the model. To make 

unbiased observations dataset was divided randomly. 

Choosing a k number high in the k-fold cross-validation 

technique makes it easier to design an unbiased model [19]. 

However, choosing the k number high increases the 

computational complexity and causes slower modeling. 

Hyperparameter optimizations were conducted to fine-

tune various parameters in the classification algorithms. For 

instance, in the Random Forest (RF) algorithm, the "total 

number of trees" was tuned to achieve optimal performance. 

Similarly, the k parameter that shows the number of 

neighbors in the K-NN algorithm was adjusted to find the 

most suitable value. In the case of the Multilayer Perceptron 

(MLP) algorithm, the "hidden layer number" was optimized 

to enhance the model's effectiveness. These hyperparameter 

optimizations aimed to maximize the accuracy and overall 

performance of the classification algorithms. 

2.4.1 Multi-layer perceptron  

MLP is one of the basic algorithms widely used in 

classification problems. As the name indicates, it is an 

artificial neural network algorithm consisting of many 

layers. The MLP algorithm consists of an input layer, an 

output layer, and one or more hidden layers. The MLP 

algorithm can also work on complex datasets using non-

linear functions [20].  

The input data is fed into the input layer of the MLP 

model. Within this layer, the data is processed and 

transmitted to the hidden layer using activation functions for 

preprocessing. The sigmoid function generally uses as an 

activation function. The number of hidden layers in the MLP 

structure is determined as a parameter and can be selected as 

single or multiple layers. The data flows from the input layer 

to the output layer, resembling a feed-forward network. 

During this process, weights are assigned to each data point 

using the designated activation functions. The 

backpropagation learning algorithm is used to train MLP 

neurons. This learning algorithm works by testing backward 

errors starting from the output nodes [21]. 

MLP is one of the classifier algorithms where 

hyperparameter tuning has a significant impact. The number 

of hidden layers, momentum, and learning rate parameters 

are the main optimized parameters in the MLP algorithm. 

Hyperparameter optimization has a significant impact on the 

MLP algorithm. Although the MLP algorithm seems to have 

a simple structure, it needs a lot of time in the modeling and 

training phases. In MLP, the testing phase takes less time. 

The hidden layer and the number of neurons determine the 

complexity and speed of the algorithm. The accuracy of the 

model can be increased by optimizing the parameters in the 

algorithm structure. 

2.4.2 K-nearest neighbor 

K-NN, initially introduced by Fix and Hodges in 1951 for 

pattern problems, was further developed by Cover and Hart 

in 1967 [22]. It is a straightforward machine learning 

algorithm known for its simplicity and interpretability. Due 

to its uncomplicated structure, K-NN finds application in 

both classification and regression problems. K-NN is 

classified as a supervised learning algorithm, but it 

distinguishes itself from other ML algorithms by not having 

a dedicated training stage. As a result, K-NN is considered a 

lazy learning algorithm, relying on memorization rather than 

conventional learning methods. 

The K-NN structure predicts the class of a given data 

sample based on the concept of feature similarity. This 

similarity is determined by selecting the value of k, which is 

a crucial factor influencing the accuracy of the K-NN model. 

In the K-NN model k parameter specifies the number of 

nearest neighbors to check. It is essential to carefully choose 

the value of k to prevent overfitting or misclassification. 

Selecting a small k value may lead to overfitting while 

choosing a large k value increases the risk of 

misclassification. Therefore, determining the optimal k value 

is crucial in the K-NN structure. Depending on the problem 

at hand, a higher k value is preferred to reduce overall noise. 

However, as the k increases, the probability of 

misclassification also rises. To determine the optimal k 

number cross-validation method can be utilized. In this 

study, a k value of 3 was selected as the optimal parameter. 

Euclidean and Manhattan distance functions are widely 

used while calculating the distance in the K-NN structure. 
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The average value is assigned to the unknown nodes when 

using the Euclidean distance function. The Euclidean 

distance function tries to predict missing nodes from 

neighboring node values. The formula for the Euclidean 

distance function is given below. 

 

      d(x, y) = √∑ (𝑥𝑖 − 𝑦𝑖)
2𝑛

𝑖=1                  (1) 

 

In Equation (1), n represents number of data points, d 

represents distance, xi indicates the incoming data, and yi 

indicates the selected data. In the Manhattan distance 

formula, the distance between two nodes is the sum of the 

absolute value of the difference in the cartesian coordinates. 

