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How to cite: Dişkaya, O. (2024). On the non-Newtonian Padovan and non-Newtonian Perrin numbers. Sinop
Üniversitesi Fen Bilimleri Dergisi, 9(2), 502-515. https://doi.org/10.33484/sinopfbd.1444748

Research Article

Corresponding Author
Orhan DİŞKAYA
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Abstract
In this work, we introduce a novel version of Padovan and Perrin numbers
which we refer to as non-Newtonian Padovan and non-Newtonian Perrin
numbers. Furthermore, we examine about a number of their properties.
Additionally, we provide a variety of identities and formulas involving
these new kinds, including the Binet-like formulas, the generating
functions, the partial sum formulas, and the binomial sum formulas.
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Öz
Bu çalışmada Newtonian olmayan Padovan ve Newtonian olmayan Perrin
sayıları olarak adlandırdığımız Padovan ve Perrin sayılarının yeni bir
versiyonunu tanıtıyoruz. Ayrıca bunların bazı özelliklerini de inceliyoruz.
Ek olarak, Binet benzeri formüller, üreteç fonksiyonları, kısmi toplam
formülleri ve binom toplam formülleri de dahil olmak üzere bu yeni türleri
içeren çeşitli özdeşlikler ve formüller sağlıyoruz.

Anahtar Kelimeler: Newtonian olmayan analiz, Padovan sayıları, Binet
formülü, üreteç fonksiyonları, binom toplamı

Introduction

Numerous calculi with various features have been developed since Newton and Leibnitz established

modern calculus. As an alternative to Newton and Leibniz’s standard calculus, Grossman and Katz

created a new family of calculi known as non-Newtonian calculus, and, defined modern forms of integrals

and derivatives that converted addition and subtraction operations into multiplication and division opera-

tions [1]. In classical calculus, every property finds an analogue in non-Newtonian calculus. Non-Newto-

nian calculus offers a distinct approach to problems traditionally tackled by calculus. For certain scenarios,

such as those involving wage rates (in dollars, euros, etc.), proponents suggest employing bigeometric

calculus, a type of non-Newtonian calculus, instead of the conventional Newtonian approach [1–3].
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Duyar and Sağır aimed to generalize the traditional Lebesgue measure on real numbers to the context of

non-Newtonian real numbers. To achieve this, they introduced the concept of Lebesgue measure for both

open and closed sets in the non-Newtonian framework and explored its fundamental properties [4].

Erdoğan and Duyar introduced non-Newtonian improper integrals and investigated their convergence

conditions. Additionally, key theorems such as the second mean value theorem and the intermediate

value theorem were proved within the non-Newtonian framework to provide convergence tests [5].

Değirmen and Duyar introduced one of these gains by introducing non-Newtonian Fibonacci and non-

Newtonian Lucas numbers. Additionally, they provide some formulas and identities such as the Binet

formula, d’Ocagne identity, Cassini identity, and Gelin-Cesaro identity, and find the functions that

generate these numbers [6].

Yağmur introduced a new type of Pell and Pell-Lucas numbers in terms of non-Newtonian calculus, and

studied some significant identities and formulas for classical Pell and Pell-Lucas numbers [7].

In this research endeavor, we commence by providing essential insights into non-Newtonian calculus.

Subsequently, we present the definition and certain properties of Padovan numbers, establishing their

connection with non-Newtonian calculus. We then delve into an examination of various identities

associated with these numbers. An injective function is called a generator, and its codomain is a subset

of R, and whose domain is R. There is precisely one arithmetic produced by each generator, and there

is exactly one generator that produces each arithmetic. We select the exponential function from R to the

set R+ as a generator, in other words,

α : R → R+, λ ↣ α(λ) = eλ = µ,

α−1 : R+ → R, λ ↣ α−1(λ) = lnµ = λ.

