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Abstract. Quadratic stochastic operator (QSO) theory has advanced sig-

nificantly since the early 1920s and is still growing due to its numerous ap-

plications in a variety of fields, particularly mathematics, where QSOs have
inspired mathematicians to use and integrate various mathematical knowledge

and concepts to better understand their properties and behaviors. Motivated
by the relationship between the number of partitions on an infinite state space

and the development of the system of equations corresponding to QSOs, this

work sought to investigate the dynamics of QSOs formed by three partitions.
First, we define and construct the 3-partition QSOs, which result in a system

of equations with three variables. We then provide the formulation of the fixed

point form and discuss its behavior using Jacobian matrix analysis. Some sce-
narios of three-partition QSOs with three different parameters are considered

to readily investigate the type of fixed point in such systems. It is demon-

strated that the operators can have either an attracting or a saddle fixed point
but can never be repelling. We show how the saddle fixed point behaves, by

identifying a set of points known as the fixed point’s stable manifold.

1. Introduction

Quadratic stochastic operator (QSO) theory has been an appealing topic among
researchers in diverse knowledge areas since its establishment in the early 1920s by
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Bernstein [2] through his innovative idea on the synthesis study between Mendel’s
crossing law and Galton’s regression law. The QSO is the simplest nonlinear oper-
ator, which refers to a complex system model and such a model is widely applied
to describe a dynamical system. Proficiency of the QSO in providing a distribu-
tion of the next generation given the distribution of the current generation has led
to the acknowledgment of the model as a significant analysis source of dynamical
properties and modeling study in various domains running from biology to econ-
omy. Due to its immense contributions across fields, the study of QSO has been
promptly developing through numerous publications, where the existing studies can
be classified into two sets, namely finite and infinite state space. The most promi-
nent QSO study on a finite state space is the study of Volterra QSO [21] due to
its accessibility in applying renowned mathematical techniques such as dynamical
systems theory, linear algebra, convex analysis, etc. The compelling form of the
systems generated by the Volterra QSO has preceded the extension of the investi-
gation to infinite cases [18, 19]. The noteworthy findings of the QSO study on an
infinite-dimensional setting allow mathematicians to discover the properties of the
operator by introducing different QSO classes on infinite state space [5–11].

Recently, researchers have conducted studies on the classes of QSO on an infinite
state space. These works have incorporated the concept of measurable partitions
on the state space [13–16]. The research of the dynamics of classes of quadratic
stochastic operators, specifically Geometric QSO and Poisson QSO, formed by two
measurable partitions on a countable state space, has been thoroughly conducted
and extensively described in [13, 14, 16]. Meanwhile, in [15], the concept of mea-
surable partitions is applied to Lebesgue QSO with nonnegative integer parameters
that are specified on a continuous state space.

Currently, most studies of the classes of QSO on the countable state space focused
on two measurable partitions (see [13, 14, 16]), which limits the analysis to char-
acteristics of two distinct groups. Previous works on Geometric QSO and Poisson
QSO [13,14,16] mainly discussed the regular property of such operators through the
existence of fixed points, either they are attracting or repelling, since the 2-partition
can be represented into a one-dimensional map. Considering the representation of
3-partition by a two-dimensional map may result to the study of an extra behavior
of fixed point, namely saddle, we are motivated to extend the study to three mea-
surable partitions to uncover additional properties of these operators. This include
a whole process of constructing the QSO generated by 3-partition, followed by the
representation of the operators into a system of equations. From here, we will work
on the finding of the unique fixed point of the system of equations based on existing
theorems and propositions. Some prominent techniques and methods will be used
to examine the behavior of the fixed point.

Accordingly, this research paper will establish some forms of QSO classes created
by a 3-measurable partition. These classes will be categorized and their dynamics
will be further analyzed. Some examples of Geometric QSO and Poisson QSO
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generated by 3-partition will be demonstrated as a part of the results. Also, we
aim to provide evidences of the fixed points to be saddle through an analysis on the
presence of a set of points known as a stable manifold of such a saddle fixed point.

The paper is structured in the following manner. Section 2 of the paper intro-
duces the preliminary concepts, including the definitions of QSO and measurable
partitions. In Section 3, we outline the process of constructing the QSO created by
the 3-partition, provide a detailed study of the dynamics of the operators, present
some examples of the trajectory behavior of Geometric QSO and Poisson QSO,
and lastly, discuss the behavior of saddle fixed points of such operators through the
existence of the stable manifold of the fixed points.

2. Preliminaries

In this section, we provide necessary details to address the key notion of QSO
and measurable partitions.

2.1. Quadratic stochastic operators. The quadratic stochastic operator (QSO)
has gained significant recognition as a valuable analytical tool for studying dynam-
ical properties and modelling across various fields of study. In a thorough and me-
thodical explanation of the dynamics of quadratic stochastic operators, Ganikhod-
jaev, Mukhamedov, and Rozikov [12] address the key issues in the QSO theory,
including constructions, dynamics, regularity, and more.

Assume X is a state space and F is a σ-algebra of subsets of X. We denote
(X,F) and S(X,F) as a measurable space and a set of all probability measures
on such a measurable space, respectively. We then define a family of functions
{P (x, y,A) : x, y ∈ X,A ∈ F} on X ×X ×F with the following conditions:

(i) for any x, y ∈ X, P (x, y, ·) is a probability measure, where P (x, y, ·) : F →
[0, 1],

(ii) P (x, y,A) is a jointly measurable function with a fixed A ∈ F , and
(iii) P (x, y,A) = P (y, x,A).

A QSO V : S(X,F) → S(X,F) is defined as follows:

(V µ)(A) =

∫
X

∫
X

P (x, y,A)dµ(x)dµ(y) (1)

for every µ ∈ S(X,F) and A ∈ F . Note that, this operator is called a quadratic
stochastic operator (see [2, 4]).

