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The vehicle routing problem (VRP) is a crucial group of transportation problems, 

and the traditional capacitated VRP (CVRP) directly handles external logistics with 

a homogeneous vehicle fleet. This study examines CVRP from the perspective of in-

plant logistics, focusing on a heterogeneous fleet within an automotive factory. The 

homogeneous and heterogeneous vehicle fleets were compared to address the 

factory’s actual in-plant logistics issues. First, simulated annealing (SA), tabu search 

(TS) algorithms, and mathematical modeling were used. A hybrid approach was 

proposed, and all the proposed meta-heuristic algorithms were evaluated for 

homogeneous and heterogeneous vehicle fleets. According to the results, the 

reduction rates of fleet area and distribution costs using CVRP with heterogeneous 

fleets are 17% and 36%, respectively. In addition, to examine the effect of the hybrid 

algorithm parameters on the results, the traveling distance was calculated for 

different scenarios, and multiple regression analyses were performed. According to 

the multiple regression analysis, the hybrid algorithm's most affected parameter was 

the cooling coefficient. 

 

1. Introduction 

 

Production logistics refers to in-plant logistics 

activities undertaken by manufacturing shops 

during the production process [1]. Compared 

with incoming and outbound logistics, in-plant 

logistics is a less researched area [2]. Ensuring 

the integration of production logistics with the 

production process is crucial for achieving 

efficiency and productivity [3]. A poorly 

designed material handling system results in 

excessive in-production material stock, 

insufficient material supply, and inefficient use 

of transport resources. Costs can be minimized 

by standardizing and making the in-plant 

material handling system traceable. 

 

VRP problems are complex and involve different 

application areas and cannot be solved by 

classical methods. There are variations in VRP, 

such as split delivery VRP, CVRP, multi-depot 

VRP, VRP with time windows (VRPTW), and 

periodic VRP. This problem's primary purpose is 

to minimize the number of vehicles used and the 

total route length and time while reducing the 

cost function [4].  

 

This study develops an easily manageable, 

standardized in-plant transportation system that 

can reduce costs and increase the value-added 

time of automotive factories. This research 

examines the existing in-plant transportation 

systems of factories in the automotive industry 

and identifies areas for improvement. 

 

In this study, SA and TS algorithms, along with 

mathematical modeling, were used to determine 

semi-finished goods distribution routing with the 

aim of minimizing the traveling distance with a 

homogeneous vehicle fleet. Subsequently, a 
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hybrid algorithm that combines the TS and SA 

algorithms was proposed to solve CVRP. 

Furthermore, all meta-heuristic algorithms were 

tested on both homogeneous and heterogeneous 

vehicle fleets. The test results indicate that a 

heterogeneous vehicle fleet can reduce the 

number of vehicles and the route distance. The 

results were also compared with the current 

situation, demonstrating that the proposed 

approach enables efficient use of distribution 

vehicles and reduces non-value-added activities 

and transportation costs. To analyze the effect of 

the hybrid tabu search (HTS) algorithm's 

parameter on the results, the traveling distance 

was calculated for different parameters, and 

multiple regression analyses were conducted. 

According to the multiple regression analyses, 

the hybrid algorithm's most affected parameter 

was the cooling coefficient. 

 

Numerous studies have been conducted on VRP. 

Some relevant studies are summarized below: 

 

Leung et al. [5] and Harmanani et al. [6] 

proposed the SA algorithm to solve CVRP. Juan 

et al. [7] proposed a straightforward procedure 

for solving heterogeneous fleet VRP. Bozyer et 

al. [8] proposed a heuristic algorithm based on 

the First Group's principle to solve CVRP. They 

also proposed a hybrid algorithm that combines 

SA and Savings Algorithms. Sen et al. [9] 

proposed two methodologies to address the VRP 

arising from the demands of a supermarket chain, 

utilizing a clustering algorithm in the first 

approach and a genetic algorithm (GA) in the 

second, with their performance compared 

through ANOVA analysis. Shaabani and 

Kamalabadi [10] proposed a hybrid SA 

algorithm based on GA to solve an ınventory 

routing problem. The proposed algorithm 

outperformed the SA and GA alone. Birim [11] 

used SA to solve the VRP problem via cross-

docking. Yu et al. [12] applied SA to solve the 

hybrid VRP. Wang et al. [13] proposed a hybrid 

model that combined the SA and TS algorithms, 

and it demonstrated good results on large-scale 

problems. Dassisti et al. [14] optimized the routes 

for material distribution from the depot to 

production lines using ant colony optimization 

and mixed ınteger linear programing (MILP). 

Ferreira and Queiroz [15] proposed two SA-

based approaches to solve the CVRP. Wei et al. 

[16] used SA to solve the two-dimensional 

CVRP problem and demonstrated superior 

performance to existing algorithms. Helal et al. 

[17] proposed two approaches for CVRP systems 

with evidential demand, both using SA to test 

problems in the literature. Yazgan and 

Büyükyılmaz [18] addressed the simultaneous 

pickup and delivery VRP for a company serving 

76 customers, proposing a MILP model and a 

novel heuristic algorithm to minimize travel 

distance and vehicle usage, with the algorithm's 

performance evaluated on various datasets using 

regression analysis. Simsir and Ekmekci [19] 

used an artificial bee colony algorithm to solve 

the VRP problem with simultaneous delivery and 

pickup. Normasari et al. [20] conducted a study 

on green CVRP, developed a mathematical 

model , and proposed SA as a solution; they 

obtained better solutions in a reasonable time. 

Zidi et al. [21] proposed a hybrid model that 

includes SA and TS algorithms for the static 

ambulance routing problem. Rezaei et al.  [22] 

investigated green VRP with time window 

constraints while considering a heterogeneous 

fleet of vehicles and filling stations. Golsefidi 

and Jokar [23] described the MILP for the 

production routing problem and proposed SA 

and GA to solve it. Sakiani et al. [24] developed 

a mathematical model of the inventory routing 

problem and solved it using a specialized SA 

algorithm with a crossover-based search method. 

