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This study aims to develop a truck mixer routing model to increase the efficiency of 
concrete delivery operations in concrete plants and to propose suitable solution 
methods for the model. In this study, a mixed-integer linear programming model 
was developed, based on a variant of the vehicle routing problem known as the 
capacitated vehicle routing problem with time windows, by incorporating 
constraints specific to concrete transportation. The objective of the model is to 
reduce transportation costs by minimizing the total distance travelled by truck 
mixers and the total number of truck mixers used. The model was first addressed by 
exact solution methods in Gurobi Optimizer. Since the vehicle routing problem is 
classified as an NP-hard problem, the complexity of the model increases with the 
number of customers, leading to a longer computation time. Thus, the model was 
addressed by a heuristic method developed for this study. The results show that the 
Gurobi Optimizer provided optimal solutions for up to 15 customers and 15 vehicles 
within a reasonable computation time, whereas the heuristic method quickly 
provided near-optimal solutions with a 3.39% cost increase on average. 

  

BETON SANTRALLERİ İÇİN BİR TRANSMİKSER ROTALAMA MODELİ İLE 
HAZIR BETON TAŞIMACILIĞININ OPTİMİZE EDİLMESİ 

 

Anahtar Kelimeler Öz 
Araç Rotalama Problemi, 
Beton Sevkiyatı, 
Optimizasyon, 
Transmikser, 
Zaman Penceresi. 
 

Bu çalışma hazır beton santrallerinin beton sevkiyatı verimliliğini arttırmaya 
yönelik bir transmikser rotalama modeli oluşturmayı ve bu modele uygun çözüm 
yöntemlerini sunmayı amaçlamaktadır. Bu çalışmada araç rotalama probleminin bir 
çeşidi olan kapasite kısıtlı ve zaman pencereli araç rotalama problemi kullanılarak, 
hazır beton taşıma operasyonlarına özgü kısıtlar da eklenerek, bir karma tam sayılı 
doğrusal programlama modeli oluşturulmuştur. Bu modelin amacı transmikserlerin 
katettiği toplam mesafeyi ve kullanılan toplam transmikser sayısını azaltarak, 
taşıma operasyonlarının maliyetini azaltmaktır. Model ilk olarak Gurobi Optimizer 
kullanılarak kesin çözüm yöntemleriyle ele alınmıştır. Fakat araç rotalama 
probleminin NP-zor sınıfında olması, müşteri sayısı arttıkça modelin karmaşıklığını 
arttırmıştır ve bu da problemin çözüm süresini uzatmıştır. Bu nedenle model, bu 
çalışma için geliştirilen sezgisel bir yöntemle çözülmüştür. Elde edilen sonuçlar, 
Gurobi Optimizer’in makul bir hesaplama süresiyle 15 müşteriye ve 15 araca kadar 
optimal çözümler sağladığını, sunulan sezgisel yöntemin ise ortalama 3.39%’lık bir 
maliyet artışıyla hızlı bir şekilde optimale yakın çözümler verdiğini göstermektedir. 
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Highlights 

• A mixed-integer linear programming model enhances truck mixer routing efficiency. 
• The capacitated vehicle routing problem with time windows, modified with concrete-specific 

constraints, forms the model's basis. 
• A heuristic method, balancing optimal solutions and computation time, is developed. 
• The model is validated with three cases generated from the concrete plant data. 

 
Purpose and Scope  

This research focuses on enhancing the efficiency of ready-mixed concrete delivery in construction. The aim is 
to develop a truck mixer routing model for concrete plants, intending to optimize concrete transportation 
operations. 
Design/methodology/approach  

The study employs a mixed-integer linear programming model, a variant of the capacitated vehicle routing 
problem with time windows, tailored for ready-mixed concrete transportation. Split delivery and multi-trip 
constraints are integrated. The model aims to minimize transportation costs by reducing travel distance and the 
number of truck mixers used. It was initially solved using Gurobi Optimizer and later approached through a 
heuristic method developed for this study, including tabu search and nearest neighbour algorithms. 
Findings  

The model effectively routed the truck mixers at reduced transportation costs, with Gurobi Optimizer yielding 
optimal solutions for scenarios with up to 15 customers and 15 vehicles. For larger sets, the heuristic method 
provided near-optimal solutions with only a 3.39% average cost increase in 1.2 seconds. This demonstrates the 
model's practical utility in real-world scenarios, offering a balance between computation time and solution 
quality. 
Research limitations/implications  

The study's primary limitation lies in the increasing complexity with larger customer sets, a prevalent challenge 
in solving NP-hard problems like the vehicle routing problem. Future research could explore more efficient 
algorithms or methods to handle larger datasets without significant loss in solution quality or increased 
computation time. 
Practical implications  

For ready-mixed concrete companies, the study's findings imply potential cost savings and increased operational 
efficiency in concrete transportation. Implementing the proposed routing model could lead to more efficient use 
of resources, contributing to reduced operational costs and enhanced service quality in the construction sector. 

Social Implications  

The efficient routing of truck mixers not only benefits the construction industry but also positively impacts 
society by reducing traffic congestion and lowering emissions. Improved delivery efficiency can influence public 
attitudes towards urban development projects, align with corporate social responsibility goals, and enhance 
overall quality of life through better infrastructure development. 
Originality  

This paper introduces a novel routing model for concrete transportation, addressing a specific challenge in 
ready-mixed concrete delivery. Its originality lies in adapting the vehicle routing problem to the unique demands 
of concrete transportation, providing valuable insights for industry practitioners and contributing to the body of 
knowledge in operational research and logistics. 
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1. Introduction 
 
The vehicle routing problem (VRP) is a classic problem related to combinatorial optimization, widely recognized 
in the areas of operations research and logistics. VRP is generally utilized for optimizing routes of vehicles to 
minimize transportation costs in logistics operations. Keskintürk et al. (2015) stated that VRP is widely applied in 
the following areas: waste collection, distribution of products from one or more depots to different customer 
points, applications in the transportation and logistics industry, distribution and collection problems, determining 
school bus routes, aircraft routing problems, delivery of online purchases, distribution of newspapers, mail, bread, 
beverages, etc., patrolling vehicle routing, material collection problems in the inventory area, transportation of 
disabled individuals, routing of service vehicles, and design of material flow systems.  
 
The first VRP was introduced in an article named "The Truck Dispatching Problem" by Dantzig and Ramser (1959). 
In their paper, they presented a real-life case involving the distribution of gasoline to service stations and 
introduced the first algorithmic approach and mathematical programming model (Toth & Vigo, 2014). The 
classical VRP is classified as an NP-hard problem (Lenstra & Kan, 1981). This means that the number of solutions 
increases exponentially with the number of nodes, thus solving the problem with exact methods, in large instances, 
is not accomplished in reasonable computation times. Therefore, heuristics were developed to solve the VRP. El-
Sherbeny (2010) stated that in cases where merely obtaining a feasible solution is insufficient and the solution 
quality is crucial, it gets notable to pursue efficient methods to obtain the best feasible solutions within time 
constraints deemed reasonable. 
 
The VRP has many variants. The most investigated variants of VRP are the capacitated vehicle routing problem 
(CVRP) and the vehicle routing problem with time windows (VRPTW). Both CVRP and VRPTW are mixed-integer 
programming problems in combinatorial optimization and can be solved with exact methods and heuristic 
approaches. CVRP focuses on finding the optimal route for vehicles with limited capacity to serve a set of 
customers, whose demands and locations are known, while considering various constraints. In contrast, VRPTW 
not only aims to determine the most efficient route but also incorporates constraints related to permissible 
delivery times or time windows, which are governed by delivery deadlines and the earliest allowable delivery 
times (Solomon, 1987). In addition to these variants, the capacitated vehicle routing problem with time windows 
(CVRPTW) represents an extension of VRPTW and CVRP. CVRPTW involves the optimization of vehicle routes for 
a fleet tasked with delivering items to customers, taking into account limitations on vehicle capacity and time 
window restrictions. CVRPTW takes part in different business areas, including but not limited to delivery 
scheduling, emergency response planning, and supply chain management.  
 
Ready-mixed concrete (RMC) is a form of concrete pre-mixed at a factory or batching plant based on specific 
concrete mix designs, and subsequently transported to construction sites using truck-mounted transit mixers. 
(truck mixers). The RMC industry plays a pivotal role in the construction sector, as concrete is the most 
fundamental material used in construction projects from residential buildings to massive infrastructure 
developments with a global consumption rate nearing 25 gigatonnes per year (Gursel et al., 2014). RMC industry 
provides various benefits such as consistent quality, reduced wastage, and speedier construction. RMC suppliers 
encounter operational difficulties that encompass the procurement of raw materials, production schedule of 
facilities, and transportation of concrete (Kinable et al., 2014).  
 
