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Abstract: In the study, the structural and dielectric properties of Ba2GdMO6 (M=Nb, Ta) double perovskite 
ceramics produced with solid-state method were examined by co-doping xEu3+ and yB3+ (x=10 mol%, y=0, 
5, 15, 30, 50, 70 and 100 mol%). XRD (X-ray diffraction) results of the ceramic samples exhibited a single-
phase structure with cubic symmetry Fm-3m space group, while increasing B3+ concentration led to an 
increase in crystallite sizes and lattice parameters up to 50 mol% in both series. SEM (scanning electron 
microscopy) examinations revealed the presence of boron-supported grain growth and agglomeration in the 

grains of both series, and also a slight angularity occurred in grain shape at high B3+ concentrations. The 
dielectric constant (ε') of the ceramic samples in both series increased with increasing boron concentration 
up to 50 mol%, and it was approximately 33.5 and 35.4 at 20 Hz for the Ba2Gd1-xNbO6:xEu3+, yB3+ and 
Ba2Gd1-xTaO6:xEu3+, yB3+, respectively. The decrease in the dielectric constant after 50 mol% may be 
attributed to the presence of increased strain in the structure, as shown by the decrease in crystallite size. 
The increasing B3+ concentration caused a decrease in dielectric loss (tan δ) in both series, which was 
attributed to the suppression of oxygen vacancies due to the increased presence of B3+ and hence to a 

decrease in ionic conductivity and dielectric loss. 
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1. INTRODUCTION 
 
The A2BB'O6 type double perovskite structure 

attracts the attention of material scientists and solid-

state chemists. This interest stems from their 
dielectric properties, such as low dielectric loss, and 
low chemical reactivity, as well as their potential 
applications, such as their compatibility with some of 
the commonly used superconductors as a result of 
having a suitable coefficient of thermal expansion (1-

6). The double perovskites with the general formula 
A2B′B″O6 are formed when the B site of ABO3 is 
occupied by two different cations (B′ = rare earth 
elements, B″ = transition metal, d-block metals, 
such as Nb, Ta, Mo, Sb) in the disordered state (7,8). 
Perovskite oxides with the structure ABO3, which 
contain two different cations represented as A and B, 

are structurally stable due to the balanced 
arrangement of the constituent atoms and valences. 
Moreover, when the B site is occupied by a transition 

metal, B'O6 and B'O6 in A2B'B'O6 perovskite can 
reduce the symmetry of the A sites and become 
suitable hosts for doping rare earth ions to obtain 

luminescent ferroelectrics (9-16). On the other hand, 

investigating the electrical properties of ferroelectric 
materials doped with trivalent europium ion (Eu3+) is 
important for the development of versatile 
optoelectronic devices (17-19). The Eu3+ is known for 
its strong luminescence in the red spectral region. It 
exhibits interesting spectral properties with 5D0→7FJ 

(J=0, 1, 2, 3, 4, 5, 6) transitions, as well as having 
non-degenerate (J=0) first levels of transitions in 
both the absorption and luminescence spectrum, and 
has a great advantage over other RE ions (20-25). 
Boron is extensively employed as a flux in traditional 
solid-state reactions due to its relatively low melting 

point. Additionally, it's utilized to enhance optical and 
dielectric properties, alongside influencing structural 
aspects like morphology and crystallinity (26-29). 
Additionally, there are studies on the effect of boron 
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on grain morphology and its improvement in 
dielectric properties in which the doping of boron has 
the effect of increasing the bulk properties to some 

extent and can reduce the grain boundaries in the 
structure (30-32). 
 
In the study, the structural and dielectric properties 

of Eu3+ doped Ba2GdMO6 (M=Nb, Ta) ceramics were 
studied by B3+ co-doping. The structural and 
dielectric characterizations of ceramic samples were 
carried out by XRD, SEM, and impedance analyses. 
 