Jaballah et al. [25] presented the time-dependent 

shortest path and VRP, utilizing SA to solve this 

issue with a fleet of identical vehicles servicing 

dispersed customer locations across a vast 

network with travel times subject to time 

variations. Messaoud [26] investigated a 

stochastic electric CVRP using a hybrid GA and 

Monte Carlo simulation procedure. Li and Fu 

[27] used an improved Symbiotic Organisms 

Search algorithm combined with variable 

neighborhood search to solve CVRP, and they 

demonstrated high solution stability compared to 

other algorithms. Cavaliere et al. [28] proposed 

an effective heuristic algorithm for large-scale 

CVRP instances. Vincent et al. [29] proposed a 

solution for heterogeneous fleet VRP systems 

with multiple forward/reverse cross-docks. The 

proposed solution manages vehicles with 

dissimilar capacities and delivery and return 

processes. The authors addressed the challenges 

of fleet management and routing by employing 



Sakarya University Journal of Science, 28(6) 2024, 1242-1260 

1244 

 

the SA algorithm with the variable neighborhood 

descent algorithm as a local search heuristic 

integrated into the SA framework. . Kumari et al. 

[30] proposed a novel hybrid algorithm, GA-RR, 

combining genetic algorithms with the ruin-and-

recreate method to solve the CVRP, 

demonstrating superior performance on 34 

benchmark instances and achieving an effective 

exploration-exploitation balance.  Muriyatmoko 

et al. [31] compared heuristic and metaheuristic 

algorithms for the CVRP  in faculty 

transportation, highlighting the superior 

performance of metaheuristics like guided local 

search and SA for complex scenarios. 

Fitzpatricket al. [32] introduced a hybrid 

heuristic for large-scale CVRP, integrating 

machine learning-based constructive methods 

with integer linear programming techniques to 

dynamically partition problems, ensuring fleet-

size constraints and achieving solution quality 

within 3% of the best-known benchmarks. Chi et 

al. [33] addressed the CVRP with three-

dimensional loading constraints (3L-CVRP), 

proposing improved relocation constraints and a 

mixed-integer linear programming model, solved 

using a branch-and-price algorithm, to enhance 

volume utilization and reduce costs through 

necessary relocations. 

 

Among the reviewed studies, the scarcity of 

research on VRP for in-plant logistics is 

remarkable. To our knowledge, no case study in 

the current literature has solved the CVRP 

problem for in-plant logistics systems using the 

meta-heuristic methods employed in this study 

while considering both heterogeneous and 

homogeneous vehicle fleets. 

 

The main contributions of this study are 

summarized as follows: 

 

(i) This study proposes a hybrid algorithm to 

solve CVRP that departs from existing 

approaches. (ii) This study is the first to consider 

a heterogeneous vehicle fleet for in-plant 

logistics systems. (iii) A case study was 

conducted to evaluate the effectiveness of the 

proposed algorithms in terms of solving 

identified problems. (iv) Solutions to the vehicle 

routing problem can be successfully applied in an 

in-plant logistic system, leading to substantial 

improvements. (v) Multiple regression analysis 

was employed to further investigate the impact of 

the hybrid algorithm’s parameters on the case 

study outcome. 

 

The manuscript is structured into several 

sections. Section 2 presents the VRP and meta-

heuristic algorithm used to solve the problem. 

Subsequently, Section 3 presents a case study 

that demonstrates the effectiveness of the 

proposed algorithm. Finally, Section 4 concludes 

the paper and provides recommendations for 

future research. 

 

2. Material and Methods 
 

2.1. Mathematical formulation of CVRP 

 

The VRP was first studied by Dantzig et al. in 

1954, marking a significant milestone in the field 

of operational research [34]. Subsequently, 

Clarke and Wright [4] expanded on Dantzig and 

Ramser's method by introducing the classical 

saving method, which became widely adopted in 

logistics optimization. A variety of models and 

algorithms have been proposed to address the 

diverse complexities of VRPs. VRP solution 

methods are frequently employed to optimize 

companies’ distribution and collection routes 

[35]. 

 

The characteristics of CVRP, which is the main 

subject of this study, are as follows [36]: 

 

• The problem involved creating route sets 

for each vehicle while adhering to cost-

efficiency and capacity constraints. 

• All vehicles had equal capacities, which 

were predetermined. 

• Customer demands were predefined and 

known prior to routing. 

• Vehicles started and ended their routes at 

the warehouse. 

• Each customer was served exactly once. 

 

The objective function and constraints of the 

problem were mathematically modeled as 

follows [37]: 

N= Nodes {N1, N2,…, Nn}, N0= Warehouse 

n: Total number of nodes 

Lij= Length of the arc from customer i to 

customer j, (for CVRP  Lij = Lji) 



Seçil Kulaç, Nevra Kazancı 

1245 

 

V= {v1, v2, …, vm} vehicle fleet 

m: Total number of vehicles 

C= {C1, C2, …, Cm} vehicle capacities (for 

CVRP C1= C2= … = Cm) 

di= Demand of customer i 

xij
k= {

1, if vehicle k visits j after i;

0, otherwise.
 

y
i
k= {

1, if vehicle k serves node i;
0, otherwise.

 

 

Objective function: 

Min ∑ ∑ Lijxij
v

i,j∈Nv∈V   (1) 

Constraints:   

∑ ∑ xij
v

i∈Nv∈V

=1 ∀i ∈ N (2) 

∑ xij
v

j∈N

+ ∑ xji
v

j∈N

=1 ∀i ∈ N, v ∈ V (3) 

∑ ∑ x0j
v

n

j=1

V

v=1

= V  (4) 

∑ x0j
v

j∈N

=1 ∀v ∈ V (5) 

∑ xj,n+1
v

j∈N

=1 ∀v ∈ V (6) 

xij
v  = 1  => y

i
di= y

j
 ∀i, j ∈ N, ∀v ∈ V (7) 

y
0
= C, 0 ≤ y

i
 ∀i ∈ N (8) 

∑ ∑ di

n

i=1

m

v=1

∑ xij
v

n

j=0, i≠j

 ≤ C v ∈ {1,…,m} (9) 

∑ x0j ≤
j∈N

 m v ∈ {1,…,m} (10) 

∑ xj0 ≤
j∈N

m ∀j ∈ N (11) 

xij
v  ∈ {0,1} ∀i, j ∈ N,∀v ∈ V (12) 

 

Equation (1) defines the objective function aimed 

at minimizing the total distance traveled by the 

vehicles. Equation (2) ensures that each customer 

is served by exactly one vehicle, while Equation 

(3) prevents unnecessary return trips. Equation 

(4) guarantees that all vehicles depart from the 

warehouse, and Equation (5) restricts each 

vehicle to depart only once. Equation (6) 

mandates that each vehicle visits customers 

exactly once. Equation (7) calculates the 

remaining capacity of a vehicle traveling from 

node i to node j. Equation (8) defines the initial 

capacity of each vehicle as Q. Hence, Equation 

(9) restricts the total demands of customers on a 

route from exceeding capacity Q. Equations (10) 

and (11) limit the number of vehicles used to a 

maximum of m. Finally, Equation (12) ensures 

that variable x takes binary values (0 or 1). 

