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Abstract: Imaginary latent variables are variables with negative variances and 

have been used to implement constraints in measurement models. This article 

aimed to advance this practice and rationalize the imaginary latent variables as a 

method to detect possible latent deficiencies in measurement models. This rationale 

is based on the theory of complex numbers used in the measurement process of 

common factor model–based structural equation modeling. Modeling an imaginary 

latent variable produces a potential deficiency within its relative reflective 

measures through a considerable reduction in common variance indicating the most 

affected indicator(s). 

1. INTRODUCTION 

Rindskopf (1984, p. 38) first defined imaginary latent variables as: “… variables with negative 

variances, or, equivalently, variables with positive variance but whose influence on other 

variables is represented by an imaginary rather than a real number.’’ These variables are of no 

interest themselves, but only exist to implement the constraints.” Considering the first situation, 

in which an imaginary latent variable has a negative variance, what might it mean in applied 

psychological and/or educational measurement? Above and beyond of implementing 

constraints? Might it be useful for detecting potential latent variable deficiency? 

Rindskopf (1984) described the use of imaginary latent variables by recalling Bentler and Lee’s 

(1983) work where imaginary latent variables were used by fixing the variances to –1 to permit 

a measurement model having factors with the same variance as 1: a computational detracting 

strategy to allow the covariance matrix being able to run the correlational structure. However, 

this empirical exercise did not reveal the usefulness of the imaginary latent variable unless it 

was used as a constraint to produce equality restrictions in linear structural models. In my view, 

constraining a latent variable to be imaginary is not limited to a computational way to 

implement constraints in measurement models; however, it has potential conceptual 
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implications in the underlying measures that, as will be explained in the next section, have 

ground in the field of the imaginary complex numbers. 

Essentially, and to be as reasonable as possible, whenever a latent variable is considered as 

imaginary, with its negative variance, a researcher postulates a sort of “what if” scenario 

concerning a potential deficiency of that latent concept in a specific context. That is to say, this 

imaginary interrogation may want to test what could happen to a latent concept if it has been 

affected by some causes that have triggered its absence. Consequently, this deficiency will be 

spread throughout those observed measures that are a reflection, manifestation, and an effect of 

that latent concept. These observed measures (i.e., the well-known reflective indicators of a 

latent variable) under imaginary interrogation can determine which aspects of that latent 

concept are more affected by this potential deficiency/absence.  

In this respect, the aim of this article was to propose a simple empirical test based on 

constraining latent variables to become imaginary and thus verifying what could happen to their 

reflective measures if they are affected by a potential deficiency in a measurement model and 

hence within a context of application.  

The remainder of this paper is structured as follows. The next section presents the conceptual 

foundations of this imaginary latent process in a measurement model. Successively, the 

following section presents a computational demonstration on Schwartz’ (1992) human values 

taxonomy applied to an Italian sample. Finally, a short discussion with limitations and future 

perspectives concludes this work. 

1.1. The Parallelism Between The Measurement Process of Common Factor Models and 

The Rationale of Imaginary Complex Numbers 

The logic and rationale of the classic measurement process, taken from the classic measurement 

process based on the classical test theory (Lord & Novick, 1968) of true and error scores, 

postulates that any measure xi, even the one obtained with the most sophisticated procedures, 

is affected by a measurement error ei (a nonsystematic but normally distributed with zero mean 

and nonzero variance); therefore, this measure is functional/dependent on the true measure ti 

(which may be latent in nature and thereby unknown) and the measurement error itself: 

xi = ti + ei        (1) 

As a logical computational consequence, the true measure is indeed the expected value of the 

initial measures and is not related to the measurement error: 

E (xi) = ti        (2) 

Cov (ti, ei) = 0       (3) 

According to Equations 1 and 3, a researcher may have a set of observed measures xi with 

variances σxi
2  that can be decomposed of another set of true measures with latent true error–free 

variable variances σti
2  and a set of measurement errors with variances σei

2 : 

σxi
2  = σti

2 + σei
2         (4) 

 = σti
2/σxi

2         (5) 

Equation 4 depicts the famous definition of reliability†  (5) of the classic measurement process 

where a true value is a value free of measurement error. This true value is indeed a value that 

is still unknown and requires a set of observed measures to be revealed as precisely as possible 

by partial-out measurement errors from the common values.  