Given a finite state space X = {1, 2, . . . } and a corresponding σ-algebra F is a
power set, P (X). Then, S(X,F) is known as an (m− 1)-dimensional simplex with
the following form:

S(X,F) ≡ Sm−1 = {x = (x1, . . . , xm) ∈ R : xi ≥ 0, i = 1, . . . ,m,

m∑
i=1

xi = 1}.
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Provided that the probability measure P (i, j, ·) is a discrete measure, where
P (i, j, {k}) can be written as Pij,k and

∑m
k=1 Pij,k = 1, a corresponding QSO V is

defined as follows:

Definition 1. A quadratic stochastic operator V is a mapping of V : Sm−1 → Sm−1

for any x = (x1, . . . , xm) ∈ Sm−1 and V x is defined as

(V x)k =

m∑
i,j=1

Pij,kxixj , (2)

where the coefficients Pij,k conform to the conditions:

Pij,k ≥ 0, Pij,k = Pji,k, and

m∑
k=1

Pij,k = 1 for i, j, k = 1, . . . ,m.

In this work, we consider examples of QSO defined on the countable state space
X. Thus, we shall provide the definition of Geometric QSO and Poisson QSO as
follows:

Definition 2. A QSO V in (2) is called a Geometric QSO if for any i, j ∈ X,
where X = {0, 1, . . . }, the probability measure P (i, j, ·) is the Geometric distribution
Grij (k) = (1− rij) r

k
ij with a real parameter rij = rji, 0 < rij < 1.

Definition 3. A QSO V in (2) is called a Poisson QSO if for any i, j ∈ X,
where X = {0, 1, . . . }, the probability measure P (i, j, ·) is the Poisson distribution

PΛij
(k) = exp−Λij

Λk
ij

k! with a positive real parameter Λij such that Λij = Λji.

Throughout this article, the specified definitions will be used to construct the
QSO. The concept of QSO generated by measurable partitions is presented in the
following subsection.

2.2. Quadratic stochastic operators generated by measurable partitions.
This subsection discusses the investigation of QSO generated by measurable par-
titions. The definition of measurable m-partition is provided below to serve as an
overview of the concept of measurable partition that is emphasised in this study.

Definition 4. A measurable partition of X is a partition such that each of its
elements is a measurable set.

Remark 1. If F is a σ-algebra of X and A is a subset of X, then A is called
measurable if A is a member of F .

Let ξ = {A1, . . . , Am} be a measurable m-partition of X and ς = {Bij : i, j =
1, . . . ,m} be a corresponding partition of X ×X, where Bii = Ai × Ai and Bij =
(Ai×Aj)∪(Aj×Ai) for i ̸= j and i, j = 1, . . . ,m. We choose a family of probability
measures denoted by {µij : i, j = 1, . . . ,m} on a measurable space (X,F) and define
a probability measure P (x, y,A) with (x, y) ∈ Bij as follows:

P (x, y,A) = µij(A),
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for any measurable set A ∈ F . Hence, for an arbitrary λ ∈ S(X,F),

V λ(A) =

∫
X

∫
X

P (x, y,A)dλ(x)dλ(y)

=

m∑
i,j=1

∫
Ai

∫
Aj

µij(A)dλ(x)dλ(y)

=

m∑
i,j=1

µij(A)λ(Ai)λ(Aj).

By a mathematical induction, it is evident that

V n+1λ(A) =

∫
X

∫
X

P (x, y,A)dV nλ(x)dV nλ(y)

=

m∑
i,j=1

∫
Ai

∫
Aj

µij(A)dV nλ(x)dV nλ(y)

=

m∑
i,j=1

µij(A)V nλ(Ai)V
nλ(Aj),

with

V n+1λ(Ak) =

m∑
i,j=1

µij(Ak)V
nλ(Ai)V

nλ(Aj) (3)

by assuming that {V nλ : n = 0, 1, . . . } is the trajectory of the initial point λ, where
V n+1λ = V (V nλ) with V 0λ = λ.

In measure theory, it is understood that S(X,F) is a weak compact, if X is a
compact metric space. For a measurable space (X,F), a sequence µn is said to
converge strongly to a limit µ if

lim
n→∞

µn (A) = µ (A) ,

for every set A ∈ F .

Definition 5. A quadratic stochastic operator V is called a regular (weak regular),
for any initial measure λ ∈ S (X,F), where the strong limit (respectively weak
limit),

lim
n→∞

V n (λ) = µ,

exists.

Consider x
(n)
k = V nλ(Ak), where

(
x
(n)
1 , . . . , x

(n)
m

)
∈ Sm−1 and Pij,k = µij(Ak).

Given a fact that Sm−1 is the (m − 1)-dimensional simplex, then the system of
equations in (3) can be written as follows:
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(Wx)k =

k∑
i,j=1

Pij,kxixj , (4)

for all k = 1, . . . ,m.
The fundamental system of equations generated for the developed QSOs in this

study will be the equation in (4). Upon the construction of the QSOs represented
by such as system of equations, we will examine the stability of the system’s fixed
points and periodic points to analyse the operators’ dynamics.

3. Dynamics of Quadratic Stochastic Operators Generated by
3-Partition

In this section, the construction of QSO generated by 3-partition will be demon-
strated, followed by the classification of such operators for some cases and their
dynamics.