 

2.2. Simulated annealing algorithm 

 

The SA algorithm is a stochastic optimization 

method that mimics the physical annealing 

process, where a solid transitions to a low-energy 

state through gradual cooling. 

 

The term annealing refers to the process of 

transitioning a solid from a high-energy state to a 

stable low-energy state within a heat bath. This 

process generally comprises two processes [38]. 

 

• The initial temperature of the heat bath is 

elevated to facilitate the melting of solids. 

• Solids attain higher stability at low-

energy states, which correspond to lower 

temperatures. In other words, the 

arrangement of solid particles becomes 

more uniform and ordered at lower 

temperatures. Therefore, the temperature 

of the heat bath is gradually decreased, 

allowing the particles to stabilize into a 

self-regulating and ordered structure. 

 

The SA algorithm aims to find an x solution that 

optimizes a defined function f (x) in a subset (S) 

of all possible solution points. The SA starts 

searching for a randomly selected initial solution. 

A suitable mechanism then determines a solution 

adjacent to this solution, and the change in f (x) 

is calculated. If the difference is in the desired 

direction, the neighboring solution is the current 

solution. If no change is observed in the desired 

direction, the SA accepts this solution with the 

probability value obtained by the “Metropolis 

Criteria.” Adopting a solution that creates an 

inverse change in the objective function with a 

specific probability value allows the SA to 

eliminate local best points. When the T value 

exceeds the above-mentioned probability value,  
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the objective function accepts most of the 

increases. The acceptance rate decreases as the T 

value decreases. Therefore, to avoid getting stuck 

at local SA points, the initial temperature should 

be high and gradually reduced [39].  

 

Table 1 outlines the pseudocode implementation 

of the SA algorithm. The main parameters of the 

SA algorithm are T0: initial temperature, T: 

current temperature, α: cooling coefficient, P: the 

acceptance criteria for non-improving solutions, 

and MaxIt: maximum number of iterations at 

temperature. 

 

In the beginning, T is set to T0. The value of T 

can be reduced using the T = T* α formula. When 

T is below one, the algorithm terminates. If the 

new solution is better than the best solution, it is 

updated; otherwise, the new solution may be 

accepted according to the value P [11]. 

 

The following neighborhood structures were 

illustrated in Figure 1 and explained below. 

 

Swap Method: Two points in a solution are 

randomly selected. Then, they swap the numbers 

in these two points [40]. 

 

Insertion Method: Two points in a solution are 

randomly selected. The cell with the minor 

position is inserted into the position just before 

the other cell [11]. 

 

Reversion Method: Two random points are 

selected, and the parts standing between them are 

replaced with each other using the mirror method 

[23]. 

 

 

 

 

Table 1. The SA pseudocode 

Algorithm 1: Simulated annealing algorithm 

Step 1: Select a model 

Step 2: Parameters T0, α, MaxIt 

Step 3: Set Randomize: For Seed = 1 to 10 

Step 4: Generate an random initial solution (X) 

Step 5: Calculate cost of initial solution (X) 

Step 6: Update best solution: Best Solution: X 

Step 7: The current temperature was set to the 

initial :  

temperature: T = T0; 

Step 8:    Where (T > 1) 

Step 9:         for it =  0 to MaxIt2 

Step 10: Create neighbor solutions using swap, 

 reversion and insertion  

Step 11:      Generate a random number between 0  

and 1: m = rand(0 1) 

Step 12:               case m ≤ 0.25  do swap 

Step 13:               case m ≥ 0.75  do ınsertion 

Step 14:               case % 0.25-0.75 do reversion 

Step 15:        Calculate cost of  New Solution 

(xnew) 

Step 16:         if cost of xnew ≤ Cost of x  

Step 17:              Accept new solution: x = xnew;  

Step 18:         else  

delta = xnew.Cost-x.Cost; p = exp (-

delta/T) 

Step 19:    Generate a random number between 0 

and 1 

Step 20:             if random number ≤ P 

Step 21:             Accept new solution: x = xnew;  

Step 22:          if (Cost of X) ≤ (Cost of Best 

Solution)  

and vehicle capacities are not exceed 

Step 23:          Update best solution: Best Solution = 

x;  

Step 24:          Reduced temperature : T = α*T 

Step 25: Record the final solution and the 

corresponding objective value for each 

seed (from 1 to 10) 

Step 26: End 

 
Figure 1. Create a neighborhood structure 
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2.3. Tabu search algorithm 

 

The TS algorithm is an iterative search algorithm 

developed by Glover [41]. Meta-heuristic 

algorithms can perform circular motion while 

searching the solution space and, in some cases, 

can be installed at local minimum and maximum 

points. To avoid cycling, some moves were kept 

in the Tabu List. This reduces repetitions around 

exact solutions and helps make discoveries in the 

search space [42]. 

 

The general steps of the proposed TS algorithm 

are summarized as follows [43]: 

 

Step 1: Determine the initial solution. Memorize 

the current and best solution. 

 

Step 2: Find neighboring solutions that can be 

crossed using the specified replacement function. 

 

• Choose a neighboring solution that, if it 

is not tabu or satisfies the aspiration 

criterion, even if it is tabu. 

• The transition from the current solution to 

the new one is determined as a tabu. 