In connection therewith, we know the common factor model theory of Thurstone (1947), which 

 

†“Reliability is the ratio of true score’s variance to the observed variable’s variance” (Bollen, 1989, p.208). 
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constitutes the key to factor analysis, that each set of observed variables may be written, or 

better decomposed of, as a linear function of that part of common shared variance and that part 

that is unique in each observed itself. These two concepts of common shared variance and 

unique variance represent what have been above formalized with the expression (4) where σti
2 

is the common shared variance needed to reflect the manifestation of a common latent factor 

(i.e., the true value to be sought), whereas σei
2  is the unique variance that embodies the 

following: (a) the part of the observed variance that each observed variable does not share with 

the observed variances of the other observed variables and thus not useful to manifest the true 

value and (b) the random error owing to the measurement process.  

Hence, by combining the classical test theory of measurement process with a typical 

confirmatory factor analysis (CFA) model (Bollen, 1989; Jöreskog, 1966), a type‡ of common 

factor model where the relations between measures and factors are a priori specified, Equation 

1 can be explicated in a system of simple linear regression equations as follows: 

xi = i + i  + I       (6) 

where xi is a set of observed variables (i = 1, …, n),  is a hypothetical common latent factor, 

i is the factor loading or regression slope, i is the intercept, and i is the measurement error. 

The difference between Equation 6 and a typical regression equation is that the independent 

variable is the latent factor  and the criterion is constituted by multiple observed variables xi. 

Therefore, it does mean that the latent concept  is trying to explain, and summarize, all those 

observed variables xi, and the magnitude of how much the latent factor can do that is owing to 

the regression slopes or factor loadings i associated with each xi . The magnitude of what was 

not captured by the latent factor is i, which is an error in this sort of interpolation process. This 

error has an expected value E (i) = 0 and Cov (;i) = 0.  

Equation 6 estimates parameters i, i, and i using all the information of the observed measures 

xi that constitute all the sources of covariation of xi: the variances and covariances of each 

involved xi. This leads to the fundamentals of the structural equation model applied to measured 

variable and latent variables path analysis (Bollen, 1989): decomposition of observed variances 

and covariances (i.e., the matrix Ʃxx) into the model-implied parameters (i.e., the model-implied 

matrix Ʃ (θ)): 

 = [θ]       (7) 

If a researcher can write the system of Equation 7 he/she can list all the necessary parameters 

of the model (6). 

For an example with two-latent factors ξ1 and ξ2 and four measures (x1, x2, x3, x4) as depicted 

in Figure 1§, it is possible to rewrite the covariance matrix of the four measures following the 

system of Equations 6, as shown in Table 1. 

 

 

 

 

‡The other type of common factor model is the famous explorative factor analysis (EFA) where the relations 

between measures and factors are not a priori specified. EFA and CFA can partial out common variance from 

unique variance. However, the former assumes measurement error at random; hence, it cannot be modeled while 

the latter may assume measurement error at random, or not, and thus it can be modeled (Brown, 2006; Fabricar et 

al., 1999). 
§The model in Figure 1 is not identified, and it requires to fix one of the i to 1 for each latent factor. As soon as 

this identification is done, relative decomposition Table 1 will be simplified accordingly, and the imaginary 

process will involve only the other not fixed i. However, for a better understanding of the process, I did not 

indicate either in Figure 1 or Table 1 that the i needs to be equal to 1 to trigger the idea that all the i must be 

involved into the imaginary process alternatively as described in the results section. 
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Figure 1. Path diagram of two common factors with four measures. 

 

Table 1. Decomposition table of structural parameters of two common factor models with four measures 

(adapted from Hancock et al., 2009). 

  Unknown parameters 

info decomposition 1 2 3 4 σ1 
2  σ12  σ2 

2  σ1 
2  σ2 

2  σ3 
2  σ4 

2  

σx1
2  1

2
σ1 

2 + σ1 
2             

σx2
2  2

2σ1 
2 +  σ2 

2             

σx3
2  3

2
σ2 

2 + σ3 
2             

σx4
2  4

2
σ2 

2 + σ4 
2             

σx1x2 12σ1 
2             

σx1x3 13σ
12 

            

σx1x4 14σ
12 

            

σx2x3 23σ
12 

            

σx2x4 24σ
12 

            

σx3x4 34σ
2 

2
            

Reading the table horizontally indicates how many and which piece of information we need to 

estimate the unknown parameters (Hancock et al., 2009). On the contrary, by reading the table 

vertically, we are aware of which decomposition expression is directly involved in the estima-

tion of that particular parameter (Hancock et al., 2009). The checkmarks indicate the combina-

tions. It is noteworthy that to estimate the latent variances σ1 
2  and σ2 

2 , we require all the infor-

mation available in the observed measures as expected. Furthermore, the latent variances are 

functions of all other parameters because they are involved in almost all the decomposition 

expressions, although unevenly.  

