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Abstract 

Simultaneous localization and mapping (SLAM) is an area of research that is experiencing rapid advancements, with a significant 

impact on improving the navigation and perception capabilities of vehicles, thereby enabling their safe operation in complex 

environments. This study presents a comprehensive overview of the recent developments in SLAM and conducts a comparative 

evaluation of two widely employed SLAM methods. The evaluation is based on rigorous performance analysis using the KITTI 

dataset, which is one of the most popular benchmark datasets for evaluating SLAM algorithms. The evaluation focuses on two 

essential metrics: absolute trajectory error (ATE) and relative pose error (RPE), which provides valuable insights into the accuracy 

and consistency of pose estimation over time. By quantifying the deviation between estimated trajectories and ground truth data, 

ATE sheds light on the global accuracy of the SLAM system, while RPE examines the local error and the system's ability to maintain 

reliable pose estimates within sequential frames. A thorough discussion is provided on the advantages, distinctive features, and 

performance characteristics of each technique, thereby offering valuable insights to propel future research in this area. 
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1. Introduction 

 

Technological developments, which are evident in every field, are also experienced in robotic system applications. One of the most 

important properties of these systems is their ability to operate autonomously (without continuous human supervision or remote 

control). This requires the execution of many different processes together for autonomous mobile robotic systems (Figure 1) 

(Makarenko et al., 2002; Kudriashov et al., 2020).  

 

 
Figure 1. The fields of mobile robotic Systems 

 

Simultaneous localization and mapping (SLAM) technology, originally proposed by Smith in 1986 (Smith & Cheeseman, 1986), has 

found widespread applications in diverse fields such as autonomous robots (ARs) (Kim & Eustice, 2013; Kim et al., 2018) and 

autonomous vehicles (AVs) (Takleh et al., 2018; Gao et al., 2020). SLAM aims to solve the challenging task of simultaneously 

mapping an unknown environment and accurately localizing the sensor system within it, utilizing the signals provided by the sensors. 

In the realm of robotics and AVs, mapping plays a pivotal role as it enables the identification and visualization of key landmarks, 

facilitating a comprehensive understanding of the environment. Additionally, the generated map aids in state estimation, enabling 

reliable localization and minimizing estimation errors when revisiting registered areas (Guclu & Can, 2019; Hoshi et al., 2022). 

 

The field of SLAM encompasses a diverse range of sensor-based methods, with Light Detection and Ranging (LiDAR) SLAM and 

Visual SLAM (V-SLAM) standing out as two prominent categories. LiDAR-SLAM relies on LiDAR sensors to capture precise 

geometric information about the environment, while V-SLAM leverages cameras as primary sensors, extracting valuable visual 

information from images (Cheng et al., 2022). V-SLAM offers the provision of rich information, cost-effectiveness, lightweight 

design, and compact size. However, it encounters challenges when operating in scenarios characterized by unstable ambient lighting 

conditions and limited surface texture, particularly in outdoor environments (Zhang & Zhang, 2022). 

 

On the other hand, LiDAR-SLAM leverages the inherent advantages of LiDAR technology, wherein the acquired point cloud data 

directly represents the geometric relationships within the environment. This characteristic makes LiDAR-SLAM particularly suitable 

for tasks such as path planning and vehicle navigation. Notably, LiDAR-SLAM is unaffected by lighting conditions and provides 

high-ranging accuracy, enhancing its performance in various environmental settings (Niloy et al., 2021). The selection between 

LiDAR-SLAM and V-SLAM depends on the specific requirements of the application and the prevailing environmental conditions. 

While V-SLAM excels in capturing rich visual information and offers cost-effectiveness, its performance may be hindered by factors 

such as lighting variations and texture limitations. 

  

Also, LiDAR-SLAM provides reliable geometric information and robust performance irrespective of lighting conditions, albeit at 

potentially higher costs and complex hardware requirements. Hence, comprehending the strengths and limitations of both approaches 

is crucial for selecting the most appropriate SLAM method for a given application (Cheng et al., 2022; Huang, 2021). The 

advancement of SLAM algorithms has garnered significant attention, with researchers making notable progress in their development 

over the past few decades. In 1991, the probabilistic approach was employed to develop the SLAM technique based on the earlier 

work conducted in (Smith & Cheeseman, 1986), introducing the implementation of the Extended Kalman Filter (EKF) method 

(Leonard & Durrant-Whyte, 1991). 