I is referred to as the unit function, whose inverse is oneself, if I(λ) = λ for all λ ∈ R. The definition

of the non-Newtonian real number set R(N ) is as follows:

R(N ) := {α(λ) : λ ∈ R}.

It is important to recognize that every concept in classical arithmetic has an inherent equivalent in

α−arithmetic. As an example, the α−integers shown to be as follows:

..., α(−3), α(−2), α(−1), α(0), α(1), α(2), α(3), . . . .

For every integer m, we set ṁ = α(m). Naturally, if ṁ is an α−positive integer, then

ṁ = 1̇+̇ . . . +̇1̇︸ ︷︷ ︸
m terms

.

For a generator α with range A = R(N ), which is a subset of the real numbers, α−arithmetic denotes

arithmetic operations defined on the domain A as follows: For any generator α and λ, µ ∈ R(N ),
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α− addition → λ+̇µ = α{α−1(λ) + α−1(µ)},

α− subtraction → λ−̇µ = α{α−1(λ)− α−1(µ)},

α−multiplication → λ×̇µ = α{α−1(λ)× α−1(µ)},

α− division → λ/̇µ = α{α−1(λ)÷ α−1(µ)} =
λ

µ
N ,

α− order → λ<̇µ = α{α−1(λ) < α−1(µ)}.

Specifically, selecting α−generator I , which is the identity function α(t) = t for all t ∈ R ⇒ α−1(t) =

t, makes it evident that α−arithmetic is indeed classical arithmetic. Assuming that the α−generator is

exp and that α(k) = ek for k ∈ R, α−1(k) = ln k, α−arithmetic transforms into geometric arithmetic

as follows:

Geometric addition → λ+̇µ = α{α−1(λ) + α−1(µ)} = e{lnλ+lnµ} = λ · µ,

Geometric subtraction → λ−̇µ = α{α−1(λ)− α−1(µ)} = e{lnλ−lnµ} =
λ

µ
(µ ̸= 0),

Geometric multiplication → λ×̇µ = α{α−1(λ)× α−1(µ)} = e{lnλ×lnµ} = λlnµ = µlnλ,

Geometric division → λ/̇µ = α{α−1(λ)÷ α−1(µ)} = e{lnλ÷lnµ} = λ{1÷lnµ} (µ ̸= 1).

These operations define α-arithmetic, where α is typically the exponential function in this context.

Now, we create the non-Newtonian real field R(N ) and provide some associated characteristics.

Definition of the dual operations addition and multiplication for the set of non-Newtonian real numbers

R(N ) as follows, respectively:

+̇ :R(N )× R(N ) → R(N )

(λ, µ) 7−→ λ+̇µ = α{α−1(λ) + α−1(µ)},

×̇ :R(N )× R(N ) → R(N )

(λ, µ) 7−→ λ×̇µ = α{α−1(λ)× α−1(µ)}.

It is demonstrable that
(
R(N ), +̇, ×̇

)
is an complete field by normal checking, so we omit out the

specifics. Let A ⊂ R(N ) be a set of integers in the extended real numbers [3].

The v−th α−power of λ ∈ R(N ) for a given integer v is represented by

λvN = λ×̇λ×̇ . . . ×̇λ︸ ︷︷ ︸
v terms

.

The α-factorial of a given positive integer v is represented by

v̇!N = v̇×̇(v̇−̇1̇)×̇(v̇−̇2̇)×̇ . . . ×̇2̇×̇1̇.
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The α-binomial of a given positive integer u and v is represented by(
u̇

v̇

)
N

=
u̇!N

v̇!N ×̇(u̇−̇v̇)!N
N .

The α-binomial sum of a given integer λ, µ and u is represented by

(λ̇+̇µ̇)uN =N

u∑
v=0

(
u̇

v̇

)
N
×̇λ̇vN ×̇µ̇(u−v)N . (1)

The notation
√
λ
N

will be utilized for s = α{
√
α−1(λ)} where every s is α−nonnegative integer. This

indicates that s2N = λ is the only α−nonnegative integer whose α−square equals λ. Additionally,

α(−λ) = α{−α−1(λ̇)} = −̇λ̇ all λ ∈ R.