RMC suppliers strive to effectively meet their customers’ demand and plan the transportation of concrete to the 
customers' locations while ensuring customer satisfaction and complying with the customers' time windows. 
However, transportation of RMC from the batching plant to the customers involves several important 
considerations due to the characteristics of the concrete. The truck mixers used in the RMC industry have different 
fixed capacities, limiting the volume of concrete they can transport. As the ordered quantity of concrete usually 
exceeds the capacity of a single truck mixer, it is necessary to schedule several consecutive deliveries to fulfill a 
single order (Schmid et al., 2010). Furthermore, the travel distance is very important; the longer the concrete stays 
in the truck, the higher the risk it will begin setting before it's delivered. Efficient routing is imperative not only to 
ensure timely delivery but also to optimize fuel consumption.  Traffic and road conditions can significantly 
influence delivery times. Moreover, the production schedule of the batching plant must align with delivery 
timelines. Customers, on their part, have specific time windows within which they require the RMC to be delivered. 
Furthermore, numerous technical constraints related to the duration of unloading operations need to be factored 
in (Schmid et al., 2010). Once the delivery and service are complete, the total time taken for the empty truck to 
return to the plant must be considered. Also, strict adherence to environmental and safety regulations is crucial as 
spillage or undue delays can lead to environmental hazards and safety risks. 
 
This paper centers on optimizing RMC transportation by utilizing a truck mixer routing model and solution 
methods. CVRPTW was modified to include split delivery constraints and other constraints specific to the problem. 
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This paper aims to propose a mathematical model of the problem and suitable solution methods which include an 
exact solution method and a proposed heuristic method. This study intends to present a practical real-world 
application of the CVRPTW specifically tailored to a ready mixed-concrete plant. This paper is structured into 
several key sections. The Literature Survey section offers a concise overview of the variants of the vehicle routing 
problem. In the Material and Method section, the mathematical model for ready-mixed concrete transportation is 
introduced, alongside the solution methods employed, including the Gurobi Optimizer and a heuristic method 
developed for this study. The Experimental Results section provides detailed insights into the outcomes of three 
distinct case studies. Finally, the Result and Discussion section summarizes the methodologies, solution methods, 
and key findings of the study, while also highlighting potential areas for future work. 
 
2. Literature Survey 
 
The vehicle routing problem (VRP) represents a fundamental problem in combinatorial optimization, focusing on 
devising the most efficient routes for a fleet of vehicles tasked with servicing a set of locations. Dantzig and Ramser 
(1959) proposed the first VRP in a paper titled The Truck Dispatching Problem as a real-world case of gasoline 
delivery to gas stations. The first algorithmic technique and mathematical programming model that aim to 
minimize the total route cost for VRP were proposed in this paper. Following this inspiring paper, Clarke and 
Wright proposed a greedy heuristic algorithm that provided a near-optimal solution to the VRP in their paper in 
1964. The academic community has extensively explored the Vehicle Routing Problem (VRP) over the past six 
decades, with a wealth of articles appearing in leading journals focused on International Operations Research and 
Transportation Science. These publications have contributed to the development of various mathematical models 
and the introduction of precise, heuristic, and metaheuristic algorithms aimed at solving different versions of the 
VRP. In real-life applications, the complexity of capacitated vehicle routing problems often necessitates the use of 
heuristic and metaheuristic approaches to obtain feasible solutions within a reasonable time (Şahin & Eroğlu, 
2015, p. 19) 
 

Table 1. Vehicle Routing Problem Variants 

Vehicle Routing Problem Variant Key Characteristics Key Constraints 

Vehicle Routing Problem (VRP) Basic vehicle routing optimization Route optimization 

Capacitated Vehicle Routing Problem 
(CVRP) 

Vehicle routing with capacity limits Vehicle capacity 

Vehicle Routing Problem with Time 
Windows (VRPTW) 

Vehicle routing with customer time 
windows 

Time windows for deliveries 

Split Delivery Vehicle Routing Problem 
(SDVRP) 

Split deliveries to the same customer 
Vehicle capacity; Split deliveries 
allowed 

Capacitated Vehicle Routing Problem with 
Time Windows (CVRPTW) 

Capacity constraints and time 
windows 

Vehicle capacity; Time windows 

Multiple Trip Vehicle Routing Problem 
(MTVRP) 

Multiple trips by the same vehicle 
Vehicle capacity; Multiple trips 
per vehicle 

 
Toth and Vigo (2014) declared that the most studied type of VRP is the capacitated vehicle routing problem 
(CVRP). CVRP is a mixed-integer linear programming (MILP) problem that deals with determining the optimal 
route for vehicles with limited capacity to carry goods while satisfying constraints. VRP is a complex optimization 
problem, and solving it with classical methods can be challenging, especially when considering additional 
constraints like capacity or time windows" (Ünsal & Yiğit, 2018, p. 7). Fukasawa et al. (2006) developed an exact 
algorithm that combines the branch-and-cut method with the old q-routes approach to derive superior lower 
bounds. This algorithm provides an optimal solution for the CVRP with up to 100 vertices because the CVRP is a 
non-polynomial hard (NP-hard) problem. Pichpibul and Kawtummachai (2012) resolved the CVRP by using Clarke 
and Wright’s savings algorithm with an iterative improvement approach. This well-known heuristic method 
provides a fast and approximate solution for the CVRP. Fitriani et al. (2021) tackled the CVRP using notable 
heuristics—Clarke and Wright's savings, sequential insertion, and nearest neighbour algorithms to minimize the 
total distance. Their comparison showed Clarke and Wright's savings algorithm as the top performer in solving 
the CVRP.  
 
The vehicle routing problem with time windows (VRPTW) is another most-studied variant of the vehicle routing 
problem (VRP). VRPTW is the extension of the capacitated vehicle routing problem (CVRP) that includes time 
constraints. In VRPTW, the service time for each customer must begin within a corresponding time interval, called 
a time window (Toth & Vigo, 2014, p:119). In VRPTW, the two types of time windows are recognized. These are 
hard time windows and soft time windows. On the one hand, in cases with hard time windows, a vehicle arriving 
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before the scheduled time at a customer's location is obliged to wait until the customer is prepared to initiate 
service. This implies that any delay occurring prior to the commencement of a time window is not subject to any 
penalties. On the other hand, in cases with soft time windows, there is some flexibility, and thus Each time window 
may be breached, subject to the imposition of a penalty cost. The objective of VRPTW is to provide service to 
several customers within predefined time windows at a possible minimum cost (in terms of distance travelled) 
without violating the total trip time and capacity constraints for vehicles. Tan et al. (2001) undertook a 
comparative analysis of the different heuristic methods capable of providing near-optimal solutions to solve 
VRPTW. They examined the heuristics: local search with λ-interchange, simulated annealing (SA), tabu search (TS), 
and genetic algorithm (GA). The capacitated vehicle routing problem with time windows (CVRPTW) is an 
extension of the vehicle routing problem with time windows. CVRPTW schedules the route for a fleet of vehicles 
that must deliver goods to customers while considering capacity constraints and time window constraints. In real 
life, CVRPTW arises in different business areas such as delivery scheduling, emergency response planning, and 
supply chain management., Li (2015) utilized the multiple ant colony system algorithm which is the extended 
version of ant colony optimization to solve CVRPTW.  Multiple ant colony system algorithms provided efficient 
solutions for CVRPTW. The solutions reduced the number of trucks by 10% and decreased travel time by 9.87% 
while satisfying all time windows. Bruno (2019) developed software including heuristics for CVRPTW for a food 
company called Soral. The software consists of the time-oriented Clarke and Wright saving algorithm and the time-
oriented nearest neighbour algorithm. 
 