• If the new solution is better than the best 

solution, it is considered the best solution. 

 

Step 3: Repeat Step 2 until the stop criterion is 

met. 

 

The proposed TS algorithm begins with a starting 

solution and iteratively attempts to identify better 

solutions. In each iteration, a neighbor of the 

current solution is selected and evaluated by non-

tabu movement. If the objective function value is 

improved, the neighboring solution is considered 

the current solution. If a selected move is tabu but 

meets the aspiration criterion, it can be applied to 

create the new current solution. Some 

movements are recorded in the taboo list to 

prevent backtracks and re-prohibited for a 

particular time. The algorithm stops working 

according to a specified stop condition. All steps 

were repeated for seeds 1–10. The pseudocode 

for the proposed TS is given in Table 2. 

 

2.4. Proposed hybrid tabu search algorithm 

(HTS) 

 

A hybrid method integrating the TS and SA 

algorithms was developed to address the CVRP. 

The details of the proposed hybrid algorithm are 

outlined in the subsequent subsections. 

 

2.4.1.  Solution representation 

 

Figure 2 illustrates a sample solution 

representation for the proposed TS algorithm. 

The solution is represented as a vector, where 

each element L ∈ {1, 2, 3, ..., n} corresponds to 

an assembly line, and cell 0 indicates the material 

distribution depot. Each route begins and 

terminates at the material stock area. According 

to this vector, the material distribution routes 

were determined as r (1): [0 2 1 4 5 0], r (2): [0 3 

14 13 12 11 17 15 16 0], r (3): [0 10 9 0], r (4): 

[0 18 19 7 0], r (5): [0 6 8 0]. Similarly, each 

route's demand was calculated as r(i.). 

 

2.4.2. Initial solution generation 

 

The method used to create the initial solution 

affects the performance of meta-heuristic 

algorithms. Algorithm 1 is used to create the 

initial solution to improve the proposed 

algorithm's performance. 

 

2.4.3.  Action list generation 

 

The number of possible movements was 

determined based on the number of assembly 

lines in the model. A double combination of all 

assembly lines is created and saved in the action 

list. For example, the number of movements of 

the 19 assembly lines can be calculated as 

19×(19-1) = 342. The movements are recorded in 

the action list as [1 2], [2 1] ... [18 19]. 

 

Figure 2. Solution vector 
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Table 2. Tabu search algorithm pseudocode 

Algorithm 2: Tabu Search Algorithm 

Step 1: Select a model 

Step 2: Set parameters MaxIt, TLs 

Step 3: Create action list 

Step 4: Set randomization: For Seed = 1 to 10 

Step 5: Generate an random initial solution (X) 

Step 6: Calculate cost of X 

Step 7: Update best solution: Best Solution:X 

Step 8: Create empty tabu list 

Step 9:     For it = 0 to MaxIt 

Step 10:         For i = 1 to nAction 

Step 11:                  if i. Action is not kept in tabu list  

Step 12:                      Do i. Action and create new 

solution (xnew) 

Step 13:                      Calculate cost of New 

Solution (xnew) 

Step 14:   if cost of xnew ≤ Cost of x  

Step 15:   Accept new solution: x = xnew;  

Step 16:          end 

Step 17:          Update best solution: Best Solution = 

x;  

Step 18:        For i = 1:nAction  

Step 19:              if i is the same best solution action 

index, add i. Action in tabu list  

Step 20:              Else Reduce the tabu counter 

Step 21:        End 

Step 22:          if (Cost of X) ≤ (Cost of Best 

Solution) and vehicle capacities do not 

exceed 

Step 23: Update best solution: Best Solution = x;  

Step 24: Record the final solution and final objective 

value for each seed (from 1 to 10) 

Step 25:        End 

 

2.4.4. The HTS procedure 

 

The proposed HTS algorithm is governed by six 

key parameters, detailed as follows: 

 

MaxIt1: Specifies the maximum number of 

iterations performed at each temperature level. 

MaxIt2: Maximum number of iterations.  

TLs: Coefficient used to navigate tabu list size 

(Tabu list Size = round (TLs*nAction)). 

T0: Initial temperature. 

Alpha1: Cooling coefficient of initial solution 

algorithm (cooling formula T = alpha1*T). 

Alpha2: Cooling coefficient (cooling formula T 

= alpha2*T). 

 

The pseudocode of the proposed HTS algorithm 

is presented in Table 3. 

 
Table 3. Tabu search algorithm pseudocode 

Algorithm 3: Hybrid Tabu Search Algorithm 

Step 1: Select a model 

Step 2: Set parameters T0, alpha, alpha2, MaxIt1, 

 MaxIt2, TLs 

Step 3: Create action list 

Step 4: Set Randomize: For Seed = 1 to 10 

Step 5: Generate an initial solution (x) by using  

Algorithm 1 (SA Algorithm) 

Step 6: Calculate cost of x 

Step 7: Update best solution: Best Solution: x 

Step 8: Create empty tabu list 

Step 9:     For it = 0 to MaxIt2 

Step 10:         For i = 1 to nAction 

Step 11:                  If i. Action is not kept in tabu list  

Step 12:                      Do i. Action and create new  

                      solution (xnew) 

Step 13:              Calculate cost of new solution (xnew) 

Step 14: Calculate the deterioration rate:100 * (cost of new 

solution-cost of the best solution) / cost of best  

solution 

Step 15:                      If the cost of xnew ≤ Cost of x  

Step 16:                       Accept new solution: x = xnew;  

Step 17:                      elseif Deterioration rate ≤ random 

                     number between 0 and 50 

Step 18:                      Delta = xnew. Cost-x. Cost;  

                     P = exp(-delta/T); 

Step 19:     Generate a random number between 0 and 1 

Step 20:                      If random number ≤ P 

Step 21:                      Accept new solution: x = xnew;  

Step 22:          end 

Step 23:          Update best solution: Best Solution = x;  

Step 24:        For i = 1: nAction  

Step 25:              if i is the same best solution action index, 

             add i. Action in tabu list  

Step 26:              Else Reduce the tabu counter 

Step 27:        End 

Step 28:          If (Cost of X) ≤ (Cost of Best Solution) 

 And vehicle capacities are not exceed 

Step 29:          Update best solution: Best Solution = x;  

Step 30:    Reduced temperature: T = alpha2*T 

Step 31:    Write final solution and final objective value 

for each seed (from 1 to 10) 

Step 32:    End 

 

For all possible movements in the member list 

but not in the taboo list, new solutions from the 

existing solution were created using the reversion 
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method. The cost and deterioration rate of the 

new solutions were calculated. If the new 

solution's cost was lower than that of the current 

solution, the new solution was accepted. 