Considering the abovementioned, and recalling the theory of imaginary and complex numbers, 

we acknowledge that an imaginary number is i2 = −1 (or i = √−1), and thus a complex number 

is the sum of a real number x with an imaginary part i (i.e., x + i when the weight of i is 1); on 

the contrary, a latent variable (LV) is imaginary if its variance (var) is negative (i.e., var (LV) 

= −1), and thus looking again at decomposition Table 1 for the latent variances, the following 
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expression for the measure x1 (the same for the other three left) can be written as 

σx1 
2  =  1

2(−1) + σ1 
2                                                               (8) 

σx1 
2 - σ1 

2  =  1
2(−1)                                                                   (9) 

From Equation 9, we know that when an imaginary latent is postulated, the relative common 

variance i
2
 is negative, which can occur when the unique variances are high. From decompo-

sition Table 1 and Equation 9, it is straightforward noticing how this process involves all the 

four measures. 

This intuition becomes a deduction while referring to the properties of imaginary numbers and 

thus to the well-known complex number geometrical representation of the Argand diagram 

(Weisstein, 2023), as shown in Figure 2, where the imaginary part iy is on the vertical axis, 

whereas the real numbers x are on the horizontal axis.  

Figure 2. The Argand diagram (Weisstein, 2023). 

 

The logic of the circle is as follows: The more the real number x increases, the more the 

imaginary part iy decreases. By translating this rationale to the case of imaginary LVs, the same 

logic can be applied to its reflective measures. To measure x1 in Equations 8 and 9, the more 

the unique variance σ1 
2 (i.e., the real number x in Figure 2) increases, the more the common 

variance i1
2
 decreases (i.e., the imaginary part iy in Figure 2): This explains the deficiency in 

items while posing var (LV) to −1, to let it imaginary. 

Therefore, it seems reasonable to assume that an imaginary LV is not a proper variable that 

does not exist because its variance is not zero but equal to a number, although imaginary. Hence, 

constraining a latent factor to have a negative variance seems to hypothesize what could happen 

if, for some reason, there was a deficiency in that factor within its measurement model. 

Consequently, this deficiency spreads out within its reflective measures, most precisely 

affecting the common variances (i.e., factor loadings). This can pragmatically indicate which 

items might be more affected by a potential latent deficiency and suggest which latent aspects 

(i.e., measures) a specific sample of respondents may be deficient in. The estimation process of 

the system (7) for the two-latent model in Figure 1 with the imaginary testing with Equation 8 

(i.e., by constraining the latent variance σ1 
2 to –1) will yield to new factor loadings values 

affected by the imaginary constraint. Furthermore, in the decomposition properties in Table 1, 

even the estimated latent covariance σ12 will be affected by the factor loading modifications, 

and thus the deficiency in the latent ξ1 will possibly modify the relation with the other latent ξ2 

as well. 
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2. METHOD AND METHODS: An example of imaginary latent process 

An empirical example of the proposed imaginary latent process will be conducted from the 

European Social Survey (ESS) (ESS Round 10: European Social Survey, 2022) Italian data of 

the latest round 10 (ESS Round 10: European Social Survey Round 10 Data, 2020). The ESS 

is a biennial cross-national survey organized by the European Research Infrastructure 

Consortium to collect data on the attitudes, values, beliefs, and many behavioral patterns of 

European countries citizens. 

The Schwartz human values section H of the ESS questionnaire (ESS Round 10: European 

Social Survey, 2022) will be used to select items relative to the two domains of Universalism 

and Benevolence. 

Universalism 

(1) He thinks it is important that every person in the world should be treated equally. He believes 

that everyone should have equal opportunities in life (i.e., item C in ESS questionnaire 

named ipeqopt). 

(2) It is important to him to listen to people who are different from him. Even when he disagrees 

with them, he still wants to understand them (i.e., item H in ESS questionnaire named 

ipudrst). 

(3) He strongly believes that people should care for nature. Looking after the environment is 

important to him (i.e., item S in ESS questionnaire named impenv). 

Benevolence** 

(1) It is essential for him to help the people around him. He wants to take care for their well-

being (i.e., item L in ESS questionnaire named iphlppl). 

(2) It is important for him to be loyal to his friends. He wants to devote himself to people close 

to him (i.e., item R in ESS questionnaire named iplylfr). 