Table 2. Literature Review on Vehicle Routing Problems Solutions 

Author(s) & Year Vehicle Routing Problem Variant Methodology 

Babaee Tirkolaee, E., Abbasian, P., 
Soltani, M., & Ghaffarian, S. A. (2019) 

The Multi-Trip Vehicle Routing Problem with 
Time Windows (MTVRPTW) 

CPLEX solver and proposed 
heuristic consisting of 
Simulated Annealing with local 
search algorithms 

Brandao, J. (2006) 
The Vehicle Routing Problem with Backhauls 
(VRPB) 

Tabu Search Algorithm with K-
Trees solution 

Bruno, L. (2019) 
The Capacitated Vehicle Routing Problem with 
Time Windows (CVRPTW) 

Prosed Method, Clarke and 
Wright's Algorithm, and Nearest 
Neighbour Algorithm 

Chen, P., Huang, H. K., & Dong, X. Y. 
(2010) 

The Capacitated Vehicle Routing Problem 
(CVRP) 

Iterated variable neighborhood 
descent (IVND) algorithm with 
relocation, swap, 2-opt*, 2-opt 
and cross-exchange 

Chen, S., Golden, B., & Wasil, E. (2007) 
The Split Delivery Vehicle Routing Problem 
(SDVRP) 

Proposed Heuristics: combining 
Clarke and Wright's Algorithm 
with Record- to- Record Tavel 
Algorithm 

Fitriani, N. A., Pratama, R. A., Zahro, S., 
Utomo, P. H., & Martini, T. S. (2021) 

The Capacitated Vehicle Routing Problem 
(CVRP) 

Clarke and Wright's Saving 
Algorithm, The Sequential 
Insertion Algorithm, and The 
Nearest Neighbor Algorithm 

Fukasawa, R., Longo, H., Lysgaard, J., 
Aragão, M. P. D., Reis, M., Uchoa, E., & 
Werneck, R. F. (2006) 

The Capacitated Vehicle Routing Problem 
(CVRP) 

Branch-and-Cut and Price 
Algorithm with old q routes 
approach 

Kek, A. G., Cheu, R. L., & Meng, Q. 
(2008) 

The Distance-Constrained Vehicle Routing 
Problems (DCVRP) 

ILOG OPL Studio Cplex and 
Branch and Bound Algorithm 
with a node selection strategy 

Li, X. (2015) 
The Capacitated Vehicle Routing Problem with 
Time Windows (CVRPTW) 

Multiple Ant Colony 
Optimization Algorithm System 
(MACS) 

Solomon, M. M. (1987) 
The Vehicle Routing Problem with Time 
Windows (VRPTW) 

Clarke and Wright Savings 
algorithm, time-oriented 
Nearest Neighbor, Insertion 
Heuristics, time-oriented Sweep 
Heuristics  

Tan, K. C., Lee, L. H., Zhu, Q. L., & Ou, K. 
(2001) 

The Vehicle Routing Problem with Time 
Windows (VRPTW) 

Local Search with λ-
interchange, Simulated 
Annealing, Tabu Search, and 
Genetic Algorithm  

 



DÖNMEZ and ÖNER 10.21923/jesd.1445781 

 

807 
 

Table 2 presents a variety of approaches to solving different vehicle routing problem (VRP) variants, showcasing 
both heuristic and exact methods. Researchers have employed exact methods like branch-and-cut, branch-and-
bound, and CPLEX solvers to find optimal solutions, particularly for complex problems like the capacitated (CVRP). 
The Capacitated Vehicle Routing Problem (CVRP) is classified as NP-Hard, and exact solutions in real-life 
applications are often impractical, which leads to the adoption of heuristic methods for solving it (Karagül, Tokat, 
& Aydemir, 2016, p. 217). In addition, heuristic methods such as Clarke and Wright’s savings algorithm, Nearest 
Neighbour, and Tabu Search are also included, demonstrating their effectiveness in finding near-optimal solutions 
for large-scale and time-constrained VRPs. Recent advancements in heuristic algorithms have focused on hybrid 
approaches, combining elements of multiple algorithms to enhance solution accuracy while maintaining 
computational efficiency. 
 
In ready-mix concrete (RMC) transportation, it is essential to effectively meet customer demands and comply with 
their specified time windows for the successful progression of construction projects. Therefore, concrete 
transportation can be conceptualized as a capacitated vehicle routing problem with time windows (CVRPTW) 
modified by the characteristics of other VRPs, such as split delivery constraints and multi-trip considerations. 
CVRPTW is an NP-hard problem and such modifications increased the complexity of the CVRPTW, which means 
more computation time is required to solve the model. This model was represented as a mixed-integer linear 
programming (MILP). For exact solutions to address the model, software like Gurobi Optimizer and IBM ILOG 
CPLEX can be utilized for optimal solutions. Additionally, exact methods like the branch-and-bound, the cutting-
plane methods, and the branch-and-cut method combine both of these methods. On the heuristic methods side, 
there are several popular heuristic methods, including Clarke and Wright's savings algorithm, nearest neighbour 
algorithm, and sweep algorithm. These heuristics are frequently used for constructing near-optimal solutions. 
When it is required to improve these solutions, local search algorithms, including the 2-opt, 3-opt, k-opt exchanges, 
the λ-interchange, and the insertion sort can be beneficial. Metaheuristic methods, particularly Tabu Search and 
Genetic Algorithms, offer flexibility and adaptability, making them highly suitable for real-world scenarios where 
problem constraints may change dynamically. For metaheuristic approaches, the tabu search algorithm is 
considered one of the best options.  
 
3. Material and Method 
 
This section presents a mathematical model developed for the transportation of ready-mixed concrete (RMC) and 
proposes exact and heuristic solution methods applied to solve the model. To understand the nature of the 
problem, data from a medium-sized concrete plant was utilized. The concrete plant aims to route the truck mixers 
in a way that is both cost-effective and time-efficient. The concrete plant operates with a limited number of truck 
mixers, and therefore the plant uses these trucks multiple times after serving the customers. Additionally, the truck 
mixers must visit customers on specified time windows and move only between the customers and the concrete 
plant. However, when customer demand exceeds the truck mixer capacity, the concrete plant meets this demand 
with split deliveries. In these split deliveries, the successor truck mixer must wait at the plant to proceed to the 
customer until the preceding truck mixer has completed the service of the concrete due to the setting time of the 
concrete. Given the specific requirements of the problem, the capacitated vehicle routing problem with time 
windows (CVRPTW) was selected and modified to better suit these needs for the mathematical model. 
 
The proposed model is based on the framework of CVRPTW and includes split delivery constraints and multi-trip 
considerations. Due to the complexity of RMC transportation, some assumptions were made when the model was 
being developed. Two solution methods both exact and heuristic were implemented as Python scripts to address 
the problem. First, the model was solved with the Gurobi Optimizer which uses an exact solution method, branch 
and cut method. Since the model is classified as an NP-hard problem, the model’s complexity increases with the 
number of customers, which leads to longer computation times. Hence, the model was also solved by a heuristic 
method named the Urgent Demand Algorithm. The algorithm is based on a greedy algorithm incorporating time 
windows, capacity constraints, and split delivery constraints. The algorithm was inspired by the nearest neighbour 
algorithm and the tabu search. The heuristic method, while not guaranteed to find the optimal solution, provides 
a faster alternative to exact methods, making it suitable for large-scale problems. 
 
3.1. Assumptions 
 
Due to the complexity of the concrete transportation problem and the data set, the following assumptions have 
been made to integrate the problem into the mathematical model and find the optimal solution: 
 

• The service time (h) for transferring concrete to customers, whether by conveyor belt or concrete pump, 
is assumed to be the same for all types. 

• It is assumed that all customers require the same strength class of concrete in MPa. This assumption 
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simplifies the production and delivery process, as it eliminates the need for varying mix designs and 
allows for uniform batching.  

• The fleet is considered homogenous and the truck mixers have the same capacity (q). This simplifies the 
model by eliminating variability in vehicle size, making route optimization more straightforward. In real-
world applications, this assumption reflects many construction operations where standardized truck 
mixers are used, ensuring consistent delivery volumes and reducing complexity in scheduling and load 
planning. This uniformity helps streamline logistics and ensures efficient use of resources across all 
delivery routes. 

• The distance between customers i and j is defined by combining the distance from the plant to customer i 
and the distance from the plant to customer j. 

• It is assumed that the time windows for each customer are set with a duration of a 1-hour gap, accounting 
for the setting time of the concrete. 

• It is assumed that the waiting time between truck mixers making consecutive deliveries is set equal to the 
service time (h), in consideration of the concrete setting time. This ensures that the concrete does not set 
prematurely and remains in optimal condition upon arrival at the site. Additionally, this adjustment 
ensures that the truck mixers can efficiently return to the plant, load fresh concrete, and deliver it on time. 
In practice, this timing constraint helps maintain concrete quality and aligns the model with real-world 
operational challenges, such as batching schedules and traffic delays, thereby enhancing overall efficiency. 

