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Abstract. LetH be a separable complete Pick space of continuous functions on a compact set Ω with multiplier
algebra M(H). The notion of the pseudo-cyclicity is recently defined by Aleman et al. In this short paper, we
first extend their definition of the pseudo-cyclic multipliers to all functions f in H . Then we show that whenever
one-function corona theorem holds for M(H) then a function f inH is in the pseudo-cyclic class Cn(H) if and only
if 1/ f is in the corresponding Pick-Smirnov type class N+n (H). Furthermore, we show that non-vanishing functions
f ∈ H are in the class C1(H). For functions φ, ψ in M(H), with at least one being in C1(H), we also show that the
invariant subspace generated by φψ is equal to the intersection of invariant subspaces generated by φ and ψ.

2020 AMS Classification: 47B32, 47A16, 47A15, 46E22

Keywords: Pseudo-cyclic multipliers, Hilbert function spaces, invariant subspaces.

1. Introduction

Let H be a Hilbert function space on a non-empty set Ω. Let Mult(H) denote the multiplier algebra of H , that is,
the set of all complex valued functions φ on Ω such that φ f ∈ H for all f ∈ H . A function f ∈ H is called cylic if
[ f ] = H , where [ f ] = closH {φ f : φ ∈ Mult(H)}. The well-known Hilbert function spaces on the unit disc D are the
Hardy space H2(D), Bergman space L2

a(D), and Dirichlet space D. An example of Hilbert function space in several
complex variables is the Drury-Arveson space H2

d of analytic functions on the unit ball Bd.
One of the problems in the analytic function theory is the investigation of cyclic functions. For the Hardy space

H2(D), as a result of the Beurling theorem [6], it is known that cyclic functions are the outer functions. On the other
hand, less is known about cyclic functions in the Bergman space L2

a(D) and the Dirichlet space D. To see more results
about these spaces, see [7, 8, 10]. When working on cyclicity in the Drury-Arveson space and other weighted Besov
spaces, Aleman et al. [5] introduce the classes Cn(H) of pseudo-cyclic multipliers. In this paper, we first extend their
definition of pseudo-cyclicity to all functions in a separable complete Pick space and introduce Pick-Smirnon type
classes N+n (H). We then prove the following theorem.

Theorem 1.1. SupposeH is a separable complete Pick space of continuous functions on a compact set Ω, f ∈ H and
n ≥ 1 is an integer. If the one-function corona theorem holds for Mult(H), then f ∈ Cn(H) if and only if 1/ f ∈ N+n (H).

Further, we show that if f is nonvanishing on Ω, then f ∈ C1(H), and hence f ∈ C∞(H). Of course, the converse
of this result is true by Lemma 2.2 below. Thus this elementary, yet important observation is our next result.
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Theorem 1.2. Let H be a complete Pick space of continuous functions on a compact set Ω and let the one-function
corona theorem holds for Mult(H). If f ∈ H is nonvanishing, then f ∈ C1(H). Hence, f ∈ C∞(H).

Next, we consider the invariant subspaces generated by functions in the multiplier algebra Mult(H). If H = D the
Dirichlet space, then the class C1(D) consists of the outer functions, that is, those functions f in the Hardy space H2(D)
such that

log| f (0)| =
∫ 2π

0
log| f (eit)|

dt
2π

> −∞.

In this case, it is known that if φ, ψ ∈ C1(D), then the invariant subspace generated by φψ is equal to the intersection
of the invariant subspaces generated by φ and ψ (see [13], Theorem 4.5). Motivated from this theorem we have the
following result.

Theorem 1.3. Let H be a complete Pick space of continuous functions on a compact set Ω and let the one-function
corona theorem holds for Mult(H). Let φ, ψ ∈ Mult(H) be such that ψ ∈ C1(H). Then, [φψ] = [φ] ∩ [ψ].

The plan of the paper is as follows. In section 2, we give definitions and known results that will be important for
our results. In Section 3, we first define the classes N+n (H), and then prove Theorem 1.1 and Theorem 1.2 as Theorem
3.4 and Theorem 3.5, respectively. Finally, in the Section 4, we prove Theorem 1.3 as Theorem 4.1.