First, let us define a measurable 3-partition ξ = (A1, A2, A3) on the state
space X, where its corresponding partition on X × X is denoted by ς, where
ς = (B11, B22, B33, B12, B13, B23). We select a family {µij : i, j = 1, 2, 3} of Geo-
metric and Poisson distribution with a set of parameters {r11 = r1, r22 = r2, r33 =
r3, r12 = r4, r13 = r5, r23 = r6} and {Λ11 = Λ1,Λ22 = Λ2,Λ33 = Λ3,Λ12 =
Λ4,Λ13 = Λ5,Λ23 = Λ6}, respectively. Subsequently, we define the probability
measure P (x, y,A) as follows:

P (x, y,A) = µij(A) if (x, y) ∈ Bij , i, j = 1, 2, 3, (5)

for any A ∈ F . Then, we describe the following:

A(µ) =
∑
k∈A1

µ(k), B(µ) =
∑
k∈A2

µ(k), and C(µ) =
∑
k∈A3

µ(k).

Thus, by the family of measures (5), one can define the following operator V :

V µ (k) =

∞∑
i=0

∞∑
j=0

Pij,kµ(i)µ(j)

=
∑
i∈A1

∑
j∈A1

Pij,kµ(i)µ(j) +
∑
i∈A2

∑
j∈A2

Pij,kµ(i)µ(j) +
∑
i∈A3

∑
j∈A3

Pij,kµ(i)µ(j)∑
i∈A1

∑
j∈A2

Pij,kµ(i)µ(j) +
∑
i∈A2

∑
j∈A1

Pij,kµ(i)µ(j) +
∑
i∈A1

∑
j∈A3

Pij,kµ(i)µ(j)∑
i∈A3

∑
j∈A1

Pij,kµ(i)µ(j) +
∑
i∈A2

∑
j∈A3

Pij,kµ(i)µ(j) +
∑
i∈A3

∑
j∈A2

Pij,kµ(i)µ(j)

= µ1(k)A
2(µ) + µ2(k)B

2(µ) + µ3(k)C
2(µ)

+ 2µ4(k)A(µ)B(µ) + 2µ5(k)A(µ)C(µ) + 2µ6(k)B(µ)C(µ),
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where by a mathematical induction, it gives us

V n+1µ (k) = µ1(k)A
2(V nµ) + µ2(k)B

2(V nµ) + µ3(k)C
2(V nµ)

+ 2µ4(k)A(V nµ)B(V nµ) + 2µ5(k)A(V nµ)C(V nµ)

+ 2µ6(k)B(V nµ)C(V nµ)

(6)

with

A
(
V n+1µ(k)

)
=

∑
k∈A1

{µ1(k)A
2(V nµ) + µ2(k)B

2(V nµ) + µ3(k)C
2(V nµ)

+ 2µ4(k)A(V nµ)B(V nµ) + 2µ5(k)A(V nµ)C(V nµ)

+ 2µ6(k)B(V nµ)C(V nµ)},

(7)

B
(
V n+1µ(k)

)
=

∑
k∈A2

{µ1(k)A
2(V nµ) + µ2(k)B

2(V nµ) + µ3(k)C
2(V nµ)

+ 2µ4(k)A(V nµ)B(V nµ) + 2µ5(k)A(V nµ)C(V nµ)

+ 2µ6(k)B(V nµ)C(V nµ)},

(8)

and

C
(
V n+1µ(k)

)
=

∑
k∈A3

{µ1(k)A
2(V nµ) + µ2(k)B

2(V nµ) + µ3(k)C
2(V nµ)

+ 2µ4(k)A(V nµ)B(V nµ) + 2µ5(k)A(V nµ)C(V nµ)

+ 2µ6(k)B(V nµ)C(V nµ)},

(9)

where n = 0, 1, . . . .
The recurrent equations in (7), (8), and (9) are the constructed QSOs, which

can be rewitten as the following system of equations:

(Wx)1 = a11x
2
1 + a22x

2
2 + a33x

2
3 + 2a12x1x2 + 2a13x1x3 + 2a23x2x3,

(Wx)2 = b11x
2
1 + b22x

2
2 + b33x

2
3 + 2b12x1x2 + 2b13x1x3 + 2b23x2x3,

(Wx)3 = c11x
2
1 + c22x

2
2 + c33x

2
3 + 2c12x1x2 + 2c13x1x3 + 2c23x2x3,

(10)

where

a11 = P11,1, a22 = P22,1, a33 = P33,1, a12 = P12,1, a13 = P13,1, a23 = P23,1,

b11 = P11,2, b22 = P22,2, b33 = P33,2, b12 = P12,2, b13 = P13,2, b23 = P23,2,

c11 = P11,3, c22 = P22,3, c33 = P33,3, c12 = P12,3, c13 = P13,3, c23 = P23,3,

(11)

are arbitrary coefficients in (0, 1). It is clear that these parameters rely on the
3-partition ξ = {A1, A2, A3}. Note that Pij,k = µij (Ak), then aij + bij + cij = 1
for i, j = 1, 2, 3.
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Saburov and Yusof [20] defined a QSO Q : S2 → S2 called a positive QSO as
follows:

Q (x) =

 3∑
i,j=1

pijxixj ,

3∑
i,j=1

qijxixj ,

3∑
i,j=1

rijxixj

T

, (12)

where pij , qij , rij > 0 and pij + qij + rij = 1 with pij = pji, qij = qji, and rij = rji
for 1 ≤ i, j ≤ 3.

Remark 2. Let p1 ̸= p2 and q1 ̸= q2. It is apparent that two quadratic equations
x2 + p1x+ q1 = 0 and x2 + p2x+ q2 = 0 have a unique common root if and only if
their resultant is equal to zero, i.e.,

(q2 − q1)
2 + p1(q2 − q1)(p1 − p2) + q1(p1 − p2)

2 = 0.

In this case, the only common root is x =
q2 − q1
p1 − p2

.

Now, let us define the following constants.