The Padovan and Perrin sequences are defined as follows. The Padovan sequence {Pv}v≥0 and Perrin

sequence {Rv}v≥0 are defined by the third order recurrences, respectively,

Pv+3 = Pv+1 + Pv, (2)

Rv+3 = Rv+1 +Rv, (3)

with the initial conditions P0 = P1 = P2 = 1 and R0 = 3, R1 = 0, R2 = 2, respectively [8,

9]. The Padovan and Perrin sequences appear as sequences A000931 and A001608 on the On-Line

Encyclopedia of Integer Sequences (OEIS), respectively [10]. The first few values of these sequences are

1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37 and 3, 0, 2, 3, 2, 5, 5, 7, 10, 12, 17, 22, respectively. The unique

real root of the characteristic equation of these sequences is known as the plastic number:

t3 − t− 1 = 0

with a value of

3

√
1

2
+

1

6

√
23

3
+

3

√
1

2
− 1

6

√
23

3
≈ 1.324718.

By designating its roots as δ, η, and γ, the subsequent equalities can be obtained

δ + η + γ = 0,

δη + δγ + ηγ = −1,

δηγ = 1.

In addition, the Binet-like formulas for the Padovan and Perrin sequences are as follows:

Pv = aδv + bηv + cγv, (4)
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Rv = δv + ηv + γv, (5)

respectively, where

a =
(η − 1)(γ − 1)

(δ − η)(δ − γ)
, b =

(δ − 1)(γ − 1)

(η − δ)(η − γ)
, c =

(δ − 1)(η − 1)

(γ − δ)(γ − η)
.

It is commonly known that the following identities are recognized based on [11, 12]:

P−v−7 = P 2
v − Pv+1Pv−1, (6)

Pv = Pv−1 + Pv−5, (7)

Rv = Pv−10 + Pv+1, (8)

Pv−5P−v−5 + Pv−3P−v−4 + Pv−4P−v−3 = 1, (9)

Pv = Pu−1Pv−u−4 + Pu+1Pv−u−3 + PuPv−u−2, (10)

u∑
v=1

Pv = Pu+5 − 3, (11)

u∑
v=1

Rv = Ru+5 − 5, (12)

∞∑
v=0

Pvx
v =

1 + x

1− x2 − x3
, (13)

∞∑
v=0

Rvx
v =

3− x2

1− x2 − x3
, (14)

∞∑
v=0

Pv

v!
xv = aeδx + beµx + ceγx, (15)

∞∑
v=0

Rv

v!
xv = eδx + eµx + eγx. (16)
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In recent years, numerous studies on Padovan numbers have been published. For further information,

please refer to the works cited in [13–19].

Some Properties of the Non-Newtonian Padovan and Non-Newtonian Perrin Numbers

This section provides a novel interpretation of the definitions of a non-Newtonian Padovan number and a

non-Newtonian Perrin number from a different perspective. Along with dealing with the non-Newtonian

versions of various formulas and identities, we also demonstrate their links by comparing them in an

analogy with several well-known identities and formulas for their classical equivalents.

Definition 1. The non-Newtonian Padovan and non-Newtonian Perrin numbers are defined by

NPv = Ṗv = α(Pv) and NRv = Ṙv = α(Rv),

respectively, where the v−th Padovan and Perrin numbers are Pv and Rv, respectively. The NP and

NR represent the set of the non-Newtonian Padovan and non-Newtonian Perrin numbers, respectively.

