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1. Introduction
In [1], Alwyn Francis Horadam defined the well-known number sequence called Horadam numbers denoted by second

order linear recurrence relation. The author examined the principle properties of an arbitrary generalized integer sequence and
studied particular cases of this sequence [1]-[3]. The sequence studied by Horadam is re-examined by various authors and
several applications of this sequence are included in [4]-[7].
For nonzero integers p and q, Horadam sequence is given by the recurrence relation

wn+2 = pwn+1−qwn,n≥ 0, (1.1)

where wn = wn(w0,w1; p,q) is the general term. Nicole Oresme, one of the scientists in the 14th century, investigated the sum
of the sequences of rational numbers and the properties of this sum [8]. Later in 1974, this author expanded and defined a new
integer sequence denoted by {On} and this defined sequence is known in the literature as the Oresme sequence [9]. Different
sequences are obtained by customizing the coefficients p, q in the Horadam sequence, which has been studied by many authors.
The Oresme sequences we are working with here is the version of the coefficients p,q obtained by taking special numbers.The
recurrence relation of this sequence is as follows.

On = On−1−
1
4

On−2;O0 = 0,O1 =
1
2
. (1.2)

Horadam examined these numbers in more detail and obtained both linear and non-linear relations involving these numbers and
gave the generating functions for them. Cook [6] generalized the these numbers as k- Oresme numbers denoted by O(k)

n and
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defined by, for k > 2,

O(k)
n = O(k)

n−1−
1
k2 O(k)

n−2, (1.3)

in here the initial conditions are O(k)
0 = 0 and O(k)

1 = 1
k .

It can be noticed that these numbers are reduced to standard Oresme numbers by taking k = 2. In [6], for k2−4 > 0, the closed
formula of k- Oresme numbers is given by

O(k)
n =

αn−β n
√

k2−4
. (1.4)

In the last equation α = k+
√

k2−4
2k and β = k−

√
k2−4

2k . Some identities and sum formulas for this number sequence are studied in
[6], [10]. Moreover, see [6], [10]-[13] for recent studies. In [14], Halici et al. generalized the k- Oresme numbers as k- Oresme
polynomials denoted by O(k)

n (x). The recurrence relation of nth k- Oresme polynomials is as follows.

O(k)
n+2(x) = O(k)

n+1(x)−
1

k2x2 O(k)
n (x),O(k)

0 (x) = 0,O(k)
1 (x) =

1
kx

, (1.5)

where x ∈ R and n ∈ N. Taking k = 1 and x = 1 in (1.5) respectively, one can get Oresme polynomials and k- Oresme numbers.
In [12], k- Oresme numbers are extended to negative indices and gave the following recurrence relation

O(k)
−n = k2

(
O(k)
−n+1−O(k)

−n+2

)
, (1.6)

where O(k)
−1 =−k and O(k)

0 = 0 are the initial conditions. The nth term of this sequence is defined by

O(k)
−n =−k2n (α

n−β n)√
k2−4

. (1.7)

The values α and β are as in the equation (1.4).
Also, the authors in [15] worked on k- Oresme polynomials and derivatives. Some results obtained about these polynomials are
given below.

i)
n

∑
i=1

O(k)
i (x) = k2x2

(
1
kx
−On+2(x)

)
. (1.8)

ii)
n

∑
i=1

(−1)iO(k)
i (x) =

k2x2

2k2x2 +1

(
1
kx

+(−1)n+1
(

O(k)
n+2(x)−2O(k)

n+1(x)
))

. (1.9)

iii)
n

∑
i=1

O(k)
2i+1(x) =

k2x2

2k2x2 +1

(
k2x2

kx+1
+

k2x2

k2x2 +1
O(k)

2n+1(x)− k2x2O(k)
2n+2(x)

)
. (1.10)

iv)
n

∑
i=1

O(k)
2i (x) =

k2x2

2k2x2 +1

(
kx−

(
k2x2 +1

)
O(k)

2n+2(x)+O(k)
2n+1(x)

)
. (1.11)

In [16], Soykan studied a different generalization of Oresme sequences.
In this study, we examined the corresponding generation matrix for the polynomial sequence we define in this paper. We gave
some combinatorial equations for this new sequence studied with the help of basic matrix calculations. Also, we derived new
identities by using the concepts of trace and determinant of a matrix. We also calculated sum formulas for the elements of this
sequence.