• All traffic conditions and environmental factors are assumed to be optimal and all truck mixers move at a 
constant velocity; thus, cost per distance in kilometres for truck mixer k (ck) is a constant parameter. 

• The driver cost (Dk) is assumed to be based on the daily driver cost for operating a truck mixer, calculated 
from the monthly gross salary of a truck driver. Since the model provides daily routes, the monthly salary 
is converted into a daily rate. 

 
3.2. Mathematical Model 
 
The ready-mixed concrete (RMC) transportation problem can be modeled by using the framework of the 
capacitated vehicle routing problem with time windows (CVRPTW) modified by split delivery constraints and 
multi-trip considerations. Toth and Vigo (2014) declared that CVRPTW is defined on the directed graph G = (V, A), 
where the batching plant is represented by the two vertices 0 and n + 1. All feasible truck mixer routes correspond 
to paths in G that start from node 0 and end at node n + 1. Let V be the vertices, 𝑁 = 𝑉\{0, 𝑛 + 1} be the set of 
customer vertices, 𝐴 = (𝑉\{𝑛 + 1 })  ×  (𝑉\{0})  be the set of arcs and be the K set of homogenous truck mixers. 
Binary variable 𝑥𝑖𝑗𝑘 = 1 if and only if truck mixer 𝑘 𝜖 𝐾 moves over the arc (𝑖, 𝑗) 𝜖 𝐴. Time windows are associated 

with,  [𝑒1, 𝑙1] = [𝑒𝑛, 𝑙𝑛] = [𝐸, 𝐿] where E and L stand for earliest and latest service start times for the truck mixers 
at the customer. Additionally, zero demands (w) and service times (s) are defined for these two nodes 𝑤0 =
𝑤𝑛+1 = 𝑠0 = 𝑠𝑛+1 = 0. Assuming that the travel time matrix satisfies these equations, feasible solutions exists only 
if 𝑒0 ≤ 𝑚𝑖𝑛𝑖∈𝑉/{0}{𝑙𝑖 − 𝑡0𝑖} and 𝑙0 ≥ 𝑚𝑎𝑥𝑖∈𝑉\{0}{𝑚𝑎𝑥{𝑒0 + 𝑡0𝑖 , 𝑒𝑖} + 𝑠𝑖 + 𝑡𝑖,𝑛+1}. Moreover, an arc (𝑖, 𝑗)  ∈  𝐴 can be 

excluded because of temporal considerations, if 𝑒𝑖 + 𝑠𝑖 + 𝑡𝑖𝑗 > 𝑙𝑗, or capacity limitations or 𝑤𝑖 + 𝑤𝑗 > 𝑞 or by other 

factors. Toth and Vigo (2014) stated that in split delivery vehicle routing problem (SDVRP), a feasible solution to 
the problem with |K| vehicles exists if and only if ∑ 𝑤𝑖𝑖∈𝑁 ≤ 𝐾𝑞 holds. Also, delivery amounts of all routes serving 
a customer 𝑖 ∈ 𝑁 sum up to the demand 𝑤𝑖 . This mixed integer linear programming (MILP) model for RMC 
transportation entails defining specific sets, indices, parameters and decision variables, followed by the 
formulation of objective function and associated constraints: 
 

Sets: 

N     Set of customers,  𝑁 = {1,2, … , 𝑛} 

V     Set of nodes, customers and the batching plant denoted as (0),  𝑉 = 𝑁 ∪ {0} 

K     Set of homogenous fleet of mixer trucks,  𝐾 = {1,2, … , 𝑘} 

Indices: 

i, j     Indices for customers and the batching plant,  ∀𝑖, 𝑗 ∈ 𝑉 

k, m  Indices for preceding and successor trucks  ∀𝑘 ∈ 𝐾, ∀𝑚 ∈ [𝑘 + 1, 𝐾] 

Parameters: 

𝒅𝒊𝒋   Distance between node i and node j, ∀𝑖, 𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗 ,  𝒅𝒊𝒋 = 𝑑0𝑖 + 𝑑0𝑗  

𝒘𝒊    Demand of customer i in cubic meters (m3),  ∀𝑖 ∈ 𝑁 

𝒄𝒌    Cost per distance in kilometres for truck mixer k,  ∀𝑘 ∈ 𝐾 
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𝑫𝒌   Driver cost for truck mixer k,  ∀𝑘 ∈ 𝐾 

𝒒      Capacity of truck k in cubic meters,  ∀𝑘 ∈ 𝐾 

𝒕𝒊𝒋    Travel time from station i to station j,  𝑖, 𝑗 ∈ 𝑉,   𝒕𝒊𝒋 = 𝑡0𝑖 + 𝑡0𝑗 

𝒕𝟎𝒊   Travel time from the plant to station i, including loading time of truck mixer 

𝒆𝒊    Earliest departure time from station i, ∀𝑖 ∈ 𝑉 

𝒍𝒊     Latest arrival time from station i, ∀𝑖 ∈ 𝑉 

𝒉     Service time of truck mixer k at the customer, ∀𝑘 ∈ 𝐾 , ∀𝑖 ∈ 𝑁 

Decision Variables: 

𝒙𝒊𝒋𝒌 = { 
1,   If the truck mixer k moves from node i to node j (∀𝑖, 𝑗 ∈ 𝑉, ∀𝑘 ∈ 𝐾)
 0,   If the truck mixer k does not move from node i to node j                      

 

𝒔𝒊𝒌     Time at which truck mixer k starts service at customer i,  ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝐾 

𝒇𝒊𝒌     Percentage of demand of customer i delivered by truck mixer k 

Objective Function: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  ∑ ∑ ∑ 𝑐𝑘𝑘∈𝐾𝑗∈𝑉,𝑖≠𝑗𝑖∈𝑉 × 𝑑𝑖𝑗 × 𝑥𝑖𝑗𝑘 + ∑ ∑ 𝑥0𝑗𝑘 ∗ 𝐷𝑘𝑗𝜖𝑉𝑘𝜖𝐾                               (1) 

subject to; 

∑ 𝑥0𝑗𝑘 ≤ 1                                                    ∀ 𝑘𝑉
𝑗=1 ∈ 𝐾 ,                                                             (2) 

∑ 𝑓𝑖𝑘 = 1𝐾
𝑘=1                                                       ꓯ 𝑖 ∈ 𝑁,ꓯ 𝑘 ∈ 𝐾 ,                                           (3) 

𝑤𝑖𝑓𝑖𝑘 ≤ 𝑞                                                            ꓯ 𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾 ,                                                (4) 

∑ 𝑥𝑗𝑖𝑘
𝑉
𝑗=0 ≥ 𝑓𝑖𝑘                                                    ∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾  ,                                                 (5) 

∑𝑖∈𝑉 𝑥𝑖𝑗𝑘  −  ∑𝑖∈𝑉 𝑥𝑗𝑖𝑘  = 0                           ∀𝑗 ∈ 𝑁, ∀𝑘 ∈ 𝐾   ,                                            (6) 

𝑥00𝑘 = 0                                                              ∀𝑘 ∈ 𝐾  ,                                                             (7) 

𝑒𝑖 ≤ 𝑠𝑖𝑘                                                                 ꓯ 𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾  ,                                                (8) 

𝑙𝑖 ≥ 𝑠𝑖𝑘                                                                 ꓯ 𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾 ,                                                 (9) 

𝑠𝑖𝑘 + 𝑡𝑖𝑗 + ℎ − 𝑀 ∗ (1 − 𝑥𝑖𝑗𝑘) ≤ 𝑠𝑗𝑘             ∀𝑖 ∈ 𝑉, ∀𝑗 ∈ 𝑁, ∀𝑘 ∈ 𝐾 ,                                 (10) 

𝑠𝑖𝑚 − 𝑠𝑖𝑘 ≥ ℎ ∗ (∑ (𝑥𝑗𝑖𝑘 + 𝑥𝑗𝑖𝑚)𝑉
𝑗=0 − 1)     ∀𝑖 ∈ 𝑁, 𝑖 ≠ 𝑗, ∀𝑘 ∈ 𝐾, ∀𝑚 ∈ [𝑘 + 1, 𝐾] ,   (11) 

𝑥𝑖𝑗𝑘 ∈  {0,1}                                                         ∀𝑖, 𝑗 ∈ 𝑉, ∀𝑘 ∈  𝐾 ,                                        (12) 

𝑠𝑖𝑘 ≥ 0                                                                   ∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾 ,                                                 (13) 