That is,

NP = {NPv : v ∈ N} = {1̇, 1̇, 1̇, 2̇, 2̇, 3̇, 4̇, 5̇, 7̇, 9̇, 1̇2, 1̇6, ..., Ṗv, ...}

and

NR = {NRv : n ∈ N} = {3̇, 0̇, 2̇, 3̇, 2̇, 5̇, 5̇, 7̇, 1̇0, 1̇2, 1̇7, 2̇2, ..., Ṙv, ...}

Regarding classical arithmetic, we obtain Padovan and Perrin numbers if we utilize the generator I

specified by α(x) = x for any x ∈ R.

Additionally, by selecting the generator exp, which is defined as α(x) = ex for any x ∈ R, we may

derive the following Padovan and Perrin numbers in terms of geometric arithmetic:

NGP = {α(Pv) : v ∈ N}

= {ePv : v ∈ N}

= {e1, e1, e1, e2, e2, e3, e4, e5, e7, e9, e12, e16, ..., ePv , ...}

and

NGR = {α(Rv) : v ∈ N}

= {eRv : v ∈ N}

= {e3, e0, e2, e3, e2, e5, e5, e7, e10, e12, e17, e22, ..., eRv , ...}.

Now, we emphasize on a few relations concerning non-Newtonian Padovan and non-Newtonian Perrin

numbers, as well as their respective relationships.

Theorem 1. For v, u ≥ 0, the following identities valid:

i) NPv+̇NPv+1 = NPv+3,
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ii) NPv−1+̇NPv−5 = NPv,

iii) NRv+̇NRv+1 = NRv+3,

iv) NPv−10+̇NPv+1 = NRv,

v) NP 2
v −̇NPv+1×̇NPv+1 = NP−v−7,

vi) NPv−5×̇NP−v−5+̇NPv−3×̇NP−v−4+̇NPv−4×̇NP−v−3 = 1,

vii) NPv−1×̇NPu−v+̇NPv+1×̇NPu−v+1+̇NPv×̇NPu−v+2 = NPu.

Proof. The proofs of i, ii, iii, iv, v and vi are obvious based on the addition and subtraction properties

of non-Newtonian real numbers by using expressions (2), (7), (3), (8), (6) and (9), respectively. The

proof of equality vii is shown by using expression (10) as follows:

NPv−1×̇NPu−v+̇NPv+1×̇NPu−v+1+̇NPv×̇NPu−v+2

= α(Pv−1)×̇α(Pu−v)+̇α(Pv+1)×̇α(Pu−v+1)+̇α(Pv)×̇α(Pu−v+2)

= α{α−1α(Pv−1)× α−1α(Pu−v)}+̇α{α−1α(Pv+1)× α−1α(Pu−v+1)}

+̇α{α−1α(Pv)× α−1α(Pu−v+2)}

= α{α−1α{α−1α(Pv−1)× α−1α(Pu−v)}+ α−1α{α−1α(Pv+1)× α−1α(Pu−v+1)}}

+̇α{α−1α(Pv)× α−1α(Pu−v+2)}

= α{α−1α{α−1α{α−1α(Pv−1)× α−1α(Pu−v)}+ α−1α{α−1α(Pv+1)× α−1α(Pu−v+1)}}

+ α−1α{α−1α(Pv)× α−1α(Pu−v+2)}}

= α(Pv−1Pu−v + Pv+1Pu−v+1 + PvPu−v+2)

= α(Pu)

= NPu.

Remark 1. The non-Newtonian characteristic equation of the recurrence relation in the i-th item of the

above theorem is as follows:

ṫ3N = ṫ+̇1̇. (17)

If NPv = ṫvN is taken in the recurrence relation in the i-th

ṫv+3N = ṫv+1N +̇ṫvN

is obtained.

Thus, we get the result by simplifying the ṫvN ’s.