2. Preliminaries

Suppose Ω is a non-empty set. A Hilbert function spaceH on Ω is defined to be a Hilbert space of complex valued
functions on Ω such that the evaluation functional is continuous on H , i.e., for each z ∈ Ω the map f 7→ f (z) is
continuous onH .

For a Hilbert function spaceH , the multiplier algebra ofH , denoted by Mult(H), is defined by

Mult(H) = {φ : Ω→ C : φ f ∈ H for all f ∈ H}.

As an application of the closed graph theorem, it is well-known that each multiplier φ ∈ Mult(H) defines a bounded
multiplication operator Mφ onH , and Mult(H) becomes a Banach algebra by setting ||φ||Mult(H) = ||Mφ||.

For a function f ∈ H , the multiplier invariant subspace generated by f , denoted by [ f ], is [ f ] = closH {φ f : φ ∈
Mult(H)}. A function f ∈ H is called cyclic if [ f ] = H .

When working on cyclicity Aleman et al. [5] introduce the following classes of pseudo-cyclic multipliers. For each
integer n ≥ 0, they define

Cn(H) = {φ ∈ Mult(H) : φ , 0 and [φn] = [φn+1]},
and

C∞(H) = {φ ∈ Mult(H) :
∞⋂

n=1

[φn] , 0}.

If Mult(H) is dense inH , then C0(H) consists of the cyclic multipliers and one has

C0(H) ⊆ C1(H) ⊆ C2(H)... ⊆ C∞(H) (2.1)

(see [5]). If H = H2(D), the Hardy space, then it is known that Mult(H2(D)) = H∞, where H∞ is the algebra of
bounded analytic functions on D. In this case, as is mentioned in [5], we have equality in (2.1), where each set equals
the outer functions in H∞. If H = D, the Dirichlet space, then C1(D) equals the outer functions in Mult(D), and
C0(D) , C1(D). Moreover, in this case C1(D) = C∞(D), see [5] for details. In [5], Aleman et al. showed that if d
is odd, then Cstable[z] ⊆ C d−1

2
(H2

d), and if d is even then Cstable[z] ⊆ C d
2−1(H2

d), where Cstable[z] denotes the d−variable
complex polynomials without zeros in Bd.

Note that each Hilbert function spaceH has a reproducing kernel k : Ω×Ω→ C. Writing kw(z) = k(z,w), it satisfies
f (w) = ⟨ f , kw⟩ for all f ∈ H , w ∈ Ω [1, 12]. A reproducing kernel k on Ω is called a normalized complete Pick kernel,
if there is z0 ∈ Ω and a function u from Ω into some auxiliary Hilbert space K such that u(z0) = 0 and

kw(z) =
1

1 − ⟨u(z), u(w)⟩K
.

If H is a Hilbert function space of analytic functions, then it is known that H is separable, and we may assume that
K is separable as well. Following [5], a Hilbert function space H on Ω is called a complete Pick space, if there is an
equivalent norm onH such that the reproducing kernel ofH is a normalized complete Pick kernel with respect to the
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new norm. If Ω is the open unit disc D, then important examples of such spaces are the Hardy space H2(D), where
kw(z) = 1

1−wz , and the Dirichlet space D with the kernel kw(z) = 1
wz log 1

1−wz ( [1], Corollary 7.41). On the other hand,
the Bergman space L2

a(D) has reproducing kernel kw(z) = 1
(1−wz)2 , which is not a complete Pick kernel (see [9] Example

4.5). Moreover, the Drury-Arveson space H2
d of analytic functions on the unit ball Bd is also an example of a space

with a normalized complete Pick kernel, where kw(z) = 1
1−⟨z,w⟩ (see [9] Corollary 4.11).

If k is a normalized kernel forH , then the constant function 1 is contained inH , and hence Mult(H) ⊂ H .
A fact known about all complete Pick spaces is that each complete Pick spaceH is contained in the corresponding

Pick-Smirnov class
N+(H) =

{φ
ψ

: φ, ψ ∈ Mult(H), ψ cyclic
}
,

(see [2], Theorem 1.1).
For the rest of this section, for the sake of completeness, we collect some important results of complete Pick spaces

that will be used.

Corollary 2.1. ( [5], Corollary 6.2) IfH is a complete Pick space, then Mult(H) is dense inH . In particular, f ∈ H
is cyclic if and only if 1 ∈ [ f ].