 

In 2001, a pioneering utilization of Millimeter Waves (MMW) to construct relative maps, focusing on the environment mapping 

process of mobile robots, was introduced (Dissanayake et al., 2001). The year 2002 witnessed the emergence of the Fast-SLAM 

algorithm, which integrates Extended Kalman Filter (EKF) techniques and particle filters for addressing non-Gaussian non-linear 

systems. By partitioning the conditional map and motion model components, this method curtails the sampling space and reduces the 

dimensionality of the state space (Montemerlo et al., 2002). A seminal advancement in SLAM techniques emerged in 2004 with Rat-
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SLAM, a modern approach amalgamating path integration, visual association, and competitive attractor processes to achieve robust 

and comprehensive SLAM (Milford et al., 2004).  

 

In the trajectory of SLAM evolution, the year 2006 introduced the Square Root Smoothing and Mapping (SAM) technique, 

leveraging square root information smoothing to enhance mapping efficiency (Dellaert & Kaess, 2006). The ensuing year, 2008, 

marked the introduction of UFastSLAM, a robust algorithm founded on scale unscented transformation (Kim et al., 2007). The year 

2009 saw the introduction of the Differential Evolution technique to tackle SLAM challenges (Moreno et al., 2009). 

 

Transitioning into the 2010s, this progression culminated in the extension of incremental smoothing and mapping (iSAM), geared 

towards facilitating online multi-robot mapping through multiple pose graphs (Kim et al., 2010). In 2012, iSAM2 emerged, 

leveraging nonlinear optimization and incremental filters (Kaess et al., 2011). The realm of visual SLAM saw the inception of ORB-

SLAM in 2015 (Mur-Artal et al., 2015), followed by its advancements in 2017 with ORB-SLAM2 (Mur-Artal & Tardós, 2017) and 

in 2021 with ORB-SLAM3 (Campos et al., 2021), collectively contributing to the resolution of SLAM complexities. 

 

Concurrently, driven by the decreasing cost of LiDAR technology and the safety imperatives of autonomous driving, the past decade 

has witnessed the inception of remarkable LiDAR SLAM algorithms. In 2014, the real-time LOAM method was unveiled, 

distinguished by its bifurcated approach wherein one algorithm handles high-frequency, low-fidelity odometry estimation, while the 

other addresses fine-grained point cloud matching and registration (Zhang & Singh, 2014). This trajectory was augmented with the 

formulation of V-SLAM, a framework amalgamating visual and LiDAR odometry to establish point cloud registrations and ego-

motion estimations (Zhang & Singh, 2015). 

  

The year 2018 introduced LeGO-LOAM, a lightweight and ground-optimized LiDAR odometry and mapping approach catering to 

real-time six-degree-of-freedom pose estimation, capitalizing on ground plane segmentation and optimization (Shan & Englot, 2018). 

Building upon this, the subsequent year saw the inception of HDL-Graph SLAM, founded on a graph-based paradigm and anchored 

by NDT scan matching-based odometry estimation and loop detection (Koide et al., 2019). 

 

The evolution of SLAM methodologies has been a focal point of rigorous investigation spanning numerous global institutions. In this 

vein, this paper assumes a pivotal role by furnishing a comprehensive comparative analysis between two prominent LiDAR-based 

SLAM algorithms, namely LeGO-LOAM and HDL-Graph SLAM, both of which have attained open-source status. This study 

further delves into an incisive exploration of the performance characteristics inherent in each algorithm, undertaken within the 

context of the widely adopted KITTI dataset (KITTI Dataset, 2023), predicated upon the metrics of Absolute Trajectory Error (ATE) 

and Relative Positional Error (RPE) (Sturm et al., 2012). Such meticulous scrutiny assumes paramount significance, as it affords a 

discerning grasp of the intrinsic attributes, merits, and demerits underpinning each algorithmic instantiation. 

 

This paper is organized as follows: The compared/used algorithms and used error metrics are explained in Section 2. The 

experimental results are given in Section 3 and Section 4 includes conclusions. 