The Manhattan distance formula is defined in Equation (2). 

 

d(x, y) = ∑ (𝑥𝑖 − 𝑦𝑖)
𝑛
𝑖=1        (2) 

 

Manhattan distance formula uses same abbreviations 

with Euclidian distance formula. In Equation (2), n 

represents number of data points, d represents distance, xi 

indicates the incoming data, and yi indicates the selected 

data. Euclidian and Manhattan distance functions can be 

used for continuous data. If the dataset consists of categorical 

data, Hamming distance function should be used. In case of 

numerical and categorical data exist together, then numerical 

data should be standardized. 

2.4.3 Radial basis function 

RBF network is an Artificial Neural Network (ANN) 

developed by Moody and Darken in 1989 [23]. The design 

of the RBF network was inspired by biological nerve cells. 

RBF networks, which are artificial neural networks model, 

have a different structure from other artificial neural network 

models. In comparison to other artificial neural networks, 

RBF networks have a different structure. RBF networks have 

an input layer, a single hidden layer, and an output layer. The 

point that distinguishes RBF networks from other artificial 

neural networks is the operation happens in this single 

hidden layer. The data converted to feature vectors in the 

hidden layer are extracted to higher dimensions with the help 

of non-linear transfer functions. Then the classification 

process is performed in the output layer. 

2.4.4 Naïve bayes  

Naïve Bayes (NB) classifier is a mathematical ML 

algorithm based on conditional probabilities in estimation. 

As mentioned in the name of the algorithm, it is based on the 

Bayesian formula used in conditional probability 

calculations [24]. NB classifier can do both numerical and 

categorical classification. NB provides high accuracy in 

complex classification problems. The main advantages of the 

algorithm are that it can quickly model complex problems 

and require very little data for training. NB calculates the 

probability of each state for an element and classifies it 

according to the highest probability value. Algorithm 

considers each feature in the dataset as independent from the 

other. Since the features are assumed to be independent of 

each other, the relations between the variables cannot be 

modeled. 

One of the crucial problems with the NB algorithm is 

zero frequency. It means that the desired sample from the 

model cannot be found in the dataset. Zero frequency occurs 

when any condition having zero probability in the whole 

multiplication of the likelihood makes the complete 

probability zero. The simplest way to solve this is to 

eliminate this possibility by adding the minimum value to all 

values. This solution is called the Laplace Estimator. 

2.4.5 Decision tree  

DT is an ML algorithm widely used in both classification 

and regression problems in supervised learning. DT is a 

simple algorithm that applies some rules when making 

decisions. Tree-based ML algorithms are the most widely 

used supervised learning algorithms. The DT algorithm can 

be used for classifying both numerical and categorical data. 

The structure of DT is similar to the thought system of 

people. DT algorithm defines the dataset by dividing it into 

small decision nodes. A set of rules is applied at the decision 

nodes to create a structure that divides into different branches 

[25]. 

The first node in the algorithm is called the root node. 

From this node, the downstream decision nodes are designed 

then the leaf nodes follow. The DT algorithm is structurally 

in the form of a tree, and probabilities of all classification 

sets are defined in its branches. Leaf nodes are the final 

decision points in the DT algorithm. Splitting the data in the 

DT algorithm has a significant impact on the accuracy of the 

model. As a result of dividing the data into sub-nodes, the 

model becomes more homogeneous. DT uses various 

techniques to split a decision node into two or more nodes. 

The most used techniques in the DT algorithm are entropy 

and information gain. Entropy can be defined as a measure 

of randomness and uncertainty. If the samples are ordered 

and homogeneously separated, the entropy is zero. 

Therefore, it is desirable to arrange the data in such a way 

that the entropy is minimal. Information gain is subtracting 

all entropy after dividing a dataset over a feature. The 

importance of the feature increases if the entropy value is 

small. 

2.4.6 Random forest  

In 2001 Leo Breiman developed Random Forest (RF) 

algorithm [26]. It utilizes an ensemble learning technique 

that combines many classifiers to solve complex problems. 

RF algorithm contains many decision trees in its structure. 