On Some k- Oresme Polynomials with Negative Indices — 73/79

2. Main Results

Definition 2.1. For n ∈ Z+ and x ∈ R, k- Oresme polynomial with negative indices is denoted by O(k)
−n(x) and defined by the

recurrence relation

O(k)
−n(x) = (kx)2

(
O(k)
−n+1(x)−O(k)

−n+2(x)
)
, (2.1)

with initial conditions O(k)
−1(x) =−kx and O(k)

0 (x) = 0.

Some terms of this sequence are{
O(k)
−n(x)

}
n≥0

=
{

0,−kx,−(kx)3 ,(kx)3− (kx)5 , ...
}
.

In the case of k = 2 and x = 1, the recurrence relation (2.1) is reduced to the equation (1.6). If the equation (2.1) is solved, the
roots of this equation are

α =
kx+

√
(kx)2−4

2kx
and β =

kx−
√
(kx)2−4

2kx
, (2.2)

respectively.

Corollary 2.2. The Binet formula for the sequence
{

O(k)
−n(x)

}
n≥0

is

O(k)
−n(x) =−(kx)2n (αn−β n)√

(kx)2−4
. (2.3)

Proof. For the k- Oresme polynomials with negative indices, let us substitute the closed formula for the k- Oresme numbers
with negative indices in equation (1.7).

O(k)
−n(x) =

1√
(kx)2−4

(
1

αn −
1

β n

)
,

O(k)
−n(x) =−

1√
(kx)2−4

(
αn−β n

(αβ )n

)
,

which implies

O(k)
−n(x) =−(kx)2n 1√

(kx)2−4

((
kx+

√
(kx)2−4

2kx

)n

−

(
k−
√

(kx)2−4
2kx

)n)
.

By some elementary operations, the following equation is obtained

O(k)
−n(x) =−(kx)2n (αn−β n)√

(kx)2−4
.

This proves the corollary.

Using the terms of the sequence
{

O(k)
−n(x)

}
n≥0

, the generating matrix corresponds to these polynomials with negative

indices is defined as

O=
1
kx

[
(kx)2O(k)

0 (x) −O(k)
−1(x)

(kx)2O(k)
−1(x) −O(k)

−2(x)

]
. (2.4)

In the following Theorems some fundamental identities for the polynomials mentioned above are deduced by using the matrices
O.
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Theorem 2.3. For the matrix O, the following equation is true.

On =

[
kxO(k)

−n+1(x) − 1
kx O(k)

−n(x)
kxO(k)

−n(x) − 1
kx O(k)

−n−1(x)

]
. (2.5)

Proof. To prove by induction observe that for n = 1, then the equation (2.5) is true. Using the fact that On+1 =OnO, we have

On+1 =

[
kxO(k)

−n(x) kxO(k)
−n+1(x)− kxO(k)

−n(x)
kxO(k)

−n−1(x) kxO(k)
−n(x)− kxO(k)

−n−1(x)

]

and when the necessary procedures and arrangements are made

On+1 =

[
kxO(k)

−(n+1)+1(x) − 1
kx O(k)

−(n+1)(x)

kxO(k)
−(n+1)(x) − 1

kx O(k)
−(n+1)−1(x)

]

is obtained. Thus, the proof is completed.

In the following theorem, we give the generating function of
{

O(k)
−n(x)

}
n≥0

.

Theorem 2.4. The generating function for these polynomials is derived below:

∞

∑
i=1

O(k)
−n(x)z

i =− −kxz
1− z(kx)2 + z2(kx)2 , (2.6)

where x ∈ R.

Proof. Using the definition of generating number function and some elementary operations, we have following equations.

f (z) = O(k)
0 (x)+ zO(k)

−1(x)+ z2O(k)
−2(x)+ z3O(k)

−3(x) · · · .

−z(kx)2 f (z) =−z(kx)2O(k)
0 (x)− z2(kx)2O(k)

−1(x)− z3(kx)2O(k)
−2(x)− z4(kx)2O(k)

−3(x) · · · .

z2(kx)2 f (z) = z2(kx)2O(k)
0 (x)+ z3(kx)2O(k)

−1(x)+ z4(kx)2O(k)
−2(x)+ z5(kx)2O(k)

−3(x) · · · .

From this, the following equation is obtained:

f (z)−z(kx)2 f (z)−z2(kx)2 f (z) = O(k)
0 (x)+z

(
O(k)
−1(x)− (kx)2O(k)

0 (x)
)
+z2

(
O(k)
−2(x)− (kx)2O(k)

−1(x)+(kx)2O(k)
0 (x)

)
· · · .