 

2. Materials and Methods 

 

SLAM, which is basically about building a map of an unknown environment with a mobile robot and navigating the robot using this 

map, can be applied in 2D and 3D. (Figure 2).  

 

 
Figure 2. The main consists of SLAM 

SLAM system, which includes two main components consists of multiple processes (data association, landmark extraction, state 

estimation and update, landmark update etc.): the front-end and the back-end. Here, the front-end abstracts sensor data into predictive 

models. The back-end makes inferences on this generated abstracted data. There are many ways to accomplish/solve these 

stages/components (Figure 3) (Cadena et al., 2016; Taheri & Xia, 2021). 
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Figure 3. Typical SLAM architecture 

2.1. Compared/used SLAM algorithms 

 

2.1.1 LeGO-LOAM 

Tixiao and Shan (2018) proposed LeGO-LOAM (Shan & Englot, 2018), a ground-optimized LiDAR SLAM algorithm that addresses 

the real-time estimation of six-degree-of-freedom poses for ground vehicles. This algorithm addresses key challenges and introduces 

novel strategies that enhance its performance. 

 

The first notable contribution of LeGO-LOAM is in mitigating the impact of uneven terrain on point cloud motion distortion 

compensation, a common issue in LiDAR-based SLAM. It acknowledges noise introduced by ground-based point clouds, such as 

those originating from grass or leaves, as a primary factor contributing to misalignment of feature points. To compensate for  this 

distortion, LeGO-LOAM incorporates a point cloud clustering and outlier rejection mechanism based on Breadth First Search (BFS). 

The second core innovation of LeGO-LOAM lies in the optimization of its front-end odometry computation. Recognizing the need 

for real-time performance, the algorithm divides the odometry estimation into two distinct steps. By breaking down the estimation of 

the pose variables into separate three-degree of freedom components, LeGO-LOAM reduces computation time. The initial step 

focuses on ground optimization, utilizing ground points to solve point-to-surface constraint problems for pitch, roll, and 𝑧-axis 

estimation. The subsequent step employs corner points, often extracted from multiline LiDAR scans, which predominantly represent 

vertical edge features. These corner points are leveraged to compute 𝑥, 𝑦, and yaw, thereby enhancing computational efficiency. This 

two-step approach not only accelerates the algorithm's processing but also contributes to its accuracy. The third critical advancement 

of LeGO-LOAM pertains to the utilization of key frames within the map construction process and the incorporation of the Graph-

Based SLAM Library (GTSAM) for factor graph optimization. In the algorithm's back-end, key frames play a pivotal role in building 

a robust map representation. LeGO-LOAM employs GTSAM to optimize the factor graph, enhancing the accuracy of pose 

estimation and map reconstruction. 

 

2.1.2 HDL-Graph SLAM 

HDL-Graph SLAM (Koide et al., 2019) proposed in 2019  represents an advanced real-time Simultaneous Localization and Mapping 

(SLAM) algorithm tailored for 3D laser scanners, offering a comprehensive solution for robust trajectory estimation and environment 

mapping. This method is grounded in a 3D graph SLAM framework, bolstered by an innovative Normal Distributions Transform 

(NDT)-like scan matching procedure for precise trajectory determination. Notably versatile, HDL-Graph SLAM caters to six-degrees 

of freedom, facilitating accurate pose estimation across diverse spatial orientations.  

 

A distinctive attribute of this algorithm is its capacity to seamlessly integrate additional sensor data, such as Inertial Measurement 

Unit (IMU) or Global Positioning System (GPS) inputs, as boundary conditions, thereby enriching trajectory refinement. At its core, 

HDL-Graph SLAM harnesses the power of Generalized Iterative Closest Point (GICP), a potent geometric registration technique 

capable of accommodating a range of geometric primitives, including points, line segments, and planes. This versatility stems from 

GICP's adeptness in representing geometry through a set of normal distributions, obviating the need for specialized functions for 

different primitive types. Notably, IMU data further enhances trajectory precision by cyclically aligning the IMU acceleration vector 

of each trajectory node with the gravity vector. Practical implementation involves a strategic down-sampling of the point cloud 

followed by iterative scan matching to estimate the sensor's pose, ensuring efficient and accurate localization within the 3D 

environment. 