2. EXPERIMENTAL 

 
Ba2Gd1-xNbO6:xEu3+, yB3+ (x=10 mol%, y=0, 5, 15, 
30, 50, 70 and 100 mol%) and Ba2Gd1-xTaO6:xEu3+, 
yB3+ (x=10 mol%, y=0, 5, 15, 30, 50, 70 and 100 
mol%) ceramic samples were fabricated by solid-
state reaction. Barium carbonate BaCO3 (Sigma-

Aldrich, 99%), niobium oxide (Nb2O5: Alpha Aesar, 

99.9%), tantalum oxide (Ta2O5: Alpha Aesar, 
99.9%) powders and gadolinium oxide (Gd2O3: Alpha 
Aesar, 99.9%) were used as starting materials in 
calculated stoichiometric amounts. Europium oxide 
(Eu2O3: Alpha Aesar, 99.9%) and boric acid (H3BO3: 
Kimyalab, %99.9) were used as dopant materials. 
The stoichiometric amounts of Ba2Gd0.9NbO6:0.1Eu3+ 

and Ba2Gd0.9TaO6:0.1Eu3+
 starting materials were 

weighed and mixed in an agate mortar to provide 
homogeneity. Then, by adding different amounts of 
boric acid (H3BO3), the final mixture of the powders 
was thoroughly mixed and ground in an agate mortar 
for the last time to provide more homogeneity. For 

sintering process, the sufficient amount of mixture 
was taken and calcined in an alumina crucible at 

1250 °C for 6 h after pelleting. 
 
The phase structure of the samples were examined 
by XRD (X-ray diffractometer; D2 PHASER, Bruker 

Corp., Germany) using Cu-K (1.5406 Å) radiation in 
between 2θ=15-80 °C with scan speed 2 °C/min. The 
grain morphology of the samples was investigated by 

scanning electron microscopy (FEG-SEM; XL 30S, 
Philips Corp., Netherlands). The crystal structure was 
visualized via VESTA software. The average 
crystallite sizes of the samples were determined from 
the Scherrer Eq. (1) (33):  
 

𝐷 =  
𝑘 ·𝜆 

 𝐵·𝑐𝑜𝑠 𝜃
          (1) 

 
where D stands for particle size in nanometers, with 

k is a constant (usually taken as 0.9). CuKα 
represents the wavelength (λ = 0.15406 Å), and B is 
the full width at half maximum in radians. Frequency-
dependent changes of real and imaginary 
permittivity and loss factor were defined using 
dielectric Eq. (2) and Eq. (3) respectively: 

 

𝜀′ =
𝐶

𝐶0
,           𝜀′′ =

𝐺

𝜔𝐶0
,           𝐶0 = 𝜀0

𝐴

𝑑
   (2) 

 

𝑡𝑎𝑛𝛿 =
𝜀′′

𝜀′      (3) 

 
where C0 is vacuum capacitance, C is capacitance, w 
is angular frequency and G is conductance. The 
dielectric properties of the ceramic samples were 
carried out using an impedance analyzer (HIOKI, LCR 

Hitester 3532-50; between frequency 20 Hz–106 Hz, 
UK) at room temperature. 
 
3. RESULTS AND DISCUSSION 
 
3.1. XRD-SEM Results of Ba2Gd1-xNbO6:xEu3+, 
yB3+ and Ba2Gd1-xTaO6:xEu3+, yB3+ 

Figure 1a and Figure 2a show the XRD results for 
Ba2Gd1-xMO6:xEu3+, yB3+ (M=Nb, Ta), (x=10 mol%, 
y=0, 5, 15, 30, 50, 70, 100 mol%) samples, 

respectively. X-ray diffractions of all the sintered 
samples from 0 to 100 mol% B3+ showed the single-
phase of Ba2GdMO6 (M=Nb, Ta). The crystal 

structure of Ba2GdNbO6 (JCPDS card no. 47-0378) 
and Ba2GdTaO6 (JCPDS card no. 49-1900) was 
indexed with space group Fm3 ̅m (225) and cubic 
symmetry. Figure 3 shows the schematic 
representation of Ba2GdMO6 (M=Nb, Ta) crystal 
structure consisting of edge-shared B'O6 (GdO6) and 