Theorem 2. For all v ≥ 0, the Binet-like formulas for NPv and NRv are given by

NPv = ȧ×̇δ̇vN +̇ḃ×̇η̇vN +̇ċ×̇γ̇vN (18)
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and

NRv = δ̇vN +̇η̇vN +̇γ̇vN , (19)

respectively, where

ȧ =
(η̇−̇1̇)×̇(γ̇−̇1̇)

(δ̇−̇η̇)×̇(δ̇−̇γ̇)
N , ḃ =

(δ̇−̇1̇)×̇(γ̇−̇1̇)

(η̇−̇δ̇)×̇(η̇−̇γ̇)
N and ċ =

(δ̇−̇1̇)×̇(η̇−̇1̇)

(γ̇−̇δ̇)×̇(γ̇−̇η̇)
N .

Also, δ̇, η̇ and γ̇ are roots of the characteristic equation ṫ3N −̇ṫ−̇1̇ = 0̇.

Proof. By using the equation (4) for Padovan numbers, we obtain

ȧ×̇δ̇vN +̇ḃ×̇η̇vN +̇ċ×̇γ̇vN

= α{α−1(ȧ)× α−1(α{(α−1(δ̇))v})}+̇α{α−1(ḃ)× α−1(α{(α−1(η̇))v})}

+̇α{α−1(ċ)× α−1(α{(α−1(γ̇))v})}

= α{α−1(α{α−1(ȧ)× α−1(α{(α−1(δ̇))v})}) + α−1(α{α−1(ḃ)× α−1(α{(α−1(η̇))v})})

+ α−1(α{α−1(ċ)× α−1(α{(α−1(γ̇))v})})}

= α{α−1(ȧ)× (α−1(δ̇))v + α−1(ḃ)× (α−1(η̇))v + α−1(ċ)× (α−1(γ̇))v}

= α{aδv + bηv + cγv}

= α{Pv} = NPv.

On the other hand, by performing the equation (5) for the Perrin numbers, one can easily observe that

δ̇vN +̇η̇vN +̇γ̇vN = α{(α−1(δ̇))v}+̇α{(α−1(η̇))v}+̇α{(α−1(γ̇))v}

= α{α−1(α{α−1(α{(α−1(δ̇))v}) + α−1(α{(α−1(η̇))v})}) + α−1(α{(α−1(γ̇))v})}

= α{δv + ηv + γv}

= α{Rv} = NRv.

Theorem 3. The generating functions for NPv and NRv are as follows, respectively,

i.

N

∞∑
v=0

(NPv×̇tvN ) =
1̇+̇t

1̇−̇t2N −̇t3N
N ,

ii.

N

∞∑
v=0

(NRv×̇tvN ) =
3̇−̇t2N

1̇−̇t2N −̇t3N
N ,

where the notation N
∑∞

v=0 denotes the non-Newtonian real number series as elaborated in [20].

509



Dişkaya Sinop Uni J Nat Sci 9(2): 502-515 (2024)
E-ISSN: 2564-7873

Proof. i. Let gNP (t) =N
∑∞

v=0(NPv×̇tvN ). We have

gNP (t) = 1̇+̇t+̇t2N +̇N

∞∑
v=3

(NPv×̇tvN )

= 1̇+̇t+̇t2N +̇N

∞∑
v=3

(NPv−2×̇tvN )+̇N

∞∑
v=3

(NPv−3×̇tvN )

t2N ×̇gNP (t) =N

∞∑
v=0

(NPv×̇t(v+̇2)N ) = t2N +̇N

∞∑
v=3

(NPv−2×̇tvN )

t3N ×̇gNP (t) =N

∞∑
v=0

(NPv×̇t(v+̇3)N ) =N

∞∑
v=3

(NPv−3×̇tvN )

Therefore, it follows that

(1̇−̇t2N −̇t3N )×̇gNP (t) = gNP (t)−̇t2N ×̇gNP (t)−̇t3N ×̇gNP (t)

= 1̇+̇t.

Thus, we obtain the function gNP (t) =
1̇+̇t

1̇−̇t2N −̇t3N
N as the intended outcome.

ii. The proof can be obtained in a manner similar to the proof above.

Theorem 4. The exponential generating functions for NPv and NRv are, respectively,

i.