As the number of decision trees used in the algorithm 

increases, the possibility of creating a more successful model 

increase. One of the important differences between it and the 

DT algorithm is that finding the root node and splitting the 

nodes in the RF algorithm is random. This way, there is no 

need to use entropy and information gain techniques. 

Overfitting, which is the most significant problem of DT, 

decreases in the RF classifier. RF eradicates the limitations 

of the DT algorithm. It reduces the overfitting of datasets and 

increases accuracy. Overfitting can be overcome by using 

enough decision trees in the RF algorithm. Another 

advantage of the RF algorithm is that it displays the weights 

of the classes. RF needs less data and preparation time for 

training. It is also successful on datasets with noisy and 
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outlier samples. The RF algorithm utilizes the GINI index to 

assess the effectiveness of trees and branches, which 

measures the success rates of the samples assigned to each 

node. A low GINI index value indicates the homogeneous 

distribution of the dataset and the successful creation of 

branch nodes. The GINI index in the RF algorithm is used 

similarly to the information gain technique in the DT 

algorithm [27].  

RF is a very suitable algorithm for hyperparameter 

optimization. It has several hyperparameters to be set. These 

parameters are the number of trees, the number of random 

features, the number of nodes, and the splitting rule. The high 

number of trees enables to build of a successful model. The 

selection of the number of random features is one of the most 

crucial parameters. This hyperparameter is hard to pick 

without experimenting. Choosing a low number of features 

means that fewer features are considered when splitting data. 

Adjusting the number of nodes influences reducing 

overfitting in the model. RF uses GINI and Entropy 

techniques for data splitting. Hyperparameter tuning is 

essential for RF algorithms. 

2.4.7 Logistic model tree  

Logistic Model Tree (LMT) is a supervised learning 

algorithm classification model. It has high accuracy in binary 

and multiple classification problems. LMT combines the 

features of Logistic Regression (LR) and DT algorithms. 

Unlike the decision trees method, the leaf nodes in the LMT 

algorithm have logistic regression functions of related 

attributes as well as class labels [28]. Logit Boost enables 

leaf nodes to utilize logistic regression functions. However, 

logistic regression has a complex structure. Due to its 

complex structure, the construction of the tree model takes 

time. 

2.4.8 K-fold cross validation 

In classification problems, the initial step is to divide the 

dataset into training and testing sets. It is crucial to be aware 

that challenges may arise during this process of splitting the 

dataset into training and testing sets. One potential issue is 

the uneven distribution of classes, which can lead to a biased 

model. The K-fold cross-validation technique's goal is to 

create unbiased observation sets. K-fold cross-validation 

divides the dataset into k sets [29]. In K-fold cross-

validation, all subsets are treated as equal in terms of size and 

quality. One of the divided subsets is designated as the test 

set, while the remaining k-1 subsets are used for training the 

data. This validation process is repeated k times, with each 

subset taking turns as the test set. 

Increasing the number of k in the K-fold cross-validation 

technique increases the possibility of creating an unbiased 

model. However, increasing the k number also causes a loss 

of computation and time. Using more than one k value 

provides us to see the performance of the k-fold cross-

validation technique. Thus, it is possible to find the optimum 

value of k. As a result of K-fold cross-validation, the success 

of the designed model can be seen by examining the 

performance metrics. K-fold cross-validation shows 

unbiased prediction accuracy. Cross-validation can be 

utilized to identify the presence of overfitting in a model. 

3 Performance evaluation 

A classification study was conducted on the Smoke 

Detection dataset using the Python 3.11 program. The study 

utilized seven machine learning classifier algorithms. The 

main objective of this research was to create an efficient fire 

detection system by implementing ML algorithms on the 

data collected from IoT smoke detectors. The performance 

of the designed system was evaluated using various ML 

performance metrics. 

3.1 Performance metrics 

In this section, we will provide a brief explanation of the 

performance metrics used to evaluate the performance of the 

models employed. Performance metrics have a significant 

role in assessing the effectiveness of ML models. These 

metrics are utilized to measure the success of classifier 

models on the dataset. The primary performance metrics 

employed in classifiers include accuracy, precision, recall, F-

score, and kappa statistics. These metrics indicate the 

percentage of correct classification predictions made by the 

model. When evaluating the performance of the classifier, 

key parameters to consider are True Positive (TP), True 

Negative (TN), False Positive (FP), and False Negative (FN). 