𝑓𝑖𝑘 ≥ 0                                                                   ∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾 .                                                 (14) 

 
The objective function (1) minimizes the total cost in terms of the total distances traveled by the truck mixers and 
the driver cost of trucks, respectively. Constraint (2) ensures that each truck can depart from the batching plant to 
any customer at most once to start its route. Constraint (3) ensures that split deliveries fulfill the entire demand 
of each customer. Capacity constraint (4) ensures that the volume of concrete supplied by a truck to any customer 
should not exceed the truck's capacity. Constraint (5) ensures that if a split delivery of demand for any customer 
is delivered by a truck, then there must be a corresponding route for the truck to the customer. Constraint (6) 
maintains flow continuity, which means that for every route where a truck visits a customer, there is a 
corresponding route exiting that customer. Constraint (7) ensures that trucks cannot have a route that starts and 
ends at the batching plant without visiting customers. Constraints (8) and (9) ensure that the trucks start service 
between the customers’ earliest and latest acceptable service times. Constraint (10) ensures that the trucks serve 
customers within the time windows by regulating service start times based on travel and service times. M is a 
sufficiently large constant, often referred to as the big-M Constraint. (11) ensures that when the two trucks supply 
concrete to the same customer through split deliveries, there is a time difference of at least the allowed time lag 
between them. Constraint (12) ensures that 𝑥𝑖𝑗𝑘 is a binary decision variable. Constraints (13) and (14) ensure 

that 𝑠𝑖𝑘 and 𝑓𝑖𝑘  are non-negative continuous decision variables. Subtour elimination prevents vehicles from 
forming cycles (subtours) where they revisit the same point without completing the entire route. When truck 
mixers travel between customers, they must visit the concrete batching plant. This condition and existing 
constraints ensure that subtours do not occur in the model. Thus, adding subtour constraints would lead to 
redundant complexity. 
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3.3. Proposed Methods 
 
The mathematical model of the problem was addressed using both an exact method and a heuristic method. The 
exact method was represented by the Gurobi Optimizer, which utilizes the branch and cut method. Additionally, a 
heuristic method named the Urgent Demand algorithm was developed specifically for this problem. Both solution 
methods were implemented as Python scripts to effectively solve the problem. 
 
3.3.1. Branch and Cut Method in Gurobi Optimizer 
 
The branch and cut method is a highly successful technique for solving numerous types of integer programming 
problem, and it can ensure optimality. Most types of vehicle routing problem can be formulated as mixed integer 
linear programming models so they can be solved by the branch and cut method. The branch-and-cut method 
consists of the well-known exact methods: branch-and-bound method and the cutting plane method. These 
techniques are employed to address a series of linear programming relaxations that represent an approximation 
of the original integer programming challenge. The cutting plane technique refines this approximation to achieve 
a closer representation of the integer programming issue. Subsequently, the branch-and-bound method applies a 
sophisticated divide-and-conquer strategy to effectively resolve these problems (Mitchell, 2002). 
 
Branch and Cut method begins by initializing the problem and creating a list of active nodes. Each node represents 
a subproblem which is a version of the original problem with additional constraints. The algorithm enters a cycle 
where a node is selected and its linear programming (LP) relaxation is solved to find the best LP solution. If the LP 
solution improves the current best solution (incumbent) and is integer, it updates the incumbent. If not, and if the 
solution cannot be improved by adding cutting planes, the node is partitioned into subproblems which are added 
to the list of active nodes. Cutting planes are linear inequalities that exclude the current non-integer solution 
without excluding any feasible integer solutions. They are added to tighten the LP relaxation and cut off fractional 
solutions, improving the algorithm's efficiency. Throughout the process, nodes are pruned based on several 
criteria: if the solution is worse than the incumbent, if it's infeasible, or if it's an integer solution that doesn't 
improve the incumbent. The algorithm terminates when there are no more nodes to explore, meaning the list of 
active nodes is empty. The best integer solution found is then the output, along with its corresponding objective 
value. This solution is optimal within the explored space, assuming all potential solutions have been considered 
through the branching and cutting process. 
 
Initially, the mathematical model was implemented as a Python script utilizing Gurobi Optimizer, along with 
pandas and NumPy libraries. Gurobi Optimizer is a mathematical optimization software that uses the branch and 
cut method as one of its key techniques for solving mixed-integer linear programming problems (Linderoth & Lodi, 
2010). On the other hand, NumPy is a general-purpose package for scientific computing in Python. NumPy 
provides support for large arrays and matrices (including multidimensional arrays), together with a large number 
of high-level mathematical functions to operate on these arrays (Van Der Walt et al., 2011). Additionally, pandas 
is a powerful, open-source data analysis and manipulation package for Python. Pandas provide fast and flexible, 
data structures, designed to make working with relational and labelled data both intuitive and easy (Chen, 2017).   
 
In the Python script, the mathematical formulation of the model is defined in Gurobi Optimizer format. Hardcoded 
data is read, pre-processed, and manipulated using the pandas library. NumPy is then utilized for numerical 
operations related to the problem, such as matrix operations. The performance of the Gurobi Optimizer model was 
eventually evaluated by three distinct generated from the concrete plant data. Figure 1 represents the routing part 
of the Python script of the Gurobi Optimizer model for Case 1. 
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Figure 1. Python Code of Routing Part in Gurobi Optimer Model 

 
3.3.2. The Urgent Demand Algorithm 
 
In exact solution methods for vehicle routing problems such as the branch and cut method, finding the optimal 
solution requires significant computational time, especially with a high number of customers and vehicles. 
Heuristic methods are commonly used for solving the large-sized NP-hard problems especially in real-life 
scenarios, because they are capable to compute near-optimal solutions in a reasonable time (Chen et al., 2010). 
Therefore, a heuristic method named the Urgent Demand Algorithm was developed for this study, inspired by well-
known algorithms such as the nearest neighbour algorithm and the tabu search. 
The nearest neighbour algorithm is the most natural heuristic method for the vehicle routing problem.  It involves 
a routing process where the vehicle route proceeds from the customer nearest to the depot. Then, the vehicle visits 
the customer nearest to the one just visited and this process is iterated until all of the customers have joined the 
route (Fitriani et. al., 2021). The nearest neighbour algorithm is a very straightforward method for solving the 
VRPs and performs quickly, however it can occasionally miss out shorter routes due to its greedy character (Pop 
et.al., 2011). Introduced by Fred Glover in 1986, Tabu Search is a metaheuristic algorithm that utilizes a memory-
driven technique to extend the exploration of the local search method beyond local optima. It maintains a record 
of previously executed moves or investigated solutions to guide its search process (Tan et.al., 2001). 

from gurobipy import * 
 
import numpy as np 
import pandas as pd 
 
N=5 
V=10 
t_model=Model() 
w=[0,35,25,50,12] 
d=np.zeros((N,N)) 
t=np.zeros((N,N)) 
distance_to_depot=[0,30,25,30,20] 
time_to_depot=[0,30,25,30,20] 
 
loading_time = 10  # 10 minutes loading time at the depot 
 
for i in range(N): 
    for j in range(N): 
        d[i][j] = distance_to_depot[i] + distance_to_depot[j] 
 
        if i == 0:   
            # Add loading time only for trips starting from the depot 
            t[i][j] = time_to_depot[j] + loading_time 
        elif j == 0: 
            # Decide whether to add loading time for trips returning to the depot 
            # Else, no loading time for returning trips 
            t[i][j] = time_to_depot[i] 
        else: 
            t[i][j] = time_to_depot[i] + time_to_depot[j] + loading_time 
 
driver=1000 
c=28 
e=[0,60,90,120,60] 
l=[0,120,150,180,120] 
 
x=t_model.addVars(N,N,V,vtype=GRB.BINARY,name='x') 
f=t_model.addVars(N,V,vtype=GRB.CONTINUOUS,name='f') 
s=t_model.addVars(N,V,vtype=GRB.CONTINUOUS,name='s') #arrival time  
 
h=15 #service_time 15 min 
q=12 #q=12 m3 for each truck 
M=1000 #Big M Constant 
obj_fn=sum(c*d[i][j]*x[i,j,k] for i in range(N) for j in range(N) for k in range (1,V))+sum(driver*x[0,j,k] for j in range (1,N) for k in range (1,V)) 
t_model.setObjective(obj_fn, GRB.MINIMIZE) 
 