α11 = p11 − 2p13 + p33, α22 = p22 − 2p23 + p33, α12 = p12 − p13 − p23 + p33,

α1 = p13 − p33, α2 = p23 − p33, α0 = p33,

β11 = q11 − 2q13 + q33, β22 = q22 − 2q23 + q33, β12 = q12 − q13 − q23 + q33,

β1 = q13 − q33, β2 = q23 − q33, β0 = q33,

γ0 = β0α11 − α0β11, γ1 = (2β2 − 1)α11 − 2α2β11, γ2 = α11β22 − α22β11,

δ0 = (2α1 − 1)β11 − 2β1α11, δ1 = α12β11 − β12α11,∆1 = γ2δ
2
0 − 2γ1δ0δ1 + 4γ0δ

2
1,

λ0 = α11γ
2
0 + (2α1 − 1)γ0δ0 + α0δ

2
0, λ4 = α11γ

2
2 + 4α12γ2δ1 + 4α22δ

2
1,

λ3 = 2α11γ2γ1 + 2α12γ2δ0 + 4α12γ1δ1 + 4α1γ2δ1 − 2γ2δ1 + 4α22δ1δ0 + 8α2δ
2
1,

λ2 = 2α11γ2γ0 + α11γ
2
1 + 2α12γ1δ0 + 4α12γ0δ1 + 2α1γ2δ0 + 4α1γ1δ1

= γ2δ0 − 2γ1δ1 + α22δ
2
0 + 8α2δ1δ0 + 4α0δ

2
1,

λ1 = 2α11γ1γ0 +2α12γ0δ0 +2α1γ1δ0 +4α1γ0δ1 − γ1δ0 − 2γ0δ1 +2α2δ
2
0 +4α0δ1δ0.

Theorem 1. [20] Let α11β11∆1 ̸= 0. The positive quadratic stochastic operator
Q : S2 → S2 has a unique fixed point (a stationary distribution) if and only if the
quartic equation,

λ4p
4 + λ3p

3 + λ2p
2 + λ1p+ λ0 = 0,

has a unique real root p0 ∈ (0, 1) \
{
− δ0

2δ1

}
which satisfies 0 < P0 < 1 and 0 <

Q0 < 1, where

P0 =
γ2p

2
0 + γ1p0 + γ0

2δ1p0 + p0
,
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Q0 =
(γ2 + 2δ1)p

2
0 + (γ1 + δ0)p0 + γ0

2δ1p0 + δ0
.

Moreover, in this case, the only fixed point (a stationary distribution) is (P0, p0, 1−Q0)
T
.

According to Theorem 1, it signifies that the system of equations in (10) has
a unique fixed point for any 3-measurable partition on the state space X. This
implies that we can formulate the form of the fixed point of such a two-dimensional
operator W generated by 3-partition ξ.

Suppose that the operator W in (10) has a fixed point. Then, we will have the
following system of equations:

x1 = a11x
2
1 + a22x

2
2 + a33x

2
3 + 2a12x1x2 + 2a13x1x3 + 2a23x2x3,

x2 = b11x
2
1 + b22x

2
2 + b33x

2
3 + 2b12x1x2 + 2b13x1x3 + 2b23x2x3,

x3 = c11x
2
1 + c22x

2
2 + c33x

2
3 + 2c12x1x2 + 2c13x1x3 + 2c23x2x3.

(13)

Since the operator W in (10) is in the same form as the operator Q in (12), we
shall apply the defined constants with aij = pij , bij = qij , and cij = rij . Hence,
the following statement may be established.

Proposition 1. Let W : S2 → S2. For the operator W in (10), the following
statements hold true.

(1) |Fix(W )| = 1,
(2) the unique fixed point x∗ = (x∗

1, x
∗
2, x

∗
3) ∈ S2 has the following form:

x∗
1 =

γ2p
2
0 + γ1p0 + γ0

2δ1p0 + p0
,

x∗
2 = p0 ∈ (0, 1) ,

x∗
3 =

(γ2 + 2δ1)p
2
0 + (γ1 + δ0)p0 + γ0

2δ1p0 + δ0
.

In Lyubich’s study [17], it was proven that a one-dimensional QSO may have
either an attracting fixed point or a repelling fixed point that tends to a cycle of
second-order depending on the value of discriminant of the following one-variable
function:

f(x1) = (a− 2b+ c)x1 + 2 (b− c)x1 + c, (14)

where 0 ≤ a, b, c ≤ 1 with the value of discriminant ∆ of f(x1) = x1, where

∆ = 4(1− a)c+ (1− 2b)2, (15)

for the system of equations as follows:

W (x1) = a11x
2
1 + 2a12x1x2 + a22x

2
2,

W (x2) = b11x
2
1 + 2b12x1x2 + b22x

2
2,

(16)

for a11 = a, a12 = b, a22 = c, and aij + bij = 1. As a result, the following assertions
are established.
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Theorem 2. [17] A fixed point of the transformation (16) is a unique and belongs
to the open interval (0, 1). The fixed point is attracting if 0 < ∆ < 4 and is repelling
if 4 < ∆ < 5.

Theorem 3. [17] If 0 < ∆ < 4, then all trajectories converge to a fixed point. If
4 < ∆ < 5, then there exists a cycle of second-order and all trajectories tend to this
cycle except the stationary trajectory starting with fixed point.

Apparently, we may utilize the idea of attracting and repelling fixed points on
a one-dimensional map to determine the existence of periodic points of period-2 of
the system of equations in (16). Meanwhile, for the system of equations in (10), we
may use the notion of non-attracting fixed points instead of repelling fixed points
due to the consideration of another type of fixed point, i.e., saddle fixed point on a
two-dimensional map. It is known that if a fixed point of such a system of equations
is non-attracting, then there exist periodic points of period-2.