B''O6 (MO6) octahedral, where the formation of the 
single-phase or the absence of any minor phase may 
be explained to the substitution of Eu3+ ions with 
ionic radius 0.947 Å (for 6 CN) by Gd3+ ions (r=0.938 
Å, for 6 CN), and the dissolution of the boron co-
doped at different concentrations in double 
perovskite host. Figure 1b and Figure 2b shows XRD 

two theta angles (400) for Ba2Gd1-xNbO6:xEu3+, yB3+ 
and Ba2Gd1-xTaO6:xEu3+, yB3+, respectively, where 
the XRD two theta peaks shifted towards smaller 
angles. Considering the slightly larger ionic radius of 
Eu3+, the substitution of Gd3+ with Eu3+ would 
contribute to lattice expansion. In addition, B3+ ions, 
which are characterized by a small ionic radius and 

are likely to occupy the structure as interstitial 
atoms, can lead to the expansion of the lattice. Table 
1 summarizes the variation of lattice data and 
crystallite size. The shift is related to the increase in 
the lattice constant which elevates up to 100 mol% 
B3+ concentration in both series. The cell data (a, V) 

for 0 and 100 mol% B3+ concentrations were 8.4729 
Å, 608.27 Å3 and 8.5029 Å, 614.75 Å3 respectively, 
for Ba2Gd1-xNbO6:xEu3+, yB3+, while they were 

8.4680 Å, 607.22 Å3 and 8.4942 Å, 612.87 Å3, 
respectively, for Ba2Gd1-xTaO6:xEu3+, yB3+. The 
lattice parameters Ba2GdNbO6 (34) and Ba2GdTaO6 

(35) compounds are a=8.4900 Å, V=611.96 Å3 and 

a=8.4780 Å, V=609.37 Å3, respectively. The cell data 
had values close to the literature data, where the 
lattice volume increased by about 1% in both series.
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Figure 1: (a) X-ray diffractions of Ba2Gd1-xNbO6:xEu3+, yB3+

 co-doped ceramics (x=10 mol%, and y= 0, 5, 
15, 30, 50, 70 and 100 mol%), (b) XRD two theta peak (400) shifted to lower angles with B3+ 

concentration. 
 

 
Figure 2: (a) X-ray diffractions of Ba2Gd1-xTaO6:xEu3+, yB3+

 co-doped ceramics (x=10 mol%, and y= 0, 5, 
15, 30, 50, 70 and 100 mol%), (b) XRD two theta peak (400) shifted to lower angles with B3+ 

concentration. 
 
The average crystallite sizes of the samples 
determined from the Scherrer equation using two 

theta reflection peaks (220), (400) and (422) are 
summarized in Table 1. The increasing B3+ 

concentration led to an increase in crystallite size in 
both series up to range of 30-50 mol%, and then a 

decrease occurred at 70 and 100 mol% 
concentrations. As seen in Table 1, the crystallite 
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sizes from 0 to 50 mol% B3+ varied to 42.36-49.14 
nm for Ba2Gd1-xNbO6:xEu3+, yB3+, while the sizes 
changed in the same range as 47.07-55.61 nm for 

Ba2Gd1-xTaO6:xEu3+, yB3+, respectively. However, 
increasing boron concentration caused a decrease in 
crystallinity size at 70 and 100 mol% levels, where 
the crystallite sizes for 70 and 100 mol% B3+ 

concentrations were 45.79 and 43.38 nm (for 
Ba2Gd1-xNbO6:xEu3+, yB3+) and 49.72 and 46.28 nm 
(for Ba2Gd1-xTaO6:xEu3+, yB3+), respectively. Since 

the temperature effect will increase with increasing 
boron, the nucleation rate will slow down, which is 
related to the increasing crystallite size in the 0-50 

mol% range. On the other hand, the decrease in 
crystallite size at 70 and 100 mol% can be linked to 
elevated boron concentration, leading to heightened 
nucleation, lattice deformation, and disruption of the 

charge balance within the structure, particularly at 
higher levels of doping (36-38).