c1=t_model.addConstrs((sum(x[0,j,k] for j in range(1,N))<=1) for k in range(1,V)) 
c2=t_model.addConstrs((sum(f[i,k]for k in range (1,V))==1)for i in range (1,N)) 
c3=t_model.addConstrs((w[i]*f[i,k]<=q) for i in range (1,N) for k in range (1,V)) 
c4=t_model.addConstrs((sum(x[j,i,k] for j in range (N))>=f[i,k])for i in range (1,N) for k in range (1,V)) 
c5=t_model.addConstrs((sum(x[i,j,k] for j in range(N))==sum(x[j,i,k] for j in range(N))) for k in range(1,V) for i in range (1,N)) 
c6=t_model.addConstrs((x[0,0,k]==0)for k in range (1,V)) 
c7=t_model.addConstrs((e[i]<=s[i,k])for i in range(1,N) for k in range (1,V)) 
c8=t_model.addConstrs((s[0,k]>=e[0])for k in range(1,V)) 
c9=t_model.addConstrs((s[i,k]<=l[i]) for i in range(1,N) for k in range (1,V)) 
c10=t_model.addConstrs((s[i,k]+t[i,j]+h-M*(1-x[i,j,k])<=s[j,k])for i in range(N) for j in range (1,N)for k in range(1,V)) 
c11=t_model.addConstrs(((s[i,m]-s[i,k])>=(h*(sum(x[j,i,k]+x[j,i,m] for j in range (N))-1))) for i in range (1,N) for k in range(1,V) for m in range (k+1,V)) 
c12 = t_model.addConstrs((sum(x[0,j,k] for j in range(1,N)) <= sum(x[0,j,k-1] for j in range(1,N))) for k in range(2,V)) 
 
t_model.optimize() 
print(t_model.objVal)  
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The Urgent Demand Algorithm can be classified as a greedy algorithm. This algorithm was developed by involving 
characteristics of both tabu search and nearest neighbourhood algorithms. The algorithm selects the customer 
based on the earliest time which resembles the nearest neighborhood algorithm's strategy of choosing the next 
closest or most immediate node. Furthermore, it includes more complex features such as time windows, logical 
demand handling and iterative improvement, which are characteristics of the tabu search algorithm. Despite these 
similarities, the proposed algorithm is not fully similar to either algorithm.  
 
The Urgent Demand Algorithm offers several advantages, including its ability to quickly generate near-optimal 
solutions, making it well-suited for time-sensitive tasks like ready-mix concrete delivery. The algorithm's 
simplicity ensures ease of implementation and fast computation. However, it has limitations when applied to more 
complex real-world scenarios. The algorithm assumes static demand and routing conditions, which may not 
account for dynamic changes such as fluctuating customer needs or traffic delays. It also doesn't address 
heterogeneous fleets or varying truck capacities, which can reduce its flexibility in large-scale or more complex 
logistics systems. 
 
The Urgent Demand Algorithm, along with the mathematical model and hard-coded data, is implemented as a 
Python script. This script utilizes the NumPy and Pandas libraries for numerical operations and data processing. 
The algorithm’s performance was evaluated by using the same three cases as in the Gurobi Optimizer model. The 
evaluation focused on the algorithm's ability to manage unmet demands within the customer’s time windows and 
to create efficient routes for truck mixers in shorter times. Figure 2 represents the pseudocode of the Urgent 
Demand Algorithm, explaining the logic of the algorithm. The following paragraphs explain the logic and 
methodology of the Urgent Demand Algorithm, focusing on optimizing truck mixer routing, prioritizing timely 
deliveries, and managing unmet demand efficiently 
 
First, the Urgent Demand algorithm begins by initializing variables and data structures, followed by calculating 
the distance, time, and demand matrices. It then lists the possible arrival times for each customer within their 
respective time windows. The routing process starts from the concrete plant, with each truck mixer beginning its 
route from the plant. If unmet demand exists and the earliest possible time for a customer exceeds a realistic 
threshold (e.g., more than 1000), the algorithm adjusts by reducing the time by 1000 to prioritize that customer. 
 
For each customer, the algorithm updates the earliest service times, considering the time window constraints. It 
then selects the most urgent customer, defined as the one with the earliest service time, for the next visit. The 
algorithm calculates whether the truck mixer can arrive at the selected customer before their latest service time; 
if not, it skips to the next customer. If arrival within the time window is feasible, the customer is added to the truck 
mixer’s route. 
 
The process continues by moving on to the next customer in line. After visiting a customer, the algorithm adjusts 
the arrival interval for that customer and updates the possible arrival times for the remaining customers. It also 
updates the unmet demand based on the truck mixer’s capacity and the demand of the customer just served.  
Additionally, if a customer’s demand is fully met or the customer is deemed inaccessible at the current time, the 
algorithm deprioritizes them by adjusting their earliest service time. The process concludes when all customer 
demands are met, or no feasible routes are left.  
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Figure 2. Pseudocode of the Urgent Demand Algorithm 

 
3.4. Data Generation 
 
This section presents the data from the concrete plant and operational details. Figure 3 shows the distances 
between the concrete plant denoted as 0 and the customers in Case 1. Truck mixers must move in the manner 
illustrated in Figure 3 for each case.  This plant is part of a larger chain owned by a company and operates in the 
Izmir province of Türkiye. 
 

 
Figure 3. Network Representation of Concrete Plant in Case 1 

 

𝐴𝑖: Available arrival interval time for customer i 
𝐸𝑖: Available earliest time for customer i 
𝐿𝑖: Available latest time for customer I 
𝑈𝑖: Unmet demand of customer i 
𝑑𝑖𝑗: Distance between customers i and j  

𝑡: Current time    
𝑝: Current destination  
𝑐: Candidate customer  
𝑧: Candidate arrival time  
𝑠: Service time of a truck mixer 
𝑀: Maximum number of trials for each truck mixer 
𝑅𝑘 : Set of customers assigned to truck mixer k 
𝑆𝑘: Set of service start time assigned to truck mixer k 
V: Number of truck mixers  
C: Number of customers  
Initialization: 

𝐴𝑖 = [𝐸𝑖 , 𝐿𝑖] for all customers i 
𝑅𝑘 = ∅ for all truck mixers k  
𝑆𝑘 = ∅ for all truck mixers k  
𝑊𝑖 = min 𝐸𝑖  for all customers i 
Route Construction for Truck Mixers: 

for k=1 to V 
      if 𝑊𝑖 ≥ 1000 𝑎𝑛𝑑 𝑈𝑖 > 0 then 
         𝑊𝑖 = 𝑊𝑖 − 1000 
      t =0 
      p =depot 
try = 0 
      while (try<M) 
                   𝑐 = argmin(𝑊𝑖) #Calculates the closest available arrival times for each customer i 
                   if 𝑈𝑐 > 0 𝑎𝑛𝑑 𝑡 + 𝑑𝑝𝑐 ≤ 𝐿𝑐  then  

                       𝑧 = max { 𝑡 + 𝑑𝑝𝑐 , 𝑊𝑐 }  

                       if 𝑧 ∉ 𝐴𝐶  𝑎𝑛𝑑 𝑧 < max {𝐴𝑖} then 
                           while 𝑧 ∉ 𝐴𝐶  
                                     𝑧 = 𝑧 + 1  
                       if 𝑧 ∈ 𝐴𝐶  then  
                             𝑆𝑘 =  𝑆𝑘 ∪ {𝑧} 
                             𝑅𝑘 = 𝑅𝑘 ∪ {𝑐} 
                             𝑝 = 𝑐 
                             𝑡 = 𝑧 + 𝑠  
                             𝐴𝑐 = 𝐴𝑐\[𝑧 − 𝑠 + 1, 𝑧 + 𝑠 − 1] 
                             𝑊𝑐 = min 𝐴𝑐  
                             if 𝑈𝑐 ≥ 12 then 
                             𝑈𝑐 = 𝑈𝑐 − 12 
     𝑊𝑐 = 𝑊𝑐 + 1000 
                             else  
                             𝑈𝑐 = 0 
                   else if 𝑈𝑐 = 0 𝑎𝑛𝑑 𝑊𝑐 < 1000 then 
                               𝑊𝑐 = 𝑊𝑐 + 1000 
                   else if 𝑊𝑐 < 1000 then 
                               𝑊𝑐 = 𝑊𝑐 + 1000 
       try=try+1  
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Table 3 shows the parameters recently collected from the medium-sized concrete plant. The plant receives 
customer orders about a week in advance, and they're typically finalized around three days. Then, the plant makes 
a schedule for each work day. Due to the adverse effects of sun and heat on concrete pouring, customers generally 
request that the concrete be delivered during the early hours of the morning, especially before 01:00 p.m. 
 