Lemma 2.2. ( [5], Lemma 2.2)
Assume that Mult(H) ⊆ H .
(a) If φ ∈ C∞(H), then φ(z) , 0 for all z ∈ Ω.
(b) If n,m ≥ 0 are integers and if ψ, φ ∈ Mult(H) such that [φn] = [φn+1] and [ψm] = [ψm+1], then [φnψm] =

[φn+1ψm+1].

The following theorem is a special case of Theorem 1.1 (i) of [3].

Theorem 2.3. LetH be a complete Pick space with kw0 = 1. For f : Ω→ C, the following are equivalent:
(1) f ∈ H and || f || ≤ 1
(2) there are multipliers φ, ψ ∈ Mult(H) such that

(a) f =
φ

1 − ψ
(b) ψ(w0) = 0, and
(c) ||ψh||2 + ||φh||2 ≤ ||h||2 for every h ∈ H .

Lemma 2.4. ( [5], Lemma 6.5) Let H be a separable Hilbert function space on Ω. If f =
φ

1 − ψ
∈ H , where

φ, ψ ∈ Mult(H) and ψ , 1, ||ψ||Mult(H) ≤ 1, then 1 − ψ is cyclic inH and [ f ] = [φ].

Lemma 2.5. ( [5], Lemma 6.6) Let H be a separable Hilbert function space on Ω. If f =
u
v
=

u1

v1
∈ N+(H), where

u, v, u1, v1 ∈ Mult(H), v, v1 cyclic, then [un] = [un
1] for all n ∈ N.

3. A Condition for Pseudo-cyclicity

From now on, we will assume thatH is a separable complete Pick space. Then, by Corollary 2.1, Mult(H) is dense
in H . Hence, by the above discussion following the definition of the classes Cn(H), C0(H) consists of the cyclic
multipliers, and we have (2.1). By this observation, we make the following definition.

Definition 3.1. Let n ≥ 0 be an integer. We define

N+n (H) =
{φ
ψ

: φ, ψ ∈ Mult(H), ψ ∈ Cn(H)
}
.

Notice that for each fixed integer n ≥ 0, a function ψ ∈ Cn(H) does not vanish anywhere by Lemma 2.2 (a), hence
the quotient φ/ψ is defined on all of Ω. Moreover, by the same lemma part (b), since the product of any two functions
in Cn(H) is in Cn(H), N+n (H) is an algebra. It is clear that

N+0 (H) ⊆ N+1 (H) ⊆ N+2 (H) ⊆ ...,

and N+0 (H) = N+(H) is the Pick-Smirnov class that corresponds toH .
Moreover, in light of Lemma 2.5 we can extend the membership of classes Cn(H) to all functions inH .
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Definition 3.2. We say f ∈ H is in Cn(H) if whenever f = u/v with u, v ∈ Mult(H), v cyclic, then u ∈ Cn(H).
Further, we say that f ∈ C∞(H) if u ∈ C∞(H).

The definition below is from [2] (see the discussion preceding Remark 5.1).

Definition 3.3. The one-function corona theorem is said to hold for Mult(H) if whenever f is a multiplier and f is
bounded below on Ω, then 1/ f is a multiplier.

In the rest of the paper, we assume that Ω is compact and the functions in H are continuous on Ω. For examples
of such spaces see Example 5.3 of [2]. In spirit, the following theorem is an extension of Theorem 3.1 of [4] to the
classes Cn(H) . There authors show that in a complete Pick space H a function f is cyclic if and only if 1/ f is in the
corresponding Pick-Smirnov class.

We are now ready to prove Theorem 1.1, which for convenience we restate here.

Theorem 3.4. SupposeH is a separable complete Pick space of continuous functions on a compact set Ω, f ∈ H and
n ≥ 1 is an integer. If the one-function corona theorem holds for Mult(H), then f ∈ Cn(H) if and only if 1/ f ∈ N+n (H).

Proof. Assume || f || = 1, and let n ≥ 1 be a fixed integer. Then, by Theorem 2.3 f =
φ

1 − ψ
, where φ, ψ are contractive

multipliers. Moreover, it follows from Lemma 2.4 that 1 − ψ is cyclic inH .
Now, if f ∈ Cn(H), that is, φ ∈ Cn(H), then

1
f
=

1 − ψ
φ
∈ N+n (H).