These parameters are essential for assessing both 

performance and error metrics accurately. 

3.1.1 Accuracy 

The most crucial performance metric in classification 

problems is accuracy, which indicates the rate of correct 

classifications. Accuracy measures not only TP 

classifications but also TN classifications [30]. It can be 

succinctly stated as the correct classification divided by the 

total classification. Equation (3) states the accuracy value of 

the model. 

    

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
      (3) 

 

Accuracy is the first performance metric to look at in 

classification problems. Higher accuracy value usually 

indicates the model's success. In some cases, achieving high 

accuracy values can be attributed to overfitting. In such 

situations, it is essential to examine the presence of 

overfitting. 

3.1.2 Precision 

Precision is a performance metric employed in both 

classification and regression problems. It reflects the 

accuracy of correctly made classifications. Precision is a 

metric that measures the ratio of TP samples to all positive 

samples. Precision measures the positive classification 

success of the model. It can be obtained as shown in Equation 

(4). 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
   (4) 

 

Precision has a significant impact when examining the 

performance of the model. TP samples are important for the 

fire detection system designed in this study. When the FP 

classification rate is high, the fire alarm may activate in the 
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absence of fire, causing unnecessary panic and disruption in 

both living and working areas. Also, it may cause a waste of 

time and intervention to other possible fires by the 

firefighters in charge of fire extinguishing. Because of this, 

the Precision metric wanted to be as high as possible in the 

model created. 

3.1.3 Recall 

Recall indicates how accurately the positive samples 

were measured. The recall metric has similarities with the 

precision metric. Precision and recall are performance 

metrics used for pattern recognition and classification in 

machine learning. These performance metrics are crucial for 

building a good ML model. When determining the recall of 

a model, it focuses solely on positive values while ignoring 

negative values. The recall metric reveals the effectiveness 

of correctly classifying instances in all fire-related scenarios. 

Recall can be calculated using Equation (5). 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
    (5) 

 

Recall helps us to see how accurately the relevant data in 

the dataset is classified. The recall metric demonstrates the 

accuracy of the fire alarm activation in the event of a fire. In 

this study, it can be stated that recall is the most critical 

performance metric, as it reflects the accuracy in fire-related 

cases.  

3.1.4 F-score 

The F-score metric is used to measure the accuracy value 

of the classifier model. The F-score metric uses precision and 

recall. Since these two metrics are not comprehensive on 

positive classifications, we can examine positive classified 

samples with the F-score metric. F-score takes the harmonic 

average of precision and recall metrics. The F-score can be 

found using Equation (6). 

 

𝐹 − 𝑆𝑐𝑜𝑟𝑒 =
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  (6) 

 

F-score has the same weight as it is the average of the 

precision and recall metrics. 

3.1.5 Kappa statistics 

Kappa statistics works similarly to the accuracy metric in 

the classification model. It is used especially in multi-

classification models because accuracy, precision, and recall 

metrics do not represent the model comprehensively. This 

metric works on a probability basis. The Kappa statistic 

value is calculated based on expected and observed 

probabilities. The value of the Kappa metric is one or less 

than one. A Kappa value close to 1 indicates that the model 

is successful. In general, kappa values exceeding 0.75 

indicate a successful model, while values close to 0 suggest 

an unsuccessful model. If the Kappa value is 0 or less than 0, 

it is assumed that there is a random relationship between the 

raters, and the model is considered unsuccessful. 

3.2 Error metrics 

Error metrics are used for identifying failed 

classifications made by the model. To analyze the 

classification accuracy of the model, we should also 

investigate misclassifications. The error performance of the 

models was analyzed by examining the Mean Absolute Error 

(MAE) and Root Mean Square Error (RMSE) metrics. 

3.2.1 Mean absolute error 

Mean Absolute Error (MAE) is a metric that measures 

the errors that occur in the model statistically. The MAE 

error level is directly related to the accuracy of the model. It 

shows the average difference between the true value of the 

classified variable and the predicted variable. MAE is more 

robust towards outliers than RMSE metrics since the changes 

in MAE are linear and, therefore intuitive [31]. While MSE 

and RMSE metrics perform better against large-scale errors, 

MAE analyzes errors linearly, so there is no performance 

change based on error level. The MAE provides a measure 

of the model's ability to predict actual values. A lower MAE 

indicates higher accuracy, while a higher MAE indicates 

lower accuracy. The MAE is a useful metric due to its 

simplicity and comparability across different models. 