 

 
Figure 3: Crystal structure visualization of Ba2GdMO6 (M=Nb, Ta). 

 
Table 1: Lattice parameters (a, V) and average crystallite sizes (D) for xEu3+, yB3+ co-doped Ba2Gd1-xNbO6 

and Ba2Gd1-xTaO6 ceramics. 

Sample 

concentration 
(mol%) 

Ba2Gd1-xNbO6:xEu3+, yB3+ Ba2Gd1-xTaO6:xEu3+, yB3+ 

a 
(Å) 

V 
(Å3) 

D 
(nm) 

a 
(Å) 

V 
(Å3) 

D 
(nm) 

0 B3+, 10 Eu3+ 8.4729 608.27 42.36 8.4680 607.22 47.07 

5 B3+, 10 Eu3+ 8.4804 609.88 43.78 8.4717 608.02 48.08 

15 B3+, 10 Eu3+ 8.4841 610.69 46.57 8.4792 609.63 51.79 

30 B3+, 10 Eu3+ 8.4879 611.50 49.11 8.4830 610.44 55.92 

50 B3+, 10 Eu3+ 8.4954 613.12 49.14 8.4904 612.06 55.61 

70 B3+, 10 Eu3+ 8.4991 613.93 45.79 8.4867 611.25 49.72 

100 B3+, 10 Eu3+ 8.5029 614.75 43.38 8.4942 612.87 46.28 
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Figure 4: SEM micrographs of 10 mol% Eu3+ and (a) 0, (b) 5, (c) 15, (d) 30, (e) 50, (f) 70 and (g) 100 
mol% B3+ co-doped Ba2GdNbO6 ceramics, at 2000× magnification and 2 kV acceleration voltage. 
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Figure 5: SEM micrographs of 10 mol% Eu3+ and (a) 0, (b) 5, (c) 15, (d) 30, (e) 50, (f) 70 and (g) 100 
mol% B3+ co-doped Ba2GdTaO6 ceramics, at 2000× magnification and 2 kV acceleration voltage. 

 
Figure 4(a-g) and Figure 5(a-g) show the SEM 

micrographs of Ba2Gd1-xNbO6:xEu3+, yB3+ and 
Ba2Gd1-xTaO6:xEu3+, yB3+ (x=10 mol%, y=0, 5, 30, 
50, 70 and 100 mol%) samples, respectively, at 
2000× magnifications under 2 kV accelerating 
voltage. SEM micrographs of both series have an 
irregular shape and the grains are rounded, while the 

increasing B3+ concentration led to grain growth and 

agglomeration. As well-known boron's flux effect 
reduces sintering temperature. Consequently, the 
increase in grain size may be attributed to the 
elevated temperatures resulting from boron addition. 
This higher temperature facilitates the release of 
stored energy within the grains, leading to an 
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increase in grain size (39,40). In addition, as seen in 
Figure 4(f,g) and Figure 5(f,g), the grain shape 
showed a slight angular trend at high B3+ 

concentrations. Moreover, at a concentration of 100 
mol% B3+, the agglomeration and flux effect is 
evident in the grains (Figure 4g and Figure 5g). The 
grain size of Ba2Gd1-xNbO6:xEu3+, yB3+ samples 

varied mostly in the range of 0.5-2 m at 0 mol% 
concentration and there are also some grains 

reaching 3-4 m, while the size of large grains 
ranging from 3 to 6 µm, while the grain size can 
exceed 10 µm, at 100 mol% concentration (Figure 
4(f,g)). The grain sizes of Ba2Gd1-xTaO6:xEu3+, yB3+ 
samples are round-like and/or shapeless grains 

varied between 0.5-3 m at 0 mol%, whilst the sizes 
of the angular grains at 100 mol% ranged between 

4-10 m (Figure 5(f,g)). 
 
