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Abstract. This paper examines whether the concept of an almost-algebraic

Lie algebra developed by Auslander and Brezin in [J. Algebra, 8(1968), 295-

313] can be introduced for Leibniz algebras. Two possible analogues are con-

sidered: almost-reductive and almost-algebraic Leibniz algebras. For Lie al-

gebras these two concepts are the same, but that is not the case for Leibniz

algebras, the class of almost-algebraic Leibniz algebras strictly containing that

of the almost-reductive ones. Various properties of these two classes of algebras

are obtained, together with some relationships between ϕ-free, elementary, E-

algebras and A-algebras.
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1. Introduction

An algebra L over a field F is called a Leibniz algebra if for every x, y, z ∈ L, we

have

[x, [y, z]] = [[x, y], z]− [[x, z], y].

In other words, the right multiplication operator Rx : L → L : y 7→ [y, x] is

a derivation of L. As a result, such algebras are sometimes called right Leibniz

algebras and there is a corresponding notion of left Leibniz algebras which satisfy

[x, [y, z]] = [[x, y], z] + [y, [x, z]].

Clearly the opposite of a right (left) Leibniz algebra is a left (right) Leibniz algebra,

so, in most situations, it does not matter which definition we use. A symmetric

Leibniz algebra L is one which is both a right and left Leibniz algebra and in which

[[x, y], [x, y]] = 0 for all x, y ∈ L. This last identity is only needed in characteristic

two, as it follows from the right and left Leibniz identities otherwise (see [8, Lemma

1]). Symmetric Leibniz algebras L are