By using the relation (2.1), it is obviously seen that

f (z)− z(kx)2 f (z)+ z2(kx)2 f (z) =−kxz.

Which implies

f (z) =
−kxz

1− z(kx)2 + z2(kx)2 .

This completes the proof.

The well-known Catalan and Cassini identities for the sequence
{

O(k)
−n(x)

}
n≥0

are given in the following two Theorems.

Theorem 2.5. For n≥ 0, we have

O(k)
−n+1(x)O

(k)
−n−1(x)−

(
O(k)
−n(x)

)2
=−(kx)2n. (2.7)
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Proof. By using the matrix O given in the equation (2.5) and the fact that (det (O))n = det (On), we can write

det

[
kxO(k)

−n+1(x) − 1
kx O(k)

−n(x)
kxO(k)

−n(x) − 1
kx O(k)

−n−1(x)

]
= det

[
0 1

(kx)2 (kx)2

]n

.

Hence, we have

(det (O))n =−O(k)
n+1(x)O

(k)
n−1(x)+

(
O(k)

n (x)
)2

=−(kx)2n.

Thus, the desired result is obtained.

We have given an important identity provided by the elements of this polynomial sequence in the Theorem below.

Theorem 2.6. For n≥ r, the following equality is true.

O(k)
−n+r(x)O

(k)
−n−r(x)−

(
O(k)
−n(x)

)2
=−(kx)2n−2r

(
O(k)
−r(x)

)2
. (2.8)

Proof. By substituting the equation (2.5) into the left-hand side of the equation (2.8), we get

LHS =
[

kxO(k)
−n+r+1(x) − 1

kx O(k)
−n+r(x)

kxO(k)
−n+r(x) − 1

kx O(k)
−n+r−1(x)

][
kxO(k)

−n−r+1(x) − 1
kx O(k)

−n−r(x)
kxO(k)

−n−r(x) − 1
kx O(k)

−n−r−1(x)

]
−
[

kxO(k)
−n+1(x) − 1

kx O(k)
−n(x)

kxO(k)
−n(x) − 1

kx O(k)
−n−1(x)

]2
.

By the matrix operation, the LHS equals to

LHS =

[
A B
C D

]
−
[

A
′

B
′

C
′

D
′

]
,

where

A = (kx)2O(k)
−n+r+1(x)O

(k)
−n−r+1(x)−O(k)

−n+r(x)O
(k)
−n−r(x),

B =−O(k)
−n+r+1(x)O

(k)
−n−r(x)+

1
(kx)2 O(k)

−n+r(x)O
(k)
−n−r−1(x),

C = (kx)2O(k)
−n+r(x)O

(k)
−n−r+1(x)−O(k)

−n+r−1(x)O
(k)
−n−r(x),

D =−O(k)
−n+r(x)O

(k)
−n−r(x)+

1
(kx)2 O(k)

−n+r−1(x)O
(k)
−n−r−1(x),

A
′
= (kx)2

(
O(k)
−n+1(x)

)2
−
(

O(k)
−n(x)

)2
,

B
′
= O(k)

−n+1(x)O
(k)
−n(x)+

1
(kx)2 O(k)

−n(x)O
(k)
−n−1(x),

C
′
= (kx)2O(k)

−n+1(x)O
(k)
−n(x)−O(k)

−n(x)O
(k)
−n−1(x)

and

D
′
=−

(
O(k)
−n(x)

)2
+ 1

(kx)2

(
O(k)
−n−1(x)

)2
.

Hence, we obtain

O(k)
−n+r(x)O

(k)
−n−r(x)−

(
O(k)
−n(x)

)2
=−(kx)2n−2r

(
O(k)
−r(x)

)2
,

which proves the theorem.

In the case of r = 1, one can get the Cassini identity from the equation (2.8).
In the below, we give an important identity for these polynomials we are considering with negative indices is given.

Theorem 2.7. For n,m ∈ Z+, we have

O(k)
−(n+m)

(x) = kxO(k)
−n(x)O

(k)
−m+1(x)−

1
kx

O(k)
−n−1(x)O

(k)
−m(x). (2.9)
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Proof. By using (2.5), we can get

On+m =

[
kxO(k)

−(n+m)+1(x) − 1
kx O(k)

−(n+m)
(x)

kxO(k)
−(n+m)

(x) − 1
kx O(k)

−(n+m)−1(x)

]
.