The concrete plant needs to source additional truck mixers from other plants during days of high customer 
demand. Therefore, the production rate of the plant varies depending on the customer demands and number of 
truck mixers available. 

 
Table 3. Parameters of the Concrete Plant 

Parameters of the Concrete Plant Value 

Daily Driver Cost (D) 1000 TRY/truck 

Cost per kilometer (c) 28 TRY/km 

Truck Mixer Capacity (q) 12 m3/truck 

Loading Time of Truck Mixer at the Plant 10 min 

Service Time (h) 15 min 

Velocity of Truck Mixer 60 km/h 

Production Rate of the Plant 70 m3/h 

 
In Table 3, the driver cost (D) value represents the daily driver cost for operating a truck mixer and the cost per 
kilometer (c) value represents the costs for each truck mixer per km in terms of diesel fuel consumption. Driver 
cost (D) and cost per kilometer (c) values were calculated using the average monthly gross salary for truck mixer 
drivers and the average diesel fuel prices determined by the Republic of Türkiye’s Energy Market Regulatory 
Authority in 2023. In this concrete plant, the fleet is standardized to utilize exclusively a single type of truck mixer, 
which has a capacity of 12 m3. It was assumed that the service time (h) for transferring concrete, whether by 
conveyor belt or concrete pump, is 15 minutes for all types. The velocity of the truck mixer was determined based 
on the average velocity of the trucks in delivery operations at the concrete plant. The production rate was 
determined based on the theoretical maximum production of concrete at the plant. 

 
Table 4. Time Windows and Demands for each Customer in Case 1 

 
 

 
 
 
 

 
 
 
 
In Table 4, the earliest time (ei) and latest time (li) indicate time windows. The earliest and latest time values were 
converted into the HH:MM format by using the base time of 06:00 a.m. plus the values in minutes (06:00 + x min= 
HH:MM).  For Customer 1, the earliest time value of 60.0 minutes was converted to 07:00 a.m., and the latest time 
value of 120.0 minutes was converted to 08:00 a.m. Time windows for all customers were set to 1 hour, since the 
concrete begins to set within 60 minutes, depending on the type of cement and environmental conditions.  
 

Table 5. Distance Matrix in Case 1 
dij (km)  (j) 

(i) 
0 1 2 3 4 

0 0 30 25 30 20 

1 30 0 55 60 50 

2 25 55 0 55 45 

3 30 60 55 0 50 

4 20 50 45 50 0 

 
Table 5 shows the distances between the nodes including customers and the concrete plant. The plant serves 
customers within a maximum distance of 30 kilometers. 

 

Information about 4 Customers 

Customer 
No 

Demand 
(m3) 

Earliest Time 
Value 

Latest Time 
Value 

Earliest Time 
(ei) 

Latest Time 
(li) 

1 35 60.0 120.0 07:00 08:00 

2 25 90.0 150.0 07:30 08:30 

3 50 120.0 180.0 08:00 09:00 

4 12 60.0 120.0 07:00 08:00 
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Table 6. Time Matrix in Case 1 

tij (min)  (j) 
(i)  

0 1 2 3 4 

0 0 40 35 40 30 

1 30 0 65 70 60 

2 25 65 0 65 55 

3 30 70 65 0 60 

4 20 60 55 60 0 

 
Table 6 shows the travel times between the nodes including customers and the concrete plant. Travel times were 
calculated by dividing the distances listed in Table 4.3 by an average truck mixer velocity of 60 km/h and adding 
a 10-minute loading time of the truck mixer at the plant. However, for the travel times of customers returning to 
the plant, the 10-minute loading time was not added, as there is no loading involved in these return trips. 
 
4. Experimental Results 
 
In this section, the results for three cases were obtained using the Gurobi Optimizer and the Urgent Demand 
algorithm on the specified computer. The Python script for the exact solution was executed with the Gurobi 
Optimizer, version 10.0.3 (build v10.0.3rc0 for Windows 64-bit). The system's CPU was Intel(R) Core(TM) i7-
10750H, operating at 2.60 GHz, and supported the instruction set [SSE2|AVX|AVX2].  
 
4.1. Results of Case 1 from Gurobi Optimizer 
 
This section presents the optimal solution for Case 1 including route details and delivery schedule  
 

Table 7. Route Details for Case 1 from Gurobi Optimizer 

Route Details 

Route 
Number 

Truck 
Number 

Route 
Route 

Duration(min) 
Route Cost (TRY) 

Total Cost 
(TRY) 

1 1 0-3-0 85 2680 

26760  

2 2 0-3-0 85 2680 

3 3 0-1-0-3-0 170 4360 

4 4 0-1-0-3-0 170 4360 

5 5 0-2-0-3-0 160 4080 

6 6 0-4-0-2-0 140 3520 

7 7 0-1-0 85 2680 

8 8 0-2-0 75 2400 

 
Table 7 shows that the Gurobi Optimizer model used 8 of 10 truck mixers in the optimal solution of Case 1. For 
example, truck mixer 6 which followed route 6, moved from the concrete plant (0) to customer 4 after being loaded 
with concrete, then returned to the plant for getting concrete and subsequently moved to customer 2 and returned 
to the plant. The total cost of route 6 is 3520 TRY. The route cost for a truck mixer includes the total distance 
travelled and the daily driver cost assigned to the truck mixer. The total duration of route 6 is 140 minutes. The 
total duration of a route includes the travel time between stations, truck service times at customers, and the 
loading time of the truck at the plant. The total cost of the optimal solution is 26760 TRY, calculated by summing 
all the route costs. 
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Table 8. Delivery Schedule for Case 1 from Gurobi Optimizer 

Delivery Schedule 

Customer 
Number 

Demand 
(m3) 

Truck Number 
Percentage of  

Demand 
Split Delivery  
Amount (m3) 

Service Start  
Time (a.m.) 

1 35  

3 31.43% 11 07:00 

4 34.29% 12 07:15 

7 34.29% 12 08:00 

2 25 

5 48.00% 12 07:30 

6 4.00% 1 08:10 

8 48.00% 12 08:30 

3  
50 

  

1 4.00% 2 08:00 

2 24.00% 12 08:15 

3 24.00% 12 08:30 

4 24.00% 12 08:45 

5 24.00% 12 09:00 

4 12 6 100.00% 12 07:00 

 
Table 8 shows the distribution of customer demands and the percentage of customer demands that each truck 
mixer delivers to them in the optimal solution of Case 1. For example, the demand of customer 1, amounting to 35 
m3 was supplied by trucks 3, 4, and 7 respectively through split deliveries. Truck 3 started service at customer 1 
at 07:00 a.m. and delivered 11 m3 of concrete which constituted 31.43% of customer 1’s total demand. After the 
completion of service of truck 3, truck 4 started service at 7:15 a.m., followed by truck 7 at 08:00 a.m. 
 
4.2. Summary of Results 
 
In this study, the Gurobi Optimizer was utilized as the exact method and provided optimal solutions, while the 
proposed heuristic method, the Urgent Demand algorithm, provided near-optimal solutions. These two methods 
were evaluated across three cases in terms of the total cost of solutions, computation times, and number of trucks 
used. 
 

Table 9. Total Costs and Computation Times of Solutions Overview 

 Overview of Total Costs of Solutions and Computation Times 

 

 

4 Customers and 10 Trucks 
Available (Case 1) 

10 Customers and 15 Trucks 
Available (Case 2) 

15 Customers and 15 Trucks 
Available (Case 3) 

 

Solution 
Method 

Total 
Cost 

(TRY) 

Number 
of 

Routes 

Computation 
Time (s) 

Total 
Cost 

(TRY) 

Number 
of 

Routes 

Computation 
Time (s) 

Total 
Cost 

(TRY) 

Number 
of 

Routes 

Computation 
Time (s) 

 

 
Gurobi 

Optimizer 
26760 8 1.5 51160 10 15.0 64040 10 310170.0  

Urgent 
Demand 

Algorithm 
26760 8 1.0 53160 12 1.2 68040 14 1.5  

 
Table 9 shows the total cost of solutions and computation times for the solution methods for each case. In Case 1, 
both the Gurobi Optimizer and the Urgent Demand algorithm provided equally cost-effective solutions, each with 
a total cost of 26760 TRY for 8 routes. Both solution methods performed well in this case with close computation 
times (1.5 seconds and 1.0 seconds, respectively). In Case 2, Gurobi Optimizer provided a more cost-effective 
solution with a total cost of 51160 TRY for 10 routes, as compared to the Urgent Demand algorithm, which 
provided a solution with a total cost of 53160 TRY for 12 routes. Notably, the Urgent Demand algorithm performed 
in a lower computation time (1.2 seconds). In Case 3, Gurobi Optimizer again provided a more cost-effective 
solution with a lower total cost of 64040 TRY for 10 routes, as compared to the Urgent Demand algorithm, which 
provided a solution with a total cost of 68040 TRY for 14 routes. However, the Gurobi Optimizer's computation 
time was substantially higher at 310170.0 seconds, as compared to the Urgent Demand Algorithm, which solved 
the problem in only 1.5 seconds. It is important to note that in a solution, each route was followed by a single truck. 
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The total cost of a solution was then calculated by summing the costs of all the routes. These route costs included 
the total distance travelled and the driver cost. 
 