N

∞∑
v=0

(NPv×̇ẋvN )/̇v̇!N = ȧ×̇ėδ̇×̇ẋN +̇ḃ×̇ėη̇×̇ẋN +̇ċ×̇ėγ̇×̇ẋN ,

ii.

N

∞∑
v=0

(NRv×̇xvN )/̇v̇!N = ėδ̇×̇ẋN +̇ėη̇×̇ẋN +̇ėγ̇×̇ẋN ,

where the notation N
∑∞

v=0 denotes the non-Newtonian real number series as elaborated.

Proof. i. Using the identity (15), we get

N

∞∑
v=0

(NPv×̇ẋvN )/̇v̇!

=N

∞∑
v=0

(α(Pv)×̇α{(α−1(ẋ))v})/̇v̇!
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= α{α−1(α{α−1(α{α−1(α(P0))× α−1(α{(α−1(α(x)))0})})÷ α−1(α(0!))})

+ α−1(α{α−1(α{α−1(α(P1))× α−1(α{(α−1(α(x)))1})})÷ α−1(α(1!))})

+ α−1(α{α−1(α{α−1(α(P2))× α−1(α{(α−1(α(x)))2})})÷ α−1(α(2!))}) + . . . }

= α{(P0 × x0) + (P1 × x1) + (P2 × x2)÷ 2 + . . . }

= α{
∞∑
v=0

(Pvx
v)÷ v!}

= α{aeδx + beηx + ceγx}

= α{α{α−1(α(a))× α{(α−1(α(e)))α{α
−1(α(δ))×α−1(α(x))}}}

+ α{α−1(α(b))× α{(α−1(α(e)))α{α
−1(α(η))×α−1(α(x))}}}

+ α{α−1(α(c))× α{(α−1(α(e)))α{α
−1(α(γ))×α−1(α(x))}}}}

= α{α−1(ȧ)× α{(α−1(ė))α{α
−1(δ̇)×α−1(ẋ)}}}

+̇α{α−1(ḃ)× α{(α−1(ė))α{α
−1(η̇)×α−1(ẋ)}}}

+̇α{α−1(ċ)× α{(α−1(ė))α{α
−1(γ̇)×α−1(ẋ)}}}

= ȧ×̇ėδ̇×̇ẋN +̇ḃ×̇ėη̇×̇ẋN +̇ċ×̇ėγ̇×̇ẋN .

ii. The proof can be obtained in a manner similar to the proof above by using the identity (16).

Theorem 5. The partial sum formulas for NPv and NRv are, respectively,

i.

N

u∑
v=1

NPv = NPu+5−̇3̇,

ii.

N

u∑
v=1

NRv = NRu+5−̇5̇,

where the notation N
∑u

v=1 represents a finite sum based on α−arithmetic, and u is a non-negative

integer.

Proof. i. Using the formula (11), we find

N

u∑
v=1

NPv =N

u∑
v=1

α(Pv)

= α{α−1(α(P1)) + α−1(α(P2)) + · · ·+ α−1(α(Pu))}

= α{P1 + P2 + · · ·+ Pu}

= α{
u∑

v=1

Pv}

= α{Pu+5 − 3}
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= α{α−1(α(Pu+5))− α−1(α(3))}

= NPu+5−̇3̇.

ii. The proof can be obtained in a manner similar to the proof above by using the formula (12).

Theorem 6. The binomial sum formulas for NPv and NRv are, respectively,

i.

N

u∑
v=0

(
u̇

v̇

)
N
×̇NPv = NP3u,

ii.

N

m∑
v=0

(
u̇

v̇

)
N
×̇NRv = NR3u,

where the notation N
∑u

v=0 represents a finite sum based on α−arithmetic, and v is a non-negative

integer.