3.2. Dielectric Properties of Ba2Gd1-xMO6:xEu3+, 

yB3+ (M=Nb, Ta), (x=10 mol%, y=0, 5, 15, 30, 

50, 70 and 100 mol%) Ceramics 
Figure 6(a,b) show the dielectric constants (ε') with 
frequency for Ba2Gd1-xNbO6:xEu3+, yB3+ and Ba2Gd1-

xTaO6:xEu3+, yB3+ (x=10 mol%, y=0, 5, 15, 30, 50, 
70 and 100 mol%) samples, respectively. In Figure 
6a, the dielectric constants of Ba2Gd1-xNbO6:xEu3+, 
yB3+ from 0 to 100 mol% B3+ changed approximately 

21.3 and 33.5 at 20 Hz, respectively. In Figure 6b, 
at the same range and 20 Hz, the ε' values for the 
Ba2Gd1-xTaO6:xEu3+, yB3+ ceramics were 21.3 and 
35.4, respectively. However, the dielectric constant 
did not change in the high frequency or over 103 Hz. 
As the frequency rises, the electron exchange's 
capability to align with the applied field diminishes, 

leading to a reduction in the dielectric constant. At 

extremely high frequencies, the field reverses before 
the space charge carriers can respond, thereby 
preventing them from contributing to polarization 
(41-47), so the dielectric constant almost stayed 
unchanged at the high-frequency range. Moreover, 

as seen in Figure 6(a,b) there is an increase in 
polarization or dielectric constant from 0 to 50 mol% 
B3+. The increase can be accounted for by the 
Maxwell-Wagner theory of external factors. 
According to this principle, the dielectric constant 
correlates directly with the grain size of the sample. 
The larger grain sizes result in greater atom 

polarizability, leading to an uptick in the dielectric 
constant (48-52). In the SEM micrographs in Figure 
4(a-g) and Figure 5(a-g), it was previously noted 
that there is an increase in grain size with increasing 

B3+ concentration. Hence, this circumstance may be 
ascribed to the declining occurrence of grain 
boundaries in both series, coupled with the rise in 

polarizability and the value of ε' within the atomic 
structure. Additionally, although there was a slight 
increase in grain size at 70 and 100 mol% B3+ 
concentrations in both series, there was a decrease 
in dielectric constant. Caruntu et al (53) stated that 
there is a direct correlation between the change of 

dielectric constant and crystallite size/microstrain, in 
which the crystallite size increases uniformly from 32 

to 94 nm with the increase of sintering temperature 
from 600 to 1000 °C. On the other hand, Kim et al 
(54), in their study on BaTiO3 and SrTiO3, found that 

the presence of an optimal amount of lattice 
distortion or strain increases the dielectric constant. 
However, there is no information about crystallite 
size change in the study. As seen in Table 1, a 

decrease in crystallite size occurs at 70 and 100 
mol% B3+ concentrations. Furthermore, while there 
is a noticeable rise in both crystallite size and 
dielectric constant as the concentration increases 
from 0 to 50 mol%, the augmented cell constant can 
be attributed to alterations in charge equilibrium and 

the existence of strain. In this context, the decrease 
in dielectric constant at 70 and 100 mol% could be 
linked to heightened strain due to an increased cell 
constant and deteriorated charge balance, as 
evidenced by the reduction in crystallite size. 
 

Figure 7(a,b) show the dielectric losses (tan δ) with 

frequency for Ba2Gd1-xNbO6:xEu3+, yB3+ and Ba2Gd1-

xTaO6:xEu3+, yB3+ (x=10 mol%, y=0, 5, 15, 30, 50, 
70 and 100 mol%) samples, respectively. As seen in 
Figure 7(a,b), dielectric loss continuously decreases 
with the increase in frequency. In the low-frequency 
range where resistance is high, polarization 
necessitates more energy because of the grain 

boundary. Conversely, in the high-frequency range 
where resistance is low, electron transfer across the 
grain boundary requires minimal energy, resulting in 
reduced energy loss (54-57). On the other hand, the 
dielectric loss factor for both sample series decreased 
with increasing B3+ concentration up to 50 mol% and 

then showed a slight increase at 70 and 100 mol%. 
Various studies in the literature connect the tan δ in 