The ESS uses the Schwartz’s Portrait Value Questionnaire (Schwartz, 2004; Schwartz et al., 

2001) with the unipolar 6-point Likert scale (i.e., from 1 = very like me to 6 = not like me at 

all) to measure the aforementioned items. 

The structural equation modeling (SEM) analyses will be conducted using LISREL v.9.30 

(Jöreskog & Sörbom, 2017). 

3. RESULTS 

The general SEM model’s fit was assessed using the classical goodness-of-fit indexes: the max-

imum likelihood ratio chi-square test, the goodness-of-fit index (GFI), and standardized root-

mean-square residual (SRMR) as absolute goodness-of-fit indexes; the root-mean-square error 

of approximation (RMSEA) as parsimonious fit index; and the comparative fit index (CFI) and 

the non-normed fit index (NNFI) as incremental fit indices. Most of the SEM scientific com-

munity (Fan et al., 2016; Hu & Bentler, 1999; Kline, 2011; Schermelleh-Engel et al., 2003) 

suggests cutoff values of the aforementioned fit indexes: (a) low and not significant chi-square 

values are symptoms of good fit even though they are often found significant owing to the well-

known limitations of this index, which is sensible to sample size. However, the chi-square mag-

nitude is always reported as the first indication of discrepancy between the data and the hypoth-

esized model; (b) values of RMSEA equal to or less than 0.05 are a good fit, in the range be-

tween 0.05 and 0.08 marginal, and greater than 0.10 is a poor fit; (c) GFI is similar to the 

coefficient of determination used in linear regression but applied to the entire model, and it 

reveals the amount of variance and covariance explained by the model (Bollen, 1989); (d) 

 

** For simplicity’s sake only two domains of the Schwartz’ taxonomy have been selected, but the analyses can be 

expanded to the complete taxonomy or considering other domains of interest. It does not jeopardize the imaginary 

latent process.  
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SRMR values below 0.09 are considered good data-model fit; and (e) values greater than 0.90 

for CFI and NNFI are considered adequate for a good model fit, although values approaching 

and over 0.95 are preferred. 

Tables 2 and 3 present the CFA results of the Universalism and Benevolence latent Schwartz 

domains tested for the imaginary process with the maximum likelihood (ML) method of 

estimation†† and the bootstrapping analysis‡‡ on the constrained covariation matrix for testing 

the estimation stability caused by the sampling fluctuation. The first columns of both tables 

show the CFA solutions with no restrictions unless the first item is fixed to 1 to measure the 

respective latent as scaling indicators to identify the model (Bollen, 1989). This initial model 

with an effective sample size of 2546 respondents and 4 degrees of freedom performed fairly 

well regarding factor loadings (all over .5 and statistically significant from 0) and fit indices 

(i.e., chi square = 67.10 (p < .000); GFI = .99; RMSEA = .079 with 90% confidence interval 

[.063–.096]; CFI = .98; NNFI = .96; SRMR = .02). This CFA model is the one to be tested for 

an imaginary process. Starting from Table 2, the Universalism is investigated as an imaginary 

value domain first with constraining its latent variance to –1§§. This process was repeated by 

selecting each item as scaling indicator alternatively to test for each item deficiency***. 

Therefore, the item coded impenv (i.e., He strongly believes that people should care for nature. 

Looking after the environment is important to him.) seems to be the only one found to be more 

resilient (i.e., factor loadings are greater) than the other two in the presence of a potential 

deficiency of the Universalism domain in Italy concerning the ESS sample. Practically, this 

means that for these citizens, a deficiency in Universalism will more likely affect their 

relationships with other people than their concern for preserving the environment. Passing to 

the Benevolence domain from Table 3 is straightforward, indicating that the most resilient item 

at a potential deficiency seems is the iplylfr (i.e., It is important to him to be loyal to his friends. 

He wants to devote himself to people close to him.) even though the bootstrapping solution did 

not confirm owing to the sampling fluctuation. However, these two items require further 

attention and investigation because they seem to preserve their own purposes, whereas 

Universalism and Benevolence concepts are more and more tenuous. Attention may regard, for 

instance, the context from which the items were surveyed, the research questions of the study, 

the characteristics of the sample, and so forth. 