According to the SA algorithm's probability of 

acceptance (P) characteristic, bad solutions were 

accepted with operations between 17 and 21 

steps. Suppose that the cost of the new solution 

exceeds that of the current solution. A random 

number between 0 and 50 was generated (Step 

17). 

 

If the deterioration rate was less than the random 

number, acceptance probability (P), a feature of 

the SA algorithm, was calculated (Step 18).  

 

A new random number between 0 and 1 was 

created in Step 19. 

 

If the probability of acceptance was less than the 

random number (Step 19), the new solution was 

considered the existing solution (Step 20). Thus, 

bad solutions in a particular range were selected 

dynamically, and the algorithm was prevented 

from being installed in local optimum solutions. 

 

The tabu list was updated with the operations 

between Steps 23 and 26. The best solution was 

updated in Step 29. After these processes, the 

current temperature was reduced according to the 

determined cooling coefficient. All these 

operations were repeated to the maximum 

number of iterations determined in the parameter 

section. 

2.4.5.  Move operator and neighborhood 

structure 

 

The move operator in the HTS algorithm is the 

reversion method. In this method, two random 

points are selected, and the parts that stand 

between them are replaced with each other using 

the mirror method [23]. For example, the 

reversion method for [3 2 4 5 1 6 7 8 10 9] when 

motion is selected from the action list (4, 7) is 

shown in Figure 3. 

 

 

 
Figure 3. Example reversion method 

 

2.4.6. Tabu list and tabu list size 

 

The tabu list determines which selections should 

be included in the tabu group within any iteration 

and determines the number of selected and 

updated. The size of the tabu list can significantly 

affect the outcome. The experimental results 

demonstrate that as the size of the problem 

increases, the size of the tabu list should increase 

proportionally to the problem size. In this study, 

the tabu list was determined by the size of the 

action list. The formula is the size of the tabu 

list= round (TLs * size of action list). The TLs 

coefficient is used to navigate the tabu list size.  

 

2.4.7.  Aspiration criteria 

 

The classical aspiration criterion was used in the 

proposed HTS algorithm. The classical 

aspiration criterion indicates that if a tabu 

solution’s cost is better than the best-known 

solution’s cost, it is accepted even if it exists in 

the tabu list [44].  

 

3. Implementation 

 

3.1. Problem definition 

 

In this section, the proposed solution approach is 

implemented for the semi-finished product 

distribution operations of an automotive factory 

in Türkiye. To prove the applicability of the 

meta-heuristic approach and the proposed HTS 

algorithm, the actual data of the factory were 

used with some modifications, such as 

considering homogeneous and heterogeneous 

fleets. Automotive wire harness production was 

carried out in 19 assembly lines in the factory. 

Although the wire harness varies according to the 

type of vehicle, it consisted of at least 750 m of 

cable and 2000 different components. Figure 4 

shows the use of the harnesses in the vehicle. An 
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average of 85000 semi-finished products were 

produced daily using 45 wire-cutting machines. 

The assembly lines (L1 - L19) and the semi-

finished goods stock area (D0) are shown in 

Figure 5. Six homogeneous vehicles were used to 

distribute semi-finished goods, and 10 operators 

per shift were assigned to this task. The 

distribution route of each vehicle starts and ends 

in the stock area (D0). For instance, route 1 was 

[D0 L9 L10 D0], and route 6 was [D0 L3 L15 

L16 L1 D0]. 

 

The objective of this study was to enhance the in-

plant material handling systems of automotive 

factories using the proposed meta-heuristic 

algorithms. Specifically, this study focused on 

the distribution of semi-finished goods from the 

stock area to assembly lines. 

 

Currently, no scientific method has been 

developed to determine the distribution routes 

and follow-up of the process. Upon examination 

of the current situation, the following problems 

were identified: 

 

• Material distribution routes were not 

defined. 

• No route/task distribution among 

operators. 

• The operators had to cover a greater 

walking distance. 

• Operator performance could not be 

monitored 

 

3.2. Data set and variables 

 

The data presented below were obtained from 

observations made within the scope of the 

application: 

 

• Distribution time 

 

 

 

Figure 4. Display of wire harness on a vehicle 

Semi-finished goods production area 

Stock Area (D0) 
L18 

L19 

L10 L9 L8 L7 L6 L5 L2 L2 

L1 L3 

L11 L12 L14 L15 L16 L13 

L17 

Route 1     
....... 

Route 6 

Route 1  Route 6  Other Routes 

Figure 5. Example layout and routes 
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In accordance with the time studies, the 

distribution time of one centimeter of the 

material was calculated to be 2.3 s/cm. 

 

• Walking time 

 

In accordance with the time studies, walking time 

was determined to be 2 s/m. 

 

• Capacity of distribution vehicles 

 

The material transport vehicle was equipped with 

20 sling arms, each with a length of 20 cm, 

allowing for a total material capacity of 400 cm. 

The material distribution vehicle is shown in 

Figure 6. 

 

• Demand for assembly lines 

The demand for the assembly lines was 

calculated based on the wire specifications, such 

as the size and length (in cm). The hourly average 

demand quantities for the assembly lines are 

given in Table 4. 

 
Table 4. Demand for assembly lines 

Assembly 

line  

Request 

cm for 60 

min 

Assembly 

line 

Request 

cm for 60 

min 
L1 25 L11 28 

L2 37 L12 24 

L3 24 L13 84 

L4 261 L14 74 

L5 75 L15 67 

L6 213 L16 79 

L7 66 L17 18 

L8 178 L18 281 

L9 244 L19 53 

L10 108   

 
Figure 6. Material distribution vehicle 

 

• Distance between assembly lines 

The distances between the stock area and 

assembly lines are given in Table 5. 