ferroelectrics to oxygen vacancies, which contribute 
to the dielectric loss or leakage current (58-61). Liu 
et al (62) studied the dielectric loss and oxygen 
vacancy relation by fabricating TTB-Ba4Nd2Fe2Nb8O30 
ceramics at different annealing and sintering 

temperatures as well as in O2 and N2 atmospheres, 
where the increase in temperature reduces oxygen 
vacancies and electrical conductivity. Similarly, in the 
study reported by Iqbal et al (57) on CuFe2O4, an 
increase in crystallite size and dielectric constant 
occurred due to the increase in annealing 
temperature. The results of the flux effect of boron, 

as seen in the XRD-SEM section, the temperature 
effect on the structure will increase with increasing 
boron concentration. Thus, the higher concentration 
of boron will not only intensify the material's 

sensitivity to temperature but also impact the 
presence of oxygen vacancies. Therefore, the 

decrease in the dielectric loss factor in both series 
may be attributed to the suppression of oxygen 
vacancies by the temperature effect that increases 
with the increase in B3+. In addition, the slightly 
increased dielectric loss at the 70 and 100 mol% 
levels is likely due to the high B3+ concentration 
leading to some increase in the mobility of oxygen 

vacancies in the structure.
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Figure 6: Dielectric constants for (a) Ba2Gd1-xNbO6:xEu3+, yB3+ (x=10 mol%, y=0, 5, 15, 30, 50, 70, 100 

mol%), and (b) Ba2Gd1-xTaO6:xEu3+, yB3+ (x=10 mol%, y=0, 5, 15, 30, 50, 70, 100 mol%) ceramics. 
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Figure 7: Dielectric losses (tan δ) for (a) Ba2Gd1-xNbO6:xEu3+, yB3+ (x=10 mol%, y=0, 5, 15, 30, 50, 70, 
100 mol%), and (b) Ba2Gd1-xTaO6:xEu3+, yB3+ (x=10 mol%, y=0, 5, 15, 30, 50, 70, 100 mol%) ceramics. 

 

4. CONCLUSION 
 
The effect of boron on the structural and dielectric 
properties was studied by using Eu3+, B3+ co-doped 
double perovskite Ba2Gd1-xMO6:xEu3+, yB3+ (M=Nb, 
Ta), (x=10 mol%, y=0, 5, 15, 30, 50, 70 and 100 
mol%) ceramics, in which XRD results of the 

ceramics showed a single-phase structure. Ba2Gd1-

xTaO6:xEu3+, yB3+ samples had slightly better 

crystallite sizes than Ba2Gd1-xNbO6:xEu3+, yB3+ ones, 
while the crystallinity of both sample series increased 
up to about 50 mol% B3+, and then decreased at 70 
and 100 mol%. SEM micrographs of Eu3+, B3+ co-
doped samples showed that boron in both series 
supported aggregation and growth in grains, and a 
slight angularity in grain shape occurred at high B3+ 

concentrations. The ε' values of Ba2Gd1-xNbO6:xEu3+, 
yB3+, and Ba2Gd1-xNbO6:xEu3+, yB3+ were measured 
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in the range of 21.3-33.5 and 21.3 and 35.4 at 20 
Hz, respectively. For both series, the increasing 
dielectric constant up to 50 mol% B3+ concentration 

was associated with the developing grain size and 
crystallinity, while its decrease at 70 and 100 mol% 
was associated with the reduction in crystallite size. 
The dielectric loss factor for both series decreased 

with increasing B3+ concentration, whilst Ba2Gd1-

xTaO6:xEu3+, yB3+ series exhibited a lower loss 
factor. The decline in dielectric loss in both series as 
B3+ concentration rises was linked to the reduction of 
oxygen vacancies. The heightened presence of B3+ 
resulted in diminished ionic conductivity and 

consequently decreased dielectric loss. The study 
may be useful in evaluating the dielectric properties 
of double perovskite ceramics, in terms of controlling 
the grain morphology and crystallite size. 
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