The first derivative of the quadratic function (14) with respect to one variable
and its discriminant are applied to check the local behavior of the fixed point.
However, the same method cannot be implied due to the multivariable functions
derived from the system of equations in (10).

Definition 6. [1] Let f = (f1, f2, . . . , fm) be a map on Rm, and let x∗ ∈ Rm. The
Jacobian matrix of f at x∗, denoted J(x∗), is the matrix

J(x∗) =


∂f1
∂x1

(x∗) · · · ∂f1
∂xm

(x∗)
...

...
∂fm
∂x1

(x∗) · · · ∂fm
∂xm

(x∗)


of partial derivatives evaluated at p.

Remark 3. Given a system(
x′

y′

)
=

(
a b
c d

)(
x
y

)
= A

(
x
y

)
.

The key to solving the system is by determining the eigenvalues of A. To find these
eigenvalues, we need to derive the characteristic polynomial of A.

det(A− λI) = det

(
a− λ b
c d− λ

)
= λ2 − (a− d)λ+ (ad− bc).

Surely, D = det(A) = ad − bc is the determinant of A. Meanwhile, the quantity
T = a+ d is the sum of the diagonal elements of the matrix A is called as the trace
of A and written as tr(A). It is given that the eigenvalues of A are represented by

λ =
T ±

√
T 2 − 4D

2
.

Consequently, the Jacobian matrix can be implied to investigate the local be-
havior of the fixed point on a two-dimensional map.
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Assume that x∗ = (x∗
1, x

∗
2) = (P0, p0) and the multivariable functions derived

from the system of equations in (10) are as follows:

f1 (x1, x2) = α11x
2
1 + α22x

2
2 + 2α12x1x2 + 2α1x1 + 2α2x2 + α0, (17)

f2 (x1, x2) = β11x
2
1 + β22x

2
2 + 2β12x1x2 + 2β1x1 + 2β2x2 + β0. (18)

The Jacobian matrix J(x∗) of (17) and (18) has the following representation:

J (x∗
1, x

∗
2) =

(
2α11x

∗
1 + 2α12x

∗
2 + 2α1 2α12x

∗
1 + 2α22x

∗
2 + 2α2

2β11x
∗
1 + 2β12x

∗
2 + 2β1 2β12x

∗
1 + 2β22x

∗
2 + 2β2

)
. (19)

For simplicity, we will use α = 2α11x
∗
1 +2α12x

∗
2 +2α1, β = 2α12x

∗
1 +2α22x

∗
2 +2α2,

χ = 2β11x
∗
1 +2β12x

∗
2 +2β1, and δ = 2β12x

∗
1 +2β22x

∗
2 +2β2. According to Remark

3, we compute the eigenvalues of the Jacobian J(x∗), λ1 and λ2 in (19), where

λ1 =
1

2

(
α+ δ +

√
(α+ δ)2 − 4(αδ − βχ)

)
,

λ2 =
1

2

(
α+ δ −

√
(α+ δ)2 − 4(αδ − βχ)

)
.

(20)

Definition 7. [1] Let f : R2 → R2 be a second-order autonomous system that
has a fixed point at x∗ ∈ R2. Suppose that λ1 and λ2 be the eigenvalues of J(x∗).
Assuming that neither λ1 nor λ2 lies on the boundary of the unit disk, there are
three distinct characteristics of the trajectories in the neighborhood of the fixed point
x∗.

(i) If |λi| < 1 for i = 1, 2, then all trajectories converge to x∗, i.e.,x∗ is an
attracting fixed point.

(ii) If |λ1| < 1, |λ2| > 1 or |λ1| > 1, |λ2| < 1, then the fixed point x∗ is a saddle
fixed point. From the stable direction that corresponds to the eigen-direction
for the stable eigenvalue |λi|, where |λi| < 1 for i = 1, 2, as n → ∞. From
the unstable direction, corresponding to the eigen-direction for the unstable
eigenvalue |λi|, where |λi| > 1 for i = 1, 2, the trajectories x(n) move away
from x∗ as n → ∞. All other trajectories follow hyperbola-like paths, i.e.,
at first moving closer to x∗, and then moving away from x∗.

(iii) If |λi| > 1 for i = 1, 2, then all trajectories move away from the fixed point
x∗, so x∗ is a repelling fixed point.

From the Jacobian matrix in (19), one may find that −2 < α, β, χ, δ < 2, given
the fact that such coefficients are defined from the system of equations in (13). We

shall let γ = αδ − βχ and D = (α+ δ)
2 − 4T . Based on the form of eigenvalues of

J(x∗) in (19) and Definition 6, we shall classify the eigenvalues as follows:

(i) if T > 0, (α+ δ)
2
< 4T , and (α+ δ) = ±2, then the fixed point is nonhy-

perbolic;
(ii) if T > 0, (α+ δ)

2
< 4T , and |α+ δ| < 2, then the fixed point is attracting;

(iii) if T > 0, (α+ δ)
2
< 4T , and |α+ δ| > 2, then the fixed point is repelling;
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(iv) if T > 0, (α+ δ)
2
> 4T , and −2 < α+ δ±

√
D < 2, then the fixed point is

attracting;
(v) if T > 0, (α+ δ)

2
> 4T , and −2 < α+ δ+

√
D < 2, and α+ δ−

√
D < −2,

then the fixed point is saddle;
(vi) if T > 0, (α+ δ)

2
> 4T , and −2 < α+ δ −

√
D < 2, and α+ δ +

√
D > 2,

then the fixed point is saddle;
(vii) if T = 0 and |α+ δ| < 1, then the fixed point is attracting;
(viii) if T = 0 and |α+ δ| > 1, then the fixed point is saddle;

(ix) if T < 0 and −2 < α+ δ ±
√
D < 2, then the fixed point is attracting;

(x) if T < 0, α + δ > 0, α + δ +
√
D > 2, and 0 < α + δ −

√
D < 2 then the

fixed point is saddle;
(xi) if T < 0, α+ δ > 0, α+ δ −

√
D < 2, and −2 < α+ δ +

√
D < 0 then the

fixed point is saddle;
(xii) if T < 0, α+ δ > 0, α+ δ +

√
D > 2, and α+ δ −

√
D < −2 then the fixed

point is repelling;
(xiii) if T < 0, α+ δ < 0, α+ δ +

√
D < −2, and α+ δ −

√
D > 2 then the fixed

point is repelling.