 
Figure 4. Comparison of the Solution Methods by Cost Change 

 
Figure 4 shows the cost change between the optimal solution and the near-optimal solution for each case. In Case 
1, the Urgent Demand Algorithm provided a near-optimal result with no increase in cost, indicating a 0% increase. 
In contrast, Case 2 demonstrated a different outcome where the algorithm provided the near-optimal solution but 
with an additional cost of 2000 TRY, representing a 3.91% increase in cost of the solution. Similarly, in Case 3, the 
algorithm provided the near-optimal solution; however, this was accompanied by a 4000 TRY increase in cost, 
equating to a 6.25% increase in cost of the solution. In this analysis, the Urgent Demand algorithm produced near-
optimal solutions, with an average cost increase of 3.39% as calculated by averaging the percentage increases of 
total cost in all three cases.  
 
A fourth case is also developed to evaluate the scalability and applicability of the Urgent Demand Algorithm in a 
larger logistics scenario than typically seen in concrete delivery operations. While the standard problem does not 
involve such a large number of customers, simulating a scenario where a concrete plant serves 30 customers with 
30 trucks available allows for a comprehensive assessment of the algorithm's ability to manage increased 
complexity in routing and fleet coordination. This experiment demonstrates the algorithm’s potential adaptability 
to other logistics sectors, such as, food and beverage distribution, and medical supply logistics, where optimizing 
large fleets and adhering to strict time windows are critical. By testing the algorithm in a more demanding 
environment, this study provides insights into its potential for broader application in various logistics operations 

facing similar challenges, including real-time decision-making and route efficiency optimization. In case 4, the 

Urgent Demand algorithm utilized 22 out of 30 available trucks to service 30 customers, constructing 22 optimized 
routes with a total cost of 145480 TRY in just 2.0 seconds. While the Urgent Demand algorithm demonstrates 
promising efficiency in its current form, further development and refinement could enhance its ability to handle 
more complex routing problems, making it even more suitable for real-time applications in larger-scale operations. 
 
Average cost increase of 3.39%, observed in the The Urgent Demand Algorithm is considered acceptable for 
several reasons, particularly in the context of ready-mix concrete transportation. This marginal increase allows 
for flexibility in handling real-time operational challenges, such as unexpected traffic conditions, changes in 
customer demands, or urgent deliveries. The Urgent Demand Algorithm provides near-optimal solutions quickly, 
making it particularly suitable for time-sensitive applications like concrete delivery, where even small delays can 
lead to significant project disruptions or material spoilage. 
 
5. Result and Discussion 
 
This paper has systematically investigated optimizing the transportation of ready-mixed concrete (RMC) within 
the context of logistics and supply chain management in the construction sector. The primary goal was to propose 
a truck mixer routing model to improve the efficiency of concrete delivery operations in terms of cost-effectiveness 
and efficient routing. In the process of formulating the problem into the mathematical model, it was formulated as 
a mixed-integer linear programming (MILP) model based on the capacitated vehicle routing problem with time 
windows (CVRPTW). To address the unique challenges of RMC transportation, CVRPTW was modified with split 

4000

2000

0

0 20000 40000 60000 80000

15 Customers 15 Truck Mixers Available
(Case 3)

10 Customers 15 Truck Mixers Available
(Case 2)

4 Customers 10 Truck Mixers Available
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Comparison of the Solution Methods by Cost Changes

Gurobi Optimizer The Urgent Demand Algorithm



DÖNMEZ and ÖNER 10.21923/jesd.1445781 

 

818 
 

delivery constraints, multi-trip characteristics, and other constraints. This model was addressed by employing 
both an exact method and a heuristic method. Firstly, the model was addressed by the exact method, the Gurobi 
Optimizer, which uses the branch and cut method. Given that the vehicle routing problem (VRP) is NP-hard, the 
complexity of the model increased with more customers and vehicles, which led to longer computation times in 
solving the model. Therefore, a heuristic method named as Urgent Demand Algorithm was developed for the 
problem by inspiring the characteristics of tabu search and nearest neighbour algorithm. The data was collected 
from a concrete plant operating in Turkey. Three individual cases were generated from this data to evaluate the 
performance of the solution methods. In the first case, there were 4 customers and 10 truck mixers available at 
the plant. Then, in the second case, there were 10 customers and 15 truck mixers available. Lastly, for the third 
case, there were 15 customers and 15 truck mixers available. 
Gurobi Optimizer provided the optimal solutions for all cases in a reasonable computation time. However, in the 
third case, it was observed that the computation time required was significantly longer (310170.0 seconds) 
compared to the first and second cases. In contrast, the proposed heuristic provided near-optimal solutions rapidly 
(1.2 seconds on average) for all cases with about a 3.39% average cost increase. In the routes derived from the 
Gurobi Optimizer solutions, the use of truck mixers was lower compared to the proposed heuristic method. These 
results showed that the proposed heuristic algorithm was an effective alternative to the exact methodologies for 
solving the problem, especially large-scale problems. This study has revealed that the proposed model and its 
solution methods effectively constructed routes for truck mixers, being time-effective and cost-effective in the 
transportation of concrete. 
 
This study provided new perspectives on filling the gap between theoretical vehicle routing problems and practical 
applications in real-world logistical problems of the construction sector. It showed the potential of advanced 
optimization techniques to enhance efficiency and sustainability in construction logistic solutions. Practically, it 
proposed a robust truck routing model and solution methodologies for ready-mixed concrete suppliers. This 
model routed the truck mixers efficiently and enhanced concrete delivery efficiency in terms of fuel-oil and driver 
costs. The model also contributed to environmental sustainability by minimizing fuel consumption, which 
indirectly reduced vehicle emissions. 
 
While this study successfully developed a model, there were certain limitations particularly related to 
computational feasibility for large-scale problems and assumptions made to simplify complex real-world 
problems. These assumptions included uniform service time, homogeneous fleet, same concrete strength class, 
and ideal traffic conditions. The proposed heuristic method provided near-optimal solutions rapidly for the 
problem, but it slightly increased the cost of the solutions. These limitations underlined the necessity for further 
refinement in methodological approaches and expanding the model's scalability. Despite these limitations, the 
model and its heuristic approach can be adapted and applied to other industries where logistics optimization is 
crucial. For instance, the algorithm could be beneficial in food and beverage distribution, where perishability and 
time-sensitive deliveries are key factors. Moreover, industries like medical supply logistics, where timely delivery 
of critical supplies is essential, could also leverage the model's adaptability to handle urgent demands under time 
constraints. These applications demonstrate the model's flexibility in addressing complex routing challenges 
across various sector 
 
Given the results of this study were promising, this study was limited by assumptions and its reliance on the 
concrete plant data. Future research should focus on enhancing the scalability of the truck mixer routing model 
and address the existing limitations of concrete delivery. Key focus areas should include adapting the model for 
larger and more complex cases, such as integrating real-time dynamic routing and traffic conditions. Also, 
incorporating environmental sustainability factors could improve the model's role in sustainable logistics. 
Exploring advanced heuristic algorithms and machine learning techniques for predictive routing could improve 
computational efficiency. Additionally, the model’s applicability should be investigated in other time-sensitive 
industries, urban logistics, and smart city development. Lastly, understanding the impact of customer satisfaction 
on routing efficiency and adapting the model to accommodate various concrete types and strengths would be 
important for its broader application and effectiveness.  
 
This research not only provided a novel approach to the specific problem of RMC transportation but also 
established a precedent for future studies in the broader disciplines of supply chain management and logistics, 
particularly in construction logistics. It underlined the importance of balancing efficiency, cost, and practical 
applicability in complex logistical operations. 
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