Proof. i. Using the equalities (18), (17) and (1), we obtain

N

u∑
v=0

(
u̇

v̇

)
N
×̇NPv

=N

u∑
v=0

(
u̇

v̇

)
N
×̇(ȧ×̇δ̇vN +̇ḃ×̇η̇vN +̇ċ×̇γ̇vN )

= ȧ×̇N

u∑
v=0

(
u̇

v̇

)
N
×̇δ̇vN +̇ḃ×̇N

u∑
v=0

(
u̇

v̇

)
N
×̇η̇vN +̇ċ×̇N

u∑
v=0

(
u̇

v̇

)
N
×̇γ̇vN

= ȧ×̇N

u∑
v=0

(
u̇

v̇

)
N
×̇α{(α−1(δ̇))v}+̇ḃ×̇N

u∑
v=0

(
u̇

v̇

)
N
×̇α{(α−1(η̇))v}

+̇ċ×̇N

u∑
v=0

(
u̇

v̇

)
N
×̇α{(α−1(γ̇))v}

= ȧ×̇N

u∑
v=0

(
u̇

v̇

)
N
×̇α{δv}+̇ḃ×̇N

u∑
v=0

(
u̇

v̇

)
N
×̇α{ηv}+̇ċ×̇N

u∑
v=0

(
u̇

v̇

)
N
×̇α{γv}

= ȧ×̇N

u∑
v=0

(
u̇

v̇

)
N
×̇α{δv×̇1u−v}+̇ḃ×̇N

u∑
v=0

(
u̇

v̇

)
N
×̇α{ηv×̇1u−v}

+̇ċ×̇N

u∑
v=0

(
u̇

v̇

)
N
×̇α{γv×̇1u−v}

= ȧ×̇N

u∑
v=0

(
u̇

v̇

)
N
×̇α{(α−1(δ̇))v × (α−1(1̇))u−v}

+̇ḃ×̇N

m∑
v=0

(
u̇

v̇

)
N
×̇α{(α−1(η̇))v × (α−1(1̇))u−v}
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+̇ċ×̇N

u∑
v=0

(
u

v

)
N
×̇α{(α−1(γ̇))v × (α−1(1̇))u−v}

= ȧ×̇N

u∑
v=0

(
u̇

v̇

)
N
×̇δ̇vN ×̇1̇u−vN +̇ḃ×̇N

u∑
v=0

(
u̇

v̇

)
N
×̇η̇vN ×̇1̇u−vN

+̇ċ×̇N

u∑
v=0

(
u̇

v̇

)
N
×̇γ̇vN ×̇1̇u−vN

= ȧ×̇N (δ̇+̇1̇)uN +̇ḃ×̇N (η̇+̇1̇)uN +̇ċ×̇N (γ̇+̇1̇)uN

= ȧ×̇N δ̇3uN +̇ḃ×̇N η̇3uN +̇ċ×̇N γ̇3uN

= NP3u

ii. The proof can be obtained in a manner similar to the proof above by using the the equalities (19),

(17) and (1).

Conclusions

In this work, we have introduced a novel perspective on Padovan and Perrin numbers, termed as non-

Newtonian Padovan and non-Newtonian Perrin numbers. We have explored various properties of these

new numbers and provided a range of identities and formulas. These include Binet-like formulas,

generating functions, partial sum formulas, and binomial sum formulas.

Important conclusions from our research include:

Recurrence relations and recursive formulations for non-Newtonian Padovan and non-Newtonian Perrin

numbers. Derivation and proof of several formulas applicable in the analysis of these new numbers.

In-depth investigation into the analytic and combinatorial properties of these numbers. In conclusion,

this study aims to enhance understanding of the mathematical structures of non-Newtonian Padovan and

non-Newtonian Perrin numbers, potentially opening new avenues for advanced mathematical research

and applications. Future work could explore further applications of these new numbers in different fields

and investigate extended properties.

By contributing an innovative perspective to the classical theories of Padovan and Perrin numbers, this

work encourages further exploration and utilization of these new types within those working in this

field.
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