Now, we shall analyze the fixed point of the system of equations in (10) based
on the given eigenvalues classification. We shall consider a case of 3-partition ξ to
investigate the type of fixed point of such operators by the following conditions of
the defined parameters:

(1) µ11 = µ13 = µ33 ̸= µ12 = µ23 ̸= µ22,
(2) µ11 = µ12 = µ22 ̸= µ13 = µ23 ̸= µ33,
(3) µ22 = µ23 = µ33 ̸= µ12 = µ13 ̸= µ11.

Given such conditions, we shall obtain the following systems of equations:

(W1x)1 = a11
(
x2
1 + 2x1x3 + x2

3

)
+ a22x

2
2 + 2a12 (x1x2 + x2x3) ,

(W1x)2 = b11
(
x2
1 + 2x1x3 + x2

3

)
+ b22x

2
2 + 2b12 (x1x2 + x2x3) ,

(W1x)3 = c11
(
x2
1 + 2x1x3 + x2

3

)
+ c22x

2
2 + 2c12 (x1x2 + x2x3) ,

(21)

(W2x)1 = a22
(
x2
1 + 2x1x2 + x2

2

)
+ a33x

2
3 + 2a23 (x1x3 + x2x3) ,

(W2x)2 = b22
(
x2
1 + 2x1x2 + x2

2

)
+ b33x

2
3 + 2b23 (x1x3 + x2x3) ,

(W2x)3 = c22
(
x2
1 + 2x1x2 + x2

2

)
+ c33x

2
3 + 2c23 (x1x3 + x2x3) ,

(22)

(W3x)1 = a33
(
x2
2 + 2x2x3 + x2

3

)
+ a11x

2
1 + 2a13 (x1x2 + x1x3) ,

(W3x)2 = b33
(
x2
2 + 2x2x3 + x2

3

)
+ b11x

2
1 + 2b13 (x1x2 + x1x3) ,

(W3x)3 = c33
(
x2
2 + 2x2x3 + x2

3

)
+ c11x

2
1 + 2c13 (x1x2 + x1x3) .

(23)
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We shall denote the operators in (21), (22), and (23) as operators from class
C1 = {W1,W2,W3}, identified as reducible two-dimensional QSOs due to their
ability to be reduced to a one-dimensional setting.

Proposition 2. Let x∗ ∈ S2 be a fixed point of the operator W in (10) and λi for
i = 1, 2 are eigenvalues of Jacobian J (x∗) in (19). For the operators from class
C1, the fixed point x∗ is either attracting or saddle.

Proof. Let us consider the first operator from class C1, i.e., the operator W1 in
(21). Referring to the system of equations in (21) and the Jacobian J (x∗) in (19),
we will obtain the following Jacobian matrix,

J (x∗) =

(
0 β
0 δ

)
.

Hence, we have T = 0 and D > 0. It follows that λ1 = 0 and λ2 = δ when δ < 0,
while λ1 = δ and λ2 = 0 when δ > 0. Apparently, if |δ| < 1, then x∗ is an attracting
fixed point. Meanwhile, if |δ| > 1, then x∗ is a saddle fixed point.

Next, we shall consider the operator in (22). Considering the Jacobian J (x∗) in
(19), we will get,

J (x∗) =

(
α β
χ δ

)
,

where α = β ̸= χ = δ. Consequently, T = 0 and when α + δ < 0, we have λ1 = 0
and λ2 = α+ δ, while when α+ δ > 0, we have λ1 = α+ δ and λ2 = 0. Therefore,
for the operator W2, the fixed point x∗ is attracting if |α+ δ| < 1, and is saddle if
|α+ δ| > 1.

Lastly, for the operator W3 in (23), we may obtain the following Jacobian J (x∗),
where

J (x∗) =

(
α 0
χ 0

)
.

This follows that T = 0 and D = α2. Subsequently, we get λ1 = 0 and λ2 = α
when α < 0, while when α > 0, we have λ1 = α and λ2 = 0. Then, it is not difficult
to verify that x∗ is an attracting fixed point if |α| < 1 and x∗ is a saddle fixed point
if |α| > 1 .

Thus, according to Definition 6, evidently if |α+ δ| < 1, then x∗ is an attracting
fixed point, where |λ1| < |λ2| < 1 or |λ2| < |λ1| < 1, while if |α+ δ| > 1, then x∗ is
a saddle fixed point, where |λ1| < 1 < |λ2| or |λ2| < 1 < |λ1|. The analysis of the
eigenvalues of the Jacobian of the operators from the class C1 shows that for such
operators, the fixed point x∗ is either attracting or saddle as shown in condition
(vii) and (viii). The proof is complete. □

In accordance with Proposition 2, one may discover that for the operator W in
(10) classified under the class C1, there exists either an attracting fixed point or a
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saddle fixed point for some defined partitions and parameters. Also, it is proven
that for such operators, the fixed point can never be repelling.

Assume that the behavior of the operators in the class C1 may represent the
behavior of the QSO W in (10). Accordingly, we may establish the following state-
ments.