 

The following assumptions were considered in 

the study: 
 

• In-line transport was not considered. 

• The walking speed was calculated based 

on the observations. 

• The material transport vehicle was not 

malfunctioning. 

• All vehicles in the system are 

homogeneous in the current state. 
 

 

 

Table 5. The distance between the assembly lines 
 0 L1 L2 L3 L4 L5 … … L18 L19 

0 0 94 44 40 31 17 … … 34 66 

L1 94 0 47 53 64 74 … … 58 66 

L2 44 47 0 83 17 27 … … 10 22 

L3 40 53 83 0 67 57 … … 73 105 

L4 31 64 17 67 0 10 … … 8 39 

L5 17 74 27 57 10 0 … … 16 47 

… … … … … … … … … … … 

… … … … … … … … … … … 

L18 34 58 10 73 8 16 … … 0 31 

L19 66 66 22 105 39 47 … … 31 0 

 

3.3. Computational experiments and analyses 

 

The mathematical model of CVRP (MM of 

CVRP), TS, and SA algorithms were proposed to 

determine the routing that minimizes the number 

of vehicles required and the traveling time. In 
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addition, a hybrid approach that combines the TS 

and SA algorithms was proposed to solve this 

problem. In this section, we present the results 

obtained using the proposed solution methods. 

 

The CVRP mathematical model was solved 

using LINGO 18.0, and meta-heuristic 

algorithms were implemented through coding in 

MATLAB. 

 

First, the above-mentioned solution methods 

were used to determine the material distribution 

routing of the six homogeneous vehicles used in 

the current state. The obtained results are shown 

in Tables 6-9. 

 

In Table 6, the routes generated by the 

mathematical model solution and the distances of 

these routes were given. The total route length 

obtained from the mathematical model solution 

was 691 m. 

 

The routes generated by the proposed TS 

algorithm are summarized in Table 7. According 

to the solution, the total route length was 764 m.  

Table 8 lists the routes generated by the SA 

algorithm. According to the solution, the total 

route length was 653 m. 

 

The routes generated by the proposed HTS 

algorithm are summarized in Table 9. According 

to the solution, the total distance of the routes was 

623 m. 

 

 

Table 6. The mathematical model (MM of CVRP) solution results 

 

 Table 7. The TS algorithm 

 

Table 8. The SA algorithm 

Vehicle no. Route Vehicle capacity 

(cm) 

Route 

length 

(m) 

Demand 

(cm) 

Vehicle 

occupancy 

rate % 

Route 

cycle 

time 

(min) 
1 [0 3 15 16 1 0] 400 188.5 195 49% 14 

2 [0 5 4 0] 400 57.5 336 84% 15 

3 [0 6 8 0] 400 36 391 98% 16 

4 [0 7 14 13 12 11 17 0] 400 197 294 74% 18 

5 [0 9 10 0] 400 80 352 88% 16 

6 [0 18 2 19 0] 400 132 371 93% 19 

Total 
 

2400 691 1939 81% 97 

Vehicle no. Route Vehicle capacity (cm) Route 

length 

(m) 

Demand 

(cm) 

Vehicle 

occupancy 

rate % 

Route 

cycle time 

(min) 
1 [0 15 13 11 14 16 0] 400 203 332 83% 19 

2 [0 6 0] 400 16 213 53% 9 

3 [0 5 4 0] 400 58 336 84% 15 

4 [0 1 2 19 18 0] 400 228 396 99% 23 

5 [0 8 10 17 12 3 0] 400 199 352 88% 20 

6 [0 7 9 0] 400 60 310 78% 14 

Total 
 

2400 764 1939 81% 100 

Vehicle 

no. 

Route Vehicle 

capacity 

(cm) 

Route length 

(m) 

Demand 

(cm) 

Vehicle 

occupancy 

rate % 

Route cycle 

time (min) 

1 [0 16 1 4 0] 400 187 365 91% 20 

2 [0 9 10 0] 400 80 352 88% 16 

3 [0 18 2 19 0] 400 132 371 93% 19 

4 [0 3 15 13 12 11 

17 14 7 0] 

400 199 385 96% 21 

5 [0 8 0] 400 20 178 45% 7 

6 [0 6 5 0] 400 35 288 72% 12 

Total 
 

2400 653 1939 81% 96 
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Table 9. The HTS algorithm 

 

The results obtained using the four solution 

methods are compared in Table 10. It can be seen 

that the proposed HTS algorithm determines 

distribution routes with shorter route lengths and 

shorter cycle times than the other solution 

methods. 
 

Table 10. Comparison of solution results for a 

homogeneous vehicle fleet 

Solution methods Length 

of route 

(m) 

Cycle time 

of route 

(min) 
Mathematical model 691 97 

TS algorithm 764 100 

SA algorithm 653 96 

HTS algorithm 623 95 

 

In addition, meta-heuristic algorithms were 

tested for scenarios involving both homogeneous 

and heterogeneous vehicle fleets. In Scenario 1, 

which represents the current situation with six 

homogeneous vehicles, the HTS algorithm 

provided the best result with a routing distance of 

623 m and vehicle occupancy rate of 81%. The 

obtained results are presented in Table 11. 

 

Scenario 2, which utilized a heterogeneous 

vehicle fleet, resulted in shorter route length than 

Scenario 3, which used a homogeneous fleet with 

the same total vehicle capacity.   Scenarios 4 and 

5 also employed heterogeneous fleets with 

different total capacities. These scenarios 

demonstrate that adjusting the total vehicle 

capacity and using a heterogeneous fleet can 

reduce the route distance. It was determined that 

using a heterogeneous vehicle fleet can improve 

the number of distribution vehicles and route 

length. 

 

A graphical representation of the material-

distributing routing length of the HTS, SA, and 

TS algorithms is shown in Figure 7. Based on 

Figure 7, the HTS algorithm provided the 

optimal solution for all scenarios. 