However, it has a limitation in that it treats all errors equally, 

regardless of their magnitude. It means that both large and 

small errors carry the same weight in the calculation. For 

certain applications, this may not be desirable, and 

alternative metrics like the Root Mean Squared Error 

(RMSE) may be more suitable. 

3.2.2 Root mean square error 

The Root Mean Square Error (RMSE) measures the 

standard deviation of the error, providing insight into the 

dispersion of values. The standard deviation is employed in 

classifiers to detect outliers. When evaluating error 

performance, the RMSE value is utilized. To obtain the 

RMSE value, the variance value must first be determined, 

which represents deviations from the mean. The RMSE 

value is obtained by taking the square root of the calculated 

variance value. It is also equivalent to the square root of the 

Mean Square Error (MSE) metric. In ML models, the 

deviation of data from the mean line is utilized instead of 

variance. RMSE metric is employed to assess performance 

in both classification and regression models. A smaller 

RMSE value indicates a better-performing classification 

model, signifying a stronger fit of the model to the data. 

3.3 Classification model’s performance 

A fire detection system has been designed with ML 

algorithms in IoT-based smoke detectors. The performance 

of accuracy, recall, and precision metrics in the ML models 

is significant for the system.  

To the authors' knowledge, there is no study yet using this 

dataset. In this study, seven ML models were tested on the 

dataset using the Python Jupyter Notebook environment. 

While testing the models, the dataset was randomly divided 

into 80% training and 20% testing data. The dataset was 

divided in this ratio to obtain the most optimal result. 

Accuracy, Precision, and Recall results obtained in the 

models are given in Table 2. 
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Table 2. Accuracy, precision, and recall results of algorithms 

Algorithms Accuracy Precision Recall 

MLP 96.02 93.00 96.00 

K-NN 97.87 97.90 98.00 

RBF 86.93 87.70 87.00 

NB 81.50 82.40 81.50 

DT 99.76 99.80 99.90 

RF 99.98 99.90 100 

LMT 98.95 99.00 99.00 

 

The models' accuracy, precision, and recall values are 

shown in the Table 2. The results show that tree-structured 

algorithms perform better than other classifier models. The 

performance results of the models also show that the dataset 

is suitable for the used models. The RF model achieved the 

highest classification performance. Also, DT and LMT 

algorithms achieved similar performance to the RF model. 

This proves the suitability of tree classifier algorithms for the 

dataset. F-score and Kappa statistic metrics were also 

examined while comparing the performance of the models. 

These performance metrics verify the relative weight of 

precision and recall metrics and the quality of the model. F-

score and Kappa statistic values of the algorithms are given 

in Table 3. 

 

Table 3. F-score and kappa statistic results of algorithms 

Algorithms F-score Kappa statistics 

MLP 98.00 97.17 

K-NN 99.15 97.90 

RBF 89.20 72.90 

NB 79.20 57.70 

DT 99.88 99.82 

RF 100 99.98 

LMT 99.90 99.75 

 

The results of the performance metrics for the designed 

models are presented in Table 2 and Table 3. The findings 

indicate that tree-based algorithms demonstrate high 

performance, while the NB algorithm exhibits the lowest 

model performance. However, despite its lower 

performance, the NB algorithm still achieves a high accuracy 

of 81.5%, suggesting its usability. Figure 3 provides a 

graphical representation of the accuracy, precision, and 

recall metric values for the models.  

 

 

Figure 3. Performance metrics values of models 

 

Error performance metrics in machine learning are 

crucial for assessing and improving the accuracy and 

robustness of models. These metrics provide quantitative 

measures of a model's prediction errors. These performance 

metrics are crucial for evaluating the effectiveness of 

designed ML models. When investigating the accuracy of the 

models, it is necessary to examine the performance metrics 

and error metrics together. Two error metrics were assessed 

to determine the rates of unsuccessful classification and 

which class had more classification errors. This study 

examines the MAE and RMSE error metrics to show the 

error performance of the models. Table 4 shows the MAE 

and RMSE values of the algorithms.   