Corollary 1. Let x∗ be a fixed point of the operator W in (10). Then, the fixed
point x∗ is either attracting or saddle.

Proposition 3. Let x∗ be a fixed point of the operator W in (10). Then, the
following statements hold true.

(i) If the fixed point x∗ is attracting, then the trajectory converges to that fixed
point.

(ii) If the fixed point x∗ is saddle, then there exists a second-order cycle.

We shall provide some examples using Geometric QSO and Poisson QSO to
support the above statements.

Example 1. Let A1 = {0, 1, 2}, A2 = {6, 7, . . . }, and A3 = {3, 4, 5} be the measur-
able 3-partition for Geometric QSO generated by 3-partition with six parameters.
We define r1 = 0.975, r2 = 0.5,r3 = 0.95 , r4 = 0.25, r5 = 0.9 and r6 = 0.2. Due
to Proposition 1, the fixed point of such an operator W in (10) is as follows:

x∗ = (x∗
1, x

∗
2, x

∗
3) = (0.5959277932, 0.3461854580, 0.05788674882) (24)

We also obtain the following functions, where

f1 (x1, x2) = −0.326234375x2
1 − 0.966375x2

2 − 2(0.136)x1x2

+ 2(0.128375)x1 + 2(0.849375)x2 + 0.142625,

f2 (x1, x2) = 0.5312781916x2
1 + 0.7505888906x2

2 + 2(0.2038310312)x1x2

− 2(0.2036508906)x1 − 2(0.7350278906)x2 + 0.7350918906.

(25)

Then, the Jacobian J (x∗) is as follows:

J (x∗
1, x

∗
2) =

(
−0.2262367068 0.8675676963
0.3670317770 −0.7074327102

)
,

where T = −0.1583776666, α + δ = −0.933669417, α + δ +
√
D = 0.2932165790,

and α+ δ−
√
D = −2.160555413. These conform to the condition of a saddle fixed

point as stated in (xi), in which T < 0, α + δ < 0, 0 < α + δ +
√
D < 2, and

α+ δ =
√
D < −2. Following the Jacobian matrix, the eigenvalues are as follows:

λ1 = 0.1466082895,

λ2 = −1.080277706.

From this, we get |λ1| < 1 < |λ2|. Hence, x∗ in (24) is a saddle point. This
demonstrates that there exists a cycle of second-order for such an operator.
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Example 2. Let A1 = {0, 1}, A2 = {2, 3}, and A3 = {4, 5, . . . } be the measurable
3-partition for Poisson QSO generated by 3-partition with six parameters. Define
Λ1 = 5.25, Λ2 = 5.0,Λ3 = 1.75 , Λ4 = 4.75, Λ5 = 0.95 and Λ6 = 1.0. Due to
Proposition 1, we shall obtain the fixed point of such an operator W in (10) as
follows:

x∗ = (x∗
1, x

∗
2, x

∗
3) = (040777949974, 0.2535537737, 0.3386512289) (26)

Also, the following functions are obtained:

f1 (x1, x2) = −0.9976146574x2
1 − 0.9532117384x2

2 − 2(0.9622782864)x1x2

+ 2(0.2762666512)x1 + 2(0.2578805378)x2 + 0.4778783446,

f2 (x1, x2) = 0.1606229184x2
1 + 0.1554036174x2

2 + 2(0.1984161132)x1x2

− 2(0.1915307380)x1 − 2(0.1760583449)x2 + 0.4213113057.

(27)

Then, the Jacobian J (x∗) is as follows:

J (x∗
1, x

∗
2) =

(
−0.7490898126 −0.7524443338
−0.1514407223 −0.1114841458

)
,

where T = −0.03043907551, α+ δ = −0.8605739584, α+ δ +
√
D = 0.0680507451,

and α+ δ−
√
D = −1.789198662. These conform to the condition of a saddle fixed

point as stated in (viii), in which T < 0 and −2 < α+ δ ±
√
D < 2. Consequently,

the eigenvalues are as follows:

λ1 = 0.0340253726,

λ2 = −0.8945993310.

It is notable that |λ1| < |λ2| < 1. Hence, x∗ in (26) is an attracting point. This
shows that the trajectory of such an operator converges to this fixed point.

From the given examples, it has been demonstrated that such operators may have
either an attracting or a saddle fixed point depends on the value of parameters. The
discovery of non-attracting fixed point on the two-dimensional setting as a saddle
fixed point is considered significant due to an initial assumption that the fixed
point should be repelling based on the study of QSOs on one-dimensional simplex.
Hence, in the next subsection, we shall discuss the behavior of saddle fixed point to
provide a comprehensive finding on the dynamics of such operators generated by
3-partition.

3.1. Behavior of the saddle fixed point of quadratic stochastic operators
generated by 3-partition.

Remark 4. [1] A saddle fixed point is unstable. Most initial values near it will
move away under iteration of the map. However, unlike the case of a repelling fixed
point (source), not all nearby initial values will move away. The set of initial values
that converge to the saddle will be called the stable manifold of the saddle.
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Definition 8. [1] Let f be a smooth map on R2, and let p be a saddle fixed point
or periodic saddle point for f . The stable manifold of p, denoted S(p) is the set of
points v such that |fn(v) − fn(p)| → 0 as n → ∞. The unstable manifold of p,
denoted U(p), is the set of points v such that |f−n(v)− f−n(p)| → 0 as n → ∞.

From Definition 7, Remark 4, and Definition 8, the fact that the operator in
(10) with a saddle fixed point is unstable, i.e., from a stable direction corresponds
to the stable eigenvalue, the trajectories converge to the fixed point, while from
an unstable direction corresponds to the unstable eigenvalue, the trajectories move
away from such fixed point. Hence, this conforms the fact that the saddle fixed
point indicates the existence of a second-order cycle of the system of equations in
(10).