 

The current situation and results of the methods 

used in this study are compared in Table 12. It 

was found that the proposed HTS algorithm 

determines material distribution routes with the 

minimum route length to serve all assembly 

lines. In addition, it was shown that the rate of 

vehicle capacity utilization (97%) was improved 

using the suggested meta-heuristic algorithms, 

and the route distance could be reduced using a 

heterogeneous vehicle fleet. As a result of the 

study, a 78% improvement in the route length 

and a 46% improvement in the material 

distribution cost were achieved using the HTS 

algorithm for the heterogeneous vehicle fleet. 

 
Table 11. Comparison of results between homogeneous and heterogeneous vehicle fleets 

Vehicle 

no. 

Route Vehicle 

capacity 

(cm) 

Route 

length (m) 

Demand 

(cm) 

Vehicle 

occupancy rate 

% 

Route cycle 

time (min) 

1 [0 9 10 0] 400 80 352 88% 16 

2 [0 7 8 0] 400 21 244 61% 10 

3 [0 16 15 13 12 11 

17 14 3 0] 

400 226 398 100% 23 

4 [0 6 0] 400 16 213 53% 9 

5 [0 18 19 1 2 0] 400 222 396 99% 23 

6 [0 4 5 0] 400 58 336 84% 15 

Total 
 

2400 623 1939 81% 95 

Test 

no. 

Number 

of 

vehicles 

Capacity of each vehicle Total 

vehicle 

capacity 

Vehicle 

occupancy 

rate % 

SA TS HTS Gap% 

(SA-

HTS) 

Gap% 

(TB-

HTS) 
1 6 [400 400 400 400 400 400] 2400 81% 653 764 623 4.8% 22.6% 

2 5 [380 380 400 400 440] 2000 97% 629 844 626 0.5% 34.8% 

3 5 [400 400 400 400 400] 2000 97% 714 936 658 8.5% 42.2% 

4 5 [380 400 420 420 440] 2060 94% 629 844 607 3.6% 39.0% 

5 5 [400 400 420 420 440] 2080 93% 630 861 607 3.8% 41.8% 
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Figure 7. Comparison of solution results 

 
Table 12. Comparison of solution results 

3.4. Statistical analyses 

 

Regression analysis is a statistical method used 

to examine the relationship between a dependent 

variable and one or more independent variables, 

and to quantitatively evaluate this relationship. It 

is employed to understand the relationship 

between variables, predict the value of the 

dependent variable, and measure their degree of 

influence [45]. 

 

The effects of the HTS algorithm parameters on 

the outcomes were analyzed by calculating the 

initial route length using various parameters. 

Multiple regression analyses were performed. 

The results are presented in Table 13. 

 

Independent variables were defined as follows: 

 

MaxIt1: Maximum number of iterations at each 

temperature 

MaxIt2: Maximum number of iterations  

TLs: Coefficient used to navigate tabu list size 

(Tabu list Size=round (TLs*nAction)) 

T0: Initial temperature 

Alpha1: Cooling coefficient of initial solution 

algorithm (cooling formula T=alpha1*T) 

Alpha2: Cooling coefficient (cooling formula 

T=alpha2*T) 

Means and standard deviations for all variables 

are presented in Table 14. 

 

 

652
629

714

629 630

764

844

936

844 861

623 626 658
607 607

400

600

800

1000

1200

1 (Current State) 2 3 4 5
Scenario No.

Simulated Annealing (SA) Tabu Search (TS) Proposed Hybrid Tabu Search (HTS)

Solution method Current 

state 

Homogeneous vehicle fleet Heterogeneous vehicle fleet 

MM of CVRP SA TS HTS SA TS HTS 
Capacity of each vehicle V = [400 

400 400 400 

400 400]  

Total = 2400 

V = [400 400 400 400 400 400] 

Total = 2400 

V = [380 380 400 400 440] 

Total = 2000 

Route length (m) 2880 691 652 764 623 629 844 626 

Distribution cycle time 

(min) 

168 97 96 100 95 95 102 95 

Number of vehicles 

 (units) 

6 6 6 6 6 5 5 5 

Daily delivery time (h) 61.3 35.4 35.0 36.5 34.7 34.7 37.2 34.7 

Daily vehicle preparation 

time (h) 

11 11 11 11 11 9 9 9 

Number of operators 10 6.3 6.3 6.5 6.2 6.0 6.3 6.0 

Total monthly cost (€) 5276 3667 3644 3735 3622 3377 3535 3377 

Rate of capacity 

utilization (%) 

81% 81% 81% 81% 81% 97% 97% 97% 

Gain in the route length 

(%) 

 
76% 77% 73% 78% 78% 71% 78% 

Gain of material 

distribution cost (%) 

 
30% 31% 29% 31% 36% 33% 36% 
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Table 13. Route lengths for different parameters 

 

The ANOVA results are presented in Table 15. 

The significance value (Sig.) in the table was less 

than 0.05, indicating a significant impact of the 

independent variables on the dependent variable 

(Route Length). 

 

Table 16 shows the significant relationships 

between MaxIt1, MaxIt2, TLs, T0, Alpha1, and 

Route Length. However, no statistical 

significance between Alpha2 and Route Length. 

Based on these findings, we recommend 

eliminating the Alpha2 parameter. Additionally, 

the 'Beta' values could determine whether a 

negative or positive correlation exists between 

independent and dependent variables. An 

increase in the TL and T0 values can increase the 

standard deviation of the Route Length. On the 

other hand, increasing the MaxIt1, MaxIt2, and 

Alpha1 parameters decreased the standard 

deviation of Route Length.  

 

 

 

The Beta value indicates the change in the 

standard deviation of the dependent variable 

when the independent variable shifts by one unit 

while the other variables remain constant in the 

model [46]. According to the beta value shown in 

Table 15, Alpha1 had the most significant impact 

on the route length parameter. Specifically, when 

Alpha1 increases by one unit, the standard 

deviation of route length decreases by 0.655. 