Since On+m =OnOm , equating the corresponding elements of the matrices we have

kxO(k)
−(n+m)

(x) = (kx)2O(k)
−n(x)O

(k)
−m+1(x)−O(k)

−n−1(x)O
(k)
−m(x).

Hence,

O(k)
−(n+m)

(x) = kxO(k)
−n(x)O

(k)
−m+1(x)−

1
kx

O(k)
−n−1(x)O

(k)
−m(x).

The well-known an important identity for these polynomials with negatives indices is deduced in the following Theorem.

Theorem 2.8. For the positive integers m,n, the following is satisfied.

O(k)
−n+1(x)O

(k)
−m(x)−O(k)

−n(x)O
(k)
−m+1(x) =−(kx)2mO(k)

−(n−m)
(x). (2.10)

Proof. Using the closed formula, we can write O(k)
−n+1(x)O

(k)
−m(x)−O(k)

−n(x)O
(k)
−m+1(x) as,

LHS =
1

(kx)2−4
[(
−(kx)2n−2 (

α
n−1−β

n−1)− (kx)2m (αm−β
m)
)
−
(
(kx)2n (αn−β

n)− (kx)2m−2 (
α

m−1−β
m−1))] ,

LHS =
1

(kx)2−4
[
(kx)2n+2m−2 (−α

n−1
β

m−β
n−1

α
m +α

n
β

m−1 +β
n
α

m−1)] ,

LHS =
1

(kx)2−4

[
(kx)2n+2m−2

(
α

n
β

m
(

1
β
− 1

α

)
−α

m
β

n
(

1
β
− 1

α

))]
,

LHS =
1

(kx)2−4

[
(kx)2n+2m−2 (αn

β
m−α

m
β

n)
α−β

αβ

]
,

where α and β are the roots of equation (2.1). By substituting α−β =

√
(kx)2−4

kx and αβ = 1
(kx)2 into the last equation, we

obtain

O(k)
−n+1(x)O

(k)
−m(x)−O(k)

−n(x)O
(k)
−m+1(x) =

1
(kx)2−4

[
(kx)2n+2m−2 (αn

β
m−α

m
β

n)
α−β

αβ

]
.

Making necessary arrangements, we get

LHS =−(kx)2mO(k)
−(n−m)

(x)

which completes the proof.

Now, we have given some sum formulas of this polynomials with negative indices in the Theorem below.

Theorem 2.9. For n≥ 1, we have the followings.

i)
n

∑
i=1

O(k)
−i (x) =−kx(1− kxO−n+1(x)) . (2.11)
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ii)
n

∑
i=1

(−1)iO(k)
−i (x) =

1
2(kx)2 +1

(
kx+(−1)n

(
(kx)2O(k)

−n(x)+O(k)
−n−1(x)

))
. (2.12)

iii)
n

∑
i=1

O(k)
−(2i+1)(x) =

1
2

(
O(k)
−2n(x)

(
−2(kx)3− kx

)
2(kx)2 +1

(
−kx+(kx)2(2O(k)

−2n−1(x)+1)+(kx)4−1
))

. (2.13)

iv)
n

∑
i=1

O(k)
−(2i)(x) =

(kx)2

2(kx)2 +1

(
kx−

(
(kx)2 +1

)
O(k)
−2n−2(x)+O(k)

−2n−1(x)
)
. (2.14)

Proof. i) This equation,

n

∑
i=1

O(k)
−i (x) =−kx(1− kxO0(x))

is true for n = 1. Let us assume that equality is true for n≤ m. Then, we get

LHS =−kx
(

1− kxO(k)
−n+1(x)

)
+
(

O(k)
−n−1(x)

)
,

LHS =−kx
(

1− kxO(k)
−n+1(x)

)
+(kx)2

(
kxO(k)

−n(x)−O(k)
−n+1(x)

)
and

LHS =−kx
(

1− kxO(k)
−n(x)

)
.

ii) The proof can be done similarly by using induction method.
iii) By observing that

n

∑
i=0

O(k)
−2i−1(x) =

1
2

(
2n+1

∑
i=0

O(k)
−i (x)−

2n+1

∑
i=0

(−1)iO(k)
−i (x)

)
,

and using i and ii, the proof is clear.
iv) Similarly, by observing that

n

∑
i=0

O(k)
−2i(x) =

1
2

(
2n

∑
i=0

O(k)
−i (x)−

2n

∑
i=0

(−1)iO(k)
−i (x)

)
,

the desired equality can be shown.