 

Table 4. Error performance of algorithms 

Algorithms MAE RMSE 

MLP 4.95 16.10 

K-NN 2.40 12.50 

RBF 18.10 29.75 

NB 21.10 41.50 

DT 0.08 0.18 

RF 0.02 0.32 

LMT 0.03 0.827 

 

Table 4 indicates the error performance of the used 

algorithms. It is seen that tree-structured algorithms exhibit 

higher error performance. 

 

Table 5. Accuracy values obtained using the K-fold cross-validation. 

Algorithms K=2 K=3 K=4 K=5 K=6 K=7 K=8 K=9 K=10 

MLP 95.56 95.90 96.00 96.50 96.30 96.58 96.15 95.75 96.40 

K-NN 97.65 97.85 98.00 98.00 98.10 98.15 98.15 98.20 98.10 

RBF 87.50 86.50 86.10 87.40 88.15 86.70 87.65 87.00 87.00 

NB 78.20 78.40 78.25 78.30 78.25 78.20 78.00 77.90 77.50 

DT 99.84 99.86 99.89 99.90 99.97 99.95 99.98 99.97 99.95 

RF 99.90 99.92 99.94 99.95 99.97 99.98 99.99 99.98 99.95 

LMT 99.70 99.50 97.50 97.90 98.40 99.00 99.50 97.90 97.50 
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Since the tree-structured algorithms have better 

performance than other algorithms, the error performance of 

these algorithms is also expected to be higher than others. RF 

achieved the highest error performance among the used 

models, and NB showed the lowest error performance. 

3.4 K-fold cross validation results 

This section presents the test results using the K-Fold 

cross-validation technique to assess the performance of the 

models. The performance of the models was evaluated for 

various k parameters. Table 5 displays the accuracy values 

obtained from the k-fold cross-validation technique across 

different k parameters. Upon analyzing the results of the k-

fold cross-validation, it can be inferred that the dataset 

exhibits independence and lack of bias. The results indicate 

that RF algorithms achieve the highest performance, whereas 

NB algorithms exhibit the lowest. These findings align with 

the results obtained from the model created by partitioning 

the dataset into train and test sets. 

4 Results and discussion  

This study aims to design a system that can detect fires 

early using AI-based IoT smoke detectors. It includes an 

examination of the dataset derived from IoT smoke 

detectors, followed by the application of data preprocessing 

steps. Data preprocessing steps were applied dataset to 

evaluate the quality of the data. Three features that do not 

affect the models are removed for faster processing speed 

and less complexity on the model. There is no missing data. 

The data values in the attributes shows a balanced 

distribution. 

To the best of the authors' knowledge, the Smoke 

Detection dataset used in the study has not yet been used in 

any other studies in the literature. Therefore, we evaluated 

studies on similar datasets to analyze the study's performance 

improvement. In [15], the authors gathered data from various 

sensors and conducted a study on fire detection using Trend 

Predictive Neural Network (TPNN) and MLP algorithms. 

The TPNN algorithm achieved the highest accuracy of 

99.7%. In our research, 99.98% accuracy is obtained with the 

RF algorithm. The training time of the RF model was seen 

as 1 second, while the testing time of the model was 0.02 

seconds. The results obtained indicate that the models are 

appropriate for real-time usage.  

This study aimed to achieve early fire detection by 

applying seven classification algorithms to a smoke 

detection dataset. The results demonstrate that the RF 

algorithm achieved the highest level of success, while the 

NB algorithm displayed the lowest performance. These 

findings hold significant implications for the design and 

implementation of IoT-based smoke detectors, indicating 

that ML models can improve accuracy and reliability. Upon 

thorough examination of the results, it becomes evident that 

AI-based fire detection systems have the potential to 

facilitate the early identification of fires, mitigating the 

potential for extensive damage in both indoor and outdoor 

environments. Implementation of such systems can 

effectively minimize the impact on human life and the 

environment. Future research endeavors will incorporate 

visual sensors in conjunction with smoke detectors to 

enhance reliability and precision. By integrating data from 

both smoke detectors and cameras and leveraging sensor 

fusion algorithms, it becomes feasible to develop a system 

that ensures more dependable and timely fire detection. 
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