 

The basic comparison of used SLAM algorithms is given in Figure 4. Also, detailed explanations (theoretical information, 

mathematical background, etc.) are included in the relevant references (Shan & Englot, 2018; Koide et al., 2019; LeGO-LOAM, 

2023; HDL-Graph SLAM, 2023). 
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Figure 4. The basic comparison of used SLAM algorithms 

 

2.2 Error Metrics 

 

Two widely adopted quantitative metrics, namely the Relative Pose Error (RPE) and the Absolute Trajectory Error (ATE), serve as 

crucial evaluative tools for comparing the performance of different algorithms in the context of trajectory estimation and localization. 

The ATE quantification involves the straightforward computation of the disparity between the estimated trajectory and the 

corresponding ground truth trajectory, post-alignment through a rigid body transformation denoted as 𝑆 (Prokhorov et al., 2019): 

 

𝐹𝑖 = 𝑄𝑖
−1𝑆𝑃𝑖  (1) 

 

Where 𝑃𝑖  is the 𝑖th estimated pose and 𝑄𝑖  is the corresponding ground truth pose. ATE is then calculated using is the root means 

squared over all these errors in the estimated trajectory: 

 

𝐴𝑇𝐸 = √
1

𝑁
∑ 𝑡𝑟𝑎𝑛𝑠(𝐹𝑖)

2

𝑁

𝑖=1

 (2) 

 

Where 𝑡𝑟𝑎𝑛𝑠(𝐹𝑖) is the translation part of 𝐹𝑖. On the other hand, RPE facilitates a more nuanced assessment by investigating the 

evolution of localization discrepancies as the trajectory length expands. Calculated over trajectory segments, the relative pose error 

between the poses 𝑖 and 𝑖 +  1 is formulated as (Prokhorov et al., 2019): 

 

𝐹𝑖 = (𝑄𝑖
−1𝑄𝑖+1)−1(𝑃𝑖

−1𝑃𝑖+1) (3) 

 

Analogous to ATE, the RPE metric is computed through the root mean squared method encompassing all time indices, thus 

encapsulating the trend of localization accuracy as trajectory length varies: 

 

𝑅𝑃𝐸 = √
1

𝑁
∑ 𝑡𝑟𝑎𝑛𝑠(𝐹𝑖)

2

𝑁

𝑖=1

 (4) 

 

3. Experimental Results 

 

This section undertakes a comprehensive evaluation of the proposed HDL-Graph SLAM and LeGO-LOAM algorithms through the 

established ATE and RPE metrics as previously delineated. The evaluation is conducted on the widely recognized KITTI dataset 
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(Geiger et al., 2012), meticulously generated by the Karlsruhe Institute of Technology in Germany and the Toyota Institute of 

Technology in the USA, rendering it a pertinent and robust benchmark for algorithmic assessment. The dataset comprises point cloud 

data captured by the Velodyne HDL-64E LiDAR sensor, while its corresponding ground truth trajectory is established via the Oxford 

RT3000 inertial measurement unit (IMU). Specifically, this study harnesses sequences 01, 04, 05, 06, 07, 08, 09, and 10 from the 

KITTI benchmark for the evaluation. The ground truth trajectories pertaining to each sequence are visually depicted in Figure 5, 

affording a visual context for the subsequent analytical scrutiny. 

 

In the instantiation of the Simultaneous SLAM algorithm using the KITTI dataset, the unprocessed data underwent a transformation 

into the rosbag format. This conversion facilitated the provision of input data to the SLAM algorithms under consideration. 

Subsequently, the resultant trajectories generated by the algorithms were systematically aggregated, and their congruence with the 

ground truth data from the KITTI dataset was meticulously examined to ascertain the incurred errors. 

 

 
Figure 5. KITTI groud truth trajectories 

 

The outcomes of the comparative analysis for the LeGO-LOAM and HDL-Graph SLAM algorithms, as presented in Tables 1 and 2 

respectively, offer valuable insights into their respective performance on the KITTI dataset sequences (Figure 6). 