 
Table 14. Descriptive statistics 

 

 

No MaxIt1 MaxIt2 TLs T0 Alpha1 Alpha2 Route length 
1 20 300 0.1 200 0.99 0.99 642 

2 20 300 0.1 250 0.99 0.99 797 

3 20 300 0.2 200 0.99 0.99 642 

4 20 300 0.3 200 0.9 0.99 754 

5 20 500 0.2 200 0.9 0.99 730 

6 20 500 0.2 200 0.95 0.99 657 

7 20 500 0.3 200 0.9 0.99 731 

8 20 500 0.7 200 0.9 0.99 807 

9 20 700 0.3 200 0.9 0.99 731 

10 30 300 0.2 200 0.99 0.99 640 

11 30 500 0.1 200 0.95 0.9 642 

12 30 500 0.3 200 0.9 0.99 702 

13 50 300 0.1 200 0.98 0.98 629 

14 50 300 0.2 100 0.95 0.9 629 

15 50 300 0.3 100 0.95 0.9 629 

16 50 500 0.5 150 0.98 0.9 700 

17 50 500 0.5 200 0.9 0.9 679 

18 90 300 0.2 150 0.9 0.95 758 

19 90 300 0.2 200 0.7 0.99 837 

20 90 300 0.3 200 0.9 0.95 783 

21 90 300 0.3 200 0.95 0.99 655 

22 90 300 0.5 200 0.7 0.99 802 

23 90 500 0.2 100 0.99 0.99 626 

24 90 500 0.2 200 0.98 0.99 636 

25 90 500 0.2 200 0.99 0.99 626 

26 90 500 0.3 200 0.95 0.99 636 

27 90 500 0.3 250 0.99 0.99 640 

28 90 500 0.5 150 0.99 0.9 626 

29 90 500 0.7 100 0.99 0.99 629 

30 90 700 0.3 200 0.95 0.99 636 

 Mean Std. deviation N 

Route length 687.7000 67.4599 30 

MaxIt1 56.3333 31.56639 30 

MaxIt2 426.6667 122.98958 30 

TLs 0.2933 0.1596 30 

T0 185 39.71884 30 

Alpha1 0.9333 0.07341 30 

Alpha2 0.9969 0.03652 30 
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Table 15. ANOVA results 

Model Sum of squares df Mean square F Sig. 
1 Regression 

Residual 

Total 

89117.45 

131974.3 

42856.85 

6 

23 

29 

14852.908 

1863.341 

7.971 0.000 

Table 16. Coefficients 

 

4. Conclusions 

 

The aim of this study was to optimize the 

distribution routes of semi-finished goods to 

assembly lines in an automotive factory. This 

study addressed inefficiencies in labor caused by 

the absence of job descriptions for distribution 

operators by using VRP techniques to determine 

the most efficient material distribution routes. 

 

The SA and TS algorithms, in conjunction with 

the CVRP mathematical model, were employed 

to determine the distribution route for semi-

finished goods. In addition, a hybrid algorithm 

that combines the TS and SA algorithms was 

proposed to solve CVRP. The proposed hybrid 

algorithm provides the optimal solution for 

homogeneous vehicles in the factory, generating 

a route 141 m shorter than the TS and 29 m 

shorter than the SA, resulting in 18.5% and 4.4% 

improvements, respectively. Analysis of the 

distribution routes of the hybrid algorithm 

showed that assigning operators to specific lines 

and distributing tasks evenly can reduce 

distribution costs by 31%. 

 

Furthermore, the proposed algorithms were 

tested on both homogeneous and heterogeneous 

vehicle fleets. The use of a heterogeneous vehicle 

fleet for in-factory logistics systems reduced the 

number of vehicles required and the total 

distance traveled. Specifically, using 

heterogeneous CVRP achieved a 17% reduction 

in the number of vehicles, a 36% reduction in 

distribution costs, and a 78% reduction in route  

 

length. The capacity utilization rate increased 

from 81% to 97% when using the proposed HTS 

algorithm. 

 

In this study, the applicability of CVRP in in-

plant logistics systems was demonstrated 

through the proposed hybrid algorithm using a 

heterogeneous fleet. The study provided concrete 

data on improving the distribution routes of semi-

finished products, particularly in automotive 

factories, by comparing homogeneous and 

heterogeneous fleets. The results showed that 

heterogeneous fleets are more efficient in terms 

of both cost and route length. his study 

contributes to the literature by presenting a new 

solution for utilizing heterogeneous fleets and 

demonstrating the effectiveness of meta-heuristic 

algorithms in logistics systems. 

 

Comparing the obtained results with the current 

situation shows that the proposed approach 

enables more efficient vehicle usage while 

reducing unnecessary activities and 

transportation costs. Thus, this study provides 

evidence that VRP solutions are appropriate for 

in-plant logistics systems and can lead to 

significant improvements. 

 

Future studies could explore the application of 

fuzzy logic methods to optimize distribution 

routes by minimizing travel distance and vehicle 

usage while accounting for uncertainties in 

customer demand. The proposed hybrid 

algorithm could also be applied to different 

industries and more complex case studies to 

Model 

Unstandardized 

coefficients 
 Standardized 

coefficients 
t Sig. 

95% Unstandardized 

coefficients 
Correlations 

Collinearity 

statistics 

B 
Std. 

error 
Beta 

Lower 

bound 

Upper 

bound 
Zero-order Partial Part Tolerance VIF 

1  

(Constant) 
1122.11 263.2  4.267 0.00 577.69 1666.53      

MaxIt1 -0.44 0.27 -0.21 -1.65 0.11 -0.99 0.11 -0.15 -0.33 -0.2 0.9 1.11 

MaxIt2 -0.1 0.07 -0.18 -1.35 0.18 -0.25 0.05 -0.22 -0.27 
-

0.16 
0.83 1.21 

TLs 90.78 57.87 0.22 1.57 0.13 -28.92 210.49 0.17 0.31 0.19 0.75 1.33 

T0 0.39 0.25 0.23 1.56 0.13 -0.12 0.89 0.33 0.31 0.19 0.67 1.49 

Alpha1 -600.68 
119.0

4 
-0.65 -5.05 0.00 -846.9 -354.43 -0.73 -0.73 

-

0.60 
0.84 1.19 

Alpha2 97.64 250.1 0.05 0.39 0.7 -419.8 615.08 0.19 0.08 0.05 0.77 1.3 
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enhance its generalizability and validate its 

performance across diverse logistical settings. 

Furthermore, Furthermore, integrating 

ergonomic considerations into route optimization 

could alleviate physical strain on workers, 

improving both operational efficiency and 

worker well-being. 
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