 

 

 

 

 

 

†† Robust Maximum Likelihood (RML) and Robust Diagonally Weighted Least Square (DWLS) methods of 

estimation have been performed for considering also the potential ordinal nature of the variables (Finney & 

DiStefano, 2013), but here I just reported the ML solutions because they did not substantially differ from the other 

two strategies. All the RML and DWLS solutions are not reported, but they can be requested to the author. 
‡‡ The number of bootstrap samples was of 1000 (Hair et al., 2018) with 100% resampling of the raw data. 
§§The SIMPLIS syntax, a program language that works under LISREL (Jöreskog & Sörbom, 2017) ambient, has 

been reported in the Appendix. 
***Goodness-of-fit indices of the constrained model obviously got worse, even for bootstrapping, than the 

unconstrained solution because imposing a latent variance to be –1 computationally sounds improper (the worst 

example of fit indices found: chi square = 2462.02 (p < .000); GFI = .73; RMSEA = .439 with 90% confidence 

interval (.425–.454); CFI = .40; SRMR = .33; the reader can easily run the CFAs reported in Table 2 with the 

SIMPLIS syntax provided in the Appendix). All that was expected and the goodness-of-fit indices here are not 

very informative because the purpose was not to find a good adaptation of original data matrix to the model-

implied matrix but to look at the modifications of the indicators’ common variances (i.e., factor loadings) while 

imposing an imaginary constraint. 
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Table 2. Unstandardized (Std) factor loadings, latent variances, and covariances for Universalism as 

imaginary latent (*not significant at the 95% confidence level). Fixed values are indicated in bold. 

Bootstrapping results are indicated in italics. 

UNIVERSALISM 

Latent Variance 

 0.41 (1.00) -1.00 -1.00 -1.00 

ipeqopt  

 

1.00 (.64) 

 

1.00 (.96) 

1.00 (1.02) 

-.07 (-.07) 

-.12 (-.12) 

-.01* (-.01) 

-.02 (-.02) 

ipudrst 

 

.97 (.66) 

 

 

-.05 (-.05) 

-.09 (-.10) 

 

 

1.00 (1.03) 

1.00 (1.10) 

 

 

.01* (.01) 

.01*(.01) 

 

impenv  

 

1.06 (.73) 

 

.09 (.09) 

.08 (.08) 

.08 (.09) 

.08 (.08) 

1.00 (1.07) 

1.00 (1.08) 

BENEVOLENCE 

Latent Variance 

 
.43 (1.00) 

 

.43 (1.00) 

.43 (1.00) 

.46 (1.00) 

.43 (1.00) 

.38 (1.00) 

.36 (1.00) 

iphlppl 

 

1.00 (.70) 

 

1.00 (.71) 

1.00 (.71) 

1.00 (.73) 

1.00 (.71) 

1.00 (.67) 

1.00 (.66) 

 

iplylfr 

 

1.00 (.73) 

 

.98 (.72) 

 

.92 (.70) 

 

1.12 (.77) 

  .98 (.73) .98 (.73) 1.15 (.79) 

UNIVERSALISM-BENEVOLENCE 

Latent Covariance 

 .42 (1.00) 
.45 (.68) 

.38 (.58) 

.43 (.64) 

.35 (.54) 

.43 (.70) 

.41 (.68) 

 

Table 3. Unstandardized (Std) factor loadings, latent variances, and covariances for Benevolence as 

imaginary latent. (*not significant at the 95% confidence level). Fixed values are indicated in bold. 
Bootstrapping results are indicated in italics 

BENEVOLENCE 

Latent Variance 

 0.41 (1.00) -1.00 -1.00 

iphlppl 

 

 

1.00 (.70) 

 

 

1.00 (.1.06) 

1.00 (1.09) 

 

.01* (.01) 

-.02 (-.02) 

 

iplylfr  

 

1.00 (.73) 

 

.02 (.02) 

-.00* (-.00) 

1.00 (1.11) 

1.00 (1.16) 

UNIVERSALISM 

Latent Variance 

 .43 (1.00) 
.44 (1.00) 

.43 (1.00) 

.40 (1.00) 

.39 (1.00) 

ipeqopt  

 

 

1.00 (.64) 

 

 

1.00 (.66) 

1.00 (.67) 

 

1.00 (.64) 

1.00 (.64) 

 

ipudrst 

 

 

.97 (.66) 

 

 

.98 (.68) 

.94 (.68) 

 

.95 (.64) 

.94 (.64) 

 

impenv  

 

1.06 (.73) 

 

.97 (.69) 

.98 (.69) 

1.10 (.75) 

1.14 (.76) 

BENEVOLENCE - UNIVERSALISM 

Latent Covariance 

 .42 (1.00) 
.45 (.69) 