 

Table 1. Results for LeGO-LOAM 
LeGO-LOAM ATE (m) RPE (m) 

01 1,6976 1,2028 

04 0,4221 1,0352 

05 3,0640 0,5844 

06 0,6108 0,8001 

07 3,0651 0,5943 

08 1,6132 0,4141 

09 3,0097 0,8997 

10 3,0672 0,9048 

 

In terms of ATE, it is evident that the HDL-Graph SLAM algorithm exhibits varying degrees of ATE across different sequences, 

with values ranging from 1.5643 m to 2.4175 m. Conversely, the LeGO-LOAM algorithm showcases a generally lower ATE, with 

values ranging from 0.4221 m to 3.0672 m. Notably, sequence 04 emerges as a particularly challenging instance for both algorithms 

in terms of ATE, warranting further investigation into the underlying factors contributing to this phenomenon. 
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Table 2. Results for HDL-Graph SLAM 
HDL-Graph SLAM ATE (m) RPE (m) 

01 2,4205 2,9071 

04 1,5643 1,7782 

05 2,0324 1,6206 

06 1,9236 1,8882 

07 2,1362 1,1997 

08 2,4175 1,5167 

09 2,0859 1,4549 

10 2,3371 1,6678 

 

Furthermore, the RPE analysis accentuates the algorithms' performance in terms of their ability to maintain accurate localization as 

trajectory length increases. Here, it is observed that the HDL-Graph SLAM algorithm exhibits RPE values spanning from 1.1997 m 

to 2.9071 m, reflecting varying degrees of pose estimation accuracy across the evaluated sequences. On the other hand, the LeGO-

LOAM algorithm demonstrates generally lower RPE values, ranging from 0.4141 m to 1.2028 m. These results suggest that the 

LeGO-LOAM algorithm manifests a comparatively higher level of consistency in pose estimation accuracy across different trajectory 

lengths. 

 

In conclusion, the analysis of ATE and RPE metrics underscores the nuanced performance characteristics of the HDL-Graph SLAM 

and LeGO-LOAM algorithms within the context of the KITTI dataset. While the HDL-Graph SLAM algorithm showcases versatility 

across sequences, the LeGO-LOAM algorithm exhibits a more uniform performance profile, particularly in maintaining pose 

estimation accuracy as trajectory length increases. 

 
Figure 6. The comparative results for ATE and RPE 

4. Conclusions 

 

This study has conducted a comprehensive comparative analysis of two prominent LiDAR-based SLAM algorithms, namely HDL-

Graph SLAM and LeGO-LOAM, using the KITTI dataset. By evaluating these algorithms through established metrics such as ATE 

and RPE, we have shed light on their distinctive performance characteristics, offering valuable insights for practitioners and 

researchers in the field of robotics and autonomous navigation. 

 

First and foremost, our findings underscore the nuanced nature of algorithm performance. HDL-Graph SLAM exhibits versatility 

across different trajectory sequences, with fluctuations observed in both ATE and RPE values. This adaptability can be advantageous 

in scenarios where environmental conditions vary widely, showcasing its potential for use in diverse applications. Conversely, 

LeGO-LOAM demonstrates a more consistent performance profile, consistently displaying lower ATE and RPE values. This implies 

that LeGO-LOAM provides enhanced pose estimation stability, particularly as trajectory length increases. However, it's important to 

emphasize that the choice of algorithm should align with specific application requirements. HDL-Graph SLAM's adaptability may be 

preferred in situations where versatility is paramount, while LeGO-LOAM's consistent performance may be the choice for 

applications demanding higher accuracy and pose estimation stability. 

 

In conclusion, our study contributes to the growing body of knowledge in the field of SLAM by providing a thorough comparative 

analysis of these two widely used LiDAR-based SLAM algorithms. We have demonstrated the importance of considering both ATE 

and RPE metrics in algorithm evaluation, as they reveal different facets of performance. Ultimately, the decision between HDL-

Graph SLAM and LeGO-LOAM should be driven by the specific needs and constraints of the application at hand, and our findings 
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serve as a valuable reference for future research and practical implementations in the realm of autonomous navigation and robotics. 

As the field continues to evolve, further investigations and advancements are expected, and this work sets the stage for continued 

exploration and innovation in SLAM methodologies. 
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