In 2004, Laughlin calculated powers of an arbitrary second order matrix A by using the trace and determinant of this matrix.
In [4],[5], Halici and Akyuz deduced and gave some combinatorial identities involving Horadam sequence. The help of these
studies, we give some important and proper identity for the polynomials we examined with negative indices in the rest of the

section. nth power of an arbitrary matrix A =

[
a b
c d

]
is given by the following formula:

An = znA− zn−1DI2,

where

zn =
αn−β n

α−β
=
b n−1

2 c

∑
m=0

1
2n−1

(
n

2m+1

)
T n−2m−1(T 2−4D)



On Some k- Oresme Polynomials with Negative Indices — 78/79

and α,β are the roots of the characteristic equation of Horadam sequence. Notice that, T and D denotes the trace and
determinant of the matrix A respectively.
The matrix An is given by Laughlin as

An =

[
yn−dyn−1 byn−1

cyn yn−ayn−1

]
,

where

yn =
b n

2 c

∑
i=0

(
n− i

i

)
T n−2iDi.

Theorem 2.10. For n≥ 1, we have
b n

2 c

∑
i=0

(
n− i

i

)
(kx)2n−2i

(
n
(
2− (kx)2

)
−2i

(
1− (kx)2

)
n− i

)
=

1
2n−1

b n
2 c

∑
i=0

(
n
2i

)
(kx)−i

(√
(kx)2−4

)
. (2.15)

Proof. Applying (2.15) to generating matrix O, we can write

On =

[
yn− (kx)2yn−1 yn−1

(kx)2yn yn

]
.

For k > 2, notice that trace and determinant of O are calculated as T = (kx)2 and D =−(kx)2. Hence, we write yn as

yn =
b n

2 c

∑
i=0

(
n− i

i

)
(kx)2n−2i. (2.16)

Using the fact that λ n
1 +λ n

2 = 2yn− (kx)2yn−1, we obtain the left-hand side as

LHS =
n

∑
i=0

(
n
i

)(
1
2

)n−i
(√

(kx)2−4
2kx

)i

−
n

∑
i=0

(
n
i

)(
1
2

)n−i
(
−
√
(kx)2−4

2kx

)i

,

LHS =
n

∑
i=0

(
n
i

)
1
2n

1
(kx)i

[(√
(kx)2−4

)i

−
(
−
√

(kx)2−4
)i
]
,

LHS =
1

2n−1

b n
2 c

∑
i=0

(
n
2i

)
(kx)−i

(√
(kx)2−4

)i

.

Furthermore, by using equation (2.16), we can write right-hand side as

RHS = 2
b n

2 c

∑
i=0

(
n− i

i

)
(kx)2n−2i− (kx)2

b n−1
2 c

∑
i=0

(
n− i−1

i

)
(kx)2n−2i

which equals to

RHS = 2
b n

2 c

∑
i=0

(
n− i

i

)
(kx)2n−2i− (kx)2

b n−1
2 c

∑
i=0

(
n− i

n−2i

)
n−2i
n− i

(kx)2n−2i.

Since n−2i
n−i =

n−2b n
2 c

n−b n
2 c

= 0, we get the desired result as:

RHS =
b n

2 c

∑
i=0

(
n− i

i

)
(kx)2n−2i

(
2− (kx)2 n−2i

n− i

)
,

RHS =
b n

2 c

∑
i=0

(
n− i

i

)
(kx)2n−2i

(
n(2− (kx)2)−2i(1− (kx)2)

n− i

)
.

Equating the left and right hand sides, we get

RHS =
b n

2 c

∑
i=0

(
n− i

i

)
(kx)2n−2i

(
n(2− (kx)2)−2i(1− (kx)2)

n− i

)
=

1
2n−1

b n
2 c

∑
i=0

(
n
2i

)
(kx)−i

(√
(kx)2−4

)i

.
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3. Conclusion
In this study, we define the corresponding generation matrix for the polynomial sequence we define in this work. We

obtained some combinatorial equations for this new sequence studied with the help of basic matrix calculations. Moreover, we
gave new identities by using the concepts of trace and determinant of a matrix. We also derived sum formulas for the elements
of this sequence.
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