Verification of the saddle fixed point as the unstable fixed point of the operator
in (10) and the fixed point of such an operator can never be repelling is rather
ambiguous. This comes from the fact that the behavior of a repelling fixed point
is quite similar to the behavior of a saddle fixed point, where all trajectories move
away from the fixed point except when the initial point is the fixed point itself.
Meanwhile, for a saddle fixed point, it behaves as an attractor for some trajectories
and a repeller for others. Herewith, we can find a set of points x ∈ S2, where
x ̸= x∗ in which such points will eventually converge to the saddle fixed point.

Next, we will consider some examples of the saddle fixed point case in Example
1, where the presence of the set of points x ∈ S2, denoted by ρa for n → ∞, where
ρa =

{
a ∈ S2 : a ̸= x∗, |Wn(a)− x∗| → 0

}
will be provided.

Assume that a = (x1 + ϵ, x2 + ϵ, 1− x1 − x2 − 2ϵ) = (x1 + ϵ, x2 + ϵ, x3 + ϵ),
where ϵ = m × 10−10 with m = [−100, 100]. For the operator W in (10) from
Example 1, we can find the initial values near the saddle fixed point x∗, where such
an operator is regular (see Figure 1), as both even and odd number iterations of
x1 , x2, and x3 converge to the same value. Computationally, we obtain that when
−5.5 > m > 4.5, the trajectories x(n) approach x∗ as n → ∞.

Figure 1(a) shows Example 1, which indicates the points, x1, x2, and x3 for even
iterations, while Figure 1(b) displays the points of x1, x2, and x3 for odd iterations.
This demonstrates that both even and odd iterations of the saddle fixed point case
operator will converge to the same value when we choose any initial points that
belong to the stable manifold.

Contrarily, when we choose any initial values, which are very close to the saddle
fixed point, in which m ≤ −5.5 or m ≥ 4.5, one can see the behavior of even and
odd number iterations of all coordinates do not converge to the same values (refer
Figure 2).

We use Figure 2 to illustrate the behavior of points x1, x2, and x3 of the saddle
fixed point case operator in Example 1 with six different colors to represent xi(2l)
and xi(2l + 1) for i = 1, 2, 3 and l = 0, . . . , 500.

In Figure 1, we show that for some initial values close to the saddle fixed point,
the trajectories will eventually converge to the fixed point, indicating the existence
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(a) x(0) = a, where m = −5.4 (b) x(0) = a, where m = 4.45

Figure 1. Trajectory behavior of regular transformation of oper-
ator W in (10) from Example 1 for l = 0, . . . , 500

(a) x(0) = a, where m = −5.5 (b) x(0) = a, where m = 4.65

Figure 2. Trajectory behavior of nonregular transformation of
operator W in (10) from Example 1 for l = 0, . . . , 500
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of the set of points ρa known as the stable manifold of x∗. Meanwhile, in Figure 2, it
is shown that for some relatively close initial values, where x(0) /∈ ρa, the trajectories
will move away from the saddle fixed point x∗ after a number of iterations. Hence,
it is evident that the saddle fixed point of the operator W behaves as an attractor
for some trajectories and as a repeller for others.

With the given examples as evidence of the existence of the stable manifold of
the saddle fixed point of the operator W in (10), we may establish the following
statement.

Remark 5. Let ρa =
{
a ∈ S2 : a ̸= x∗, |Wn(a)− x∗| → 0, n → ∞

}
be the set of

points that belong to the stable manifold of any saddle fixed point x∗ of the operator
W : S2 → S2 in (10). Then, the following statements hold true.

i If x(0) ∈ ρa, then the operator W is regular.
ii If x(0) /∈ ρa, then the operator W is nonregular.

4. Conclusion

The construction of QSOs generated by 3-partition and the formulation of the
fixed point form of the system of equations corresponds to such QSOs were pre-
sented throughout the paper. By implementing the analysis of the quadratic func-
tion (14) on a one-dimensional map, we can determine the existence of periodic
points of period-2 through the repelling behavior of the unique fixed point. Un-
like the case of one-dimensional map, where we addressed a repelling fixed point
to signify the existence of the periodic points of period-2, in the case of a two-
dimensional map, we used the notion of non-attracting fixed point to represent
both unstable fixed points; i.e., repelling and saddle. Based on the eigenvalues of
the Jacobian matrix in (19) of the system of equations (10), we classified the fixed
point accordingly.

Further investigation on the dynamics of the QSOs generated by 3-partition was
carried out by considering three cases of 3-partition with three parameters, where
the corresponding systems of equations denoted as class C1 can be reduced to a
one-dimensional setting. These cases were then implied to explore the behavior of
the fixed point through the classification of eigenvalues of the Jacobian matrix in
(19), where we established Proposition 2, in which it is proven that such operators
may have either an attracting or a saddle fixed point and the fixed point can never
be repelling.

We provide some examples using Geometric QSO and Poisson QSO to demon-
strate the behavior of the fixed point of the operators through the classification
of their eigenvalues. From the obtained results, it is remarked that an attracting
fixed point implies the existence of a strong limit, hence the operator is regular.
Another example showed that the saddle fixed point indicates the existence of the
second-order cycle, where the operator is nonregular.

To illustrate the fact that the fixed point of the operator in (10) can never be
repelling, it is necessary to find a set of points denoted by ρa that belongs to the
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stable manifold of the saddle fixed point. We utilized Example 1 with a saddle fixed
point and searched for the set of points ρa. It is shown that for any saddle fixed
point of the operator W in (10), there exist some relatively close initial values to
the saddle fixed point, which will converge to such a fixed point, while most of the
initial values will move away from it. From this, we established the statements in
Remark 4.
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