Conversely, if
1
f
∈ N+n (H), then

1
f
=

u
v

where u, v are multipliers and v ∈ Cn(H). Then,

f =
φ

1 − ψ
=

v
u
=⇒ (1 − ψ)v = φu.

Since 1−ψ is cyclic and v ∈ Cn(H), it follows from Lemma 2.2 that (1−ψ)v ∈ Cn(H). Thus, (1−ψ)v is non-vanishing
onΩ by Lemma 2.2. Then, by continuity of functions inH on compact setΩ, (1−ψ)v is bounded below and by corona

hypothesis
1

(1 − ψ)v
∈ Mult(H). Therefore,

1 =
1

(1 − ψ)v
φu ∈ [u],

that is, u is cyclic by Corollary 2.1. This says that f =
v
u

, where u, v are multipliers with u cyclic and v ∈ Cn(H).

Hence, f ∈ Cn(H).
□

Next, we prove Theorem 1.2. We restate the theorem here for convenience.

Theorem 3.5. Let H be a complete Pick space of continuous functions on a compact set Ω and let the one-function
corona theorem holds for Mult(H). If f ∈ H is nonvanishing, then f ∈ C1(H). Hence, f ∈ C∞(H).

Proof. Since H is contained in the Pick-Smirnov class, we can write f =
u
v

, where u, v ∈ Mult(H) and v is cyclic.

Hence, we need to show that u ∈ C1(H). Since u is a multiplier, it is clear that [u2] ⊆ [u]. To show the converse,
by hypothesis u(z) , 0 for all z ∈ Ω, and hence by continuity and compactness u is bounded below on Ω. Therefore,

one-function corona hypothesis implies that
1
u

is a multiplier. Thus, u =
1
u

u2 ∈ [u2]. This proves the theorem.
□

4. Invariant Subspaces Generated by Pseudo-cyclicMultipliers

In this section we focus on invariant subspaces generated by the functions in the class C1(H). We show that the
invariant subspace generated by the product of two multipliers, one being in the class C1(H), is equal the intersection
of the invariant subspaces generated by those functions. Namely, we have the following result.
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Theorem 4.1. Let H be a complete Pick space of continuous functions on a compact set Ω and let the one-function
corona theorem holds for Mult(H). Let φ, ψ ∈ Mult(H) be such that ψ ∈ C1(H). Then, [φψ] = [φ] ∩ [ψ].

Proof. Since φψ ∈ [φ] and φψ ∈ [ψ] we have φψ ∈ [φ]∩ [ψ]. Therefore, [φψ] ⊆ [φ]∩ [ψ]. Conversely, let f ∈ [φ]∩ [ψ].
Then there are sequences of multipliers pn, qn such that pnφ → f and qnψ → f in H . Thus, pnφψ → fψ in H ,
so fψ ∈ [φψ]. Since ψ ∈ C1(H), it is nonvanishing on Ω and hence bounded below on Ω. Moreover, since the

one-function corona theorem holds for Mult(H), we have
1
ψ
∈ Mult(H). Thus f =

1
ψ

fψ ∈ [φψ]. That finishes the

proof.
□

Remark 4.2. In Theorem 4.1, we assume that the one-function corona theorem holds for the multiplier algebra of a
complete Pick spaceH of continuous functions on a compact set Ω. One may ask can we relax this conditions onH .
In [2], the authors used an example of Salas [14] and constructed a complete Pick space of continuous functions, called
the Salas space, on the closed unit disc D such that the one-function corona theorem fails (see Theorem 5.5 of [2]). So
the one-function corona theorem is crucial.

Remark 4.3. As it was already mentioned in the Introduction for the Dirichlet space D, we have [φψ] = [φ] ∩ [ψ] for
functions φ, ψ ∈ C1(D). The corona theorem, hence the one-function corona theorem, holds for the Dirichlet space D
(see [11], for a more general version). But it is known that there are functions in the Dirichlet space D that are not
continuous on the closed unit disc D. This observation raises the following question.

Question: Let H be a complete Pick space such that one-function corona theorem holds for Mult(H) and φ, ψ ∈
C1(H). Then is [φψ] = [φ] ∩ [ψ]?
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