.41 (.63) 

.43 (.67) 

.39 (.63) 
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4. DISCUSSION and CONCLUSION 

Recalling Rindskopf (1984, p.38), the imaginary LVs should be variables useful to implement 

specific constraints in measurement models. Above and beyond this initial definition and based 

on the empirical test provided in this manuscript, it can be reasonable to propose that imaginary 

LVs are variables useful for testing a latent deficiency within a specific context of the applica-

tion. Explicitly, the imaginary LVs while postulating variances equal to −1 reflect this negative 

effect within their observed indicators that turn into complex numbers. Consequently, the meas-

urement equations of confirmatory factor models with imaginary LVs turn into measurement 

equations with complex numbers. However, on one hand, solving these new complex equations 

with the usual SEM techniques yields expected unacceptable fit indices; on the contrary, it still 

provides significant structural parameters and thus potential indications on which indicator, 

loading the imaginary latent, is less (or more) affected by this latent deficiency. That is to say, 

because a negative latent variance is a variability that is absent in a latent concept, this sort of 

latent lacking will be reflected in the indicators, and thus, it can sensibly give signals on what 

would happen if that latent concept is flawed: which latent aspect (measured by each indicator) 

will be more affected by, and which is more resilient to, this potential deficiency. These poten-

tial indications need to be more investigated and/or validated by other SEM-based strategies 

(like measurement invariance across groups for instance), but I strongly suggest that it is some-

thing not to be ignored. This empirical test can also add further potential information on the 

selection of scaling indicators while a deficiency scenario in the LVs is hypothesized and there-

fore contributes to expanding the list of criteria for this selection (Bollen et al., 2022). 

Furthermore, and perhaps most importantly, this empirical test of the imaginary latent interro-

gation opens new possibilities regarding the promising usefulness of the complex numbers in 

measurement models with latent variables that, to my knowledge, are still unexplored and so 

are the subsequent estimation methods of these types of SEM models. While using the well-

known methods of estimation (e.g., ML, RML, DWLS), a researcher obtains bad fit indices 

because you are running models with offending constraints like fixing latent variances to –1. 

Consequently, new methods, possibly even completely different from the usual ones, that in-

clude the math process of imaginary and complex numbers in the estimation process are eagerly 

necessary, although it goes beyond the purpose of this work that remains essentially pioneering. 

However, the two-factor model tested in this initial experiment yielded promising results that 

warrant further investigation, particularly involving multifactor structures with additional ref-

lective items to be tested across different respondent groups. 

Finally, the evident limitations of this approach need to be considered. The first was just 

partially mentioned above and regards the methodological way how to model an imaginary 

latent. In this experiment, the LISREL computational system was pragmatically forced to 

converge to a solution by fixing the variance of a latent variable to be equal to –1. Other 

statistical software like M-Plus (Muthen & Muthen, 1998-2017) and lavaan (Rosseel, 2012) 

under R (R core Team, 2021) can be tried, but I am more than certain that other methods of 

estimation are needed. A second limitation is that only reflective indicators have been tested 

for potential deficiency in a latent variable. However, what happens when formative causal 

indicators are included? They are typical predictors of a latent variance such as the multiple 

indicators multiple causes (MIMIC) model (Jöreskog & Goldberger, 1975) (Bollen & 

Diamantopoulos, 2015). Whenever an imaginary interrogation is requested for latent variable 

models with formative indicators, it would mean that they predict a negative latent variance by 

estimating possible causes behind the deficiency found in the relative reflective indicators. This 

sounds like another extremely challenging perspective to be explored in the future. 
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APPENDIX 

SIMPLIS syntax to run the maximum likelihood analysis (no bootstrapping) of the path model 

in Table 2 and 3 within the main text; “!” stands for comments. The reader can alternatively set 

the variance of U (Universalism) or B (Benevolence) to -1 to check the U and B items, respec-

tively): 

 

Observed variables ipeqopt ipudrst impenv iphlppl iplylfr 

Covariance Matrix 

0.997 

0.444 0.896 

0.427 0.401 0.870 

0.427 0.431 0.431 0.860 

0.402 0.384 0.485 0.428 0.804 

Latent variables U B 

Sample Size = 2546 

Relationships 

ipeqopt=1*U 

ipudrst=U 

impenv=U 

iphlppl=1*B 

iplylfr=B 

Set Variance of U to -1 ! Set Variance of B to -1 

Path Diagram 

Print Residuals 

Admissibility check = off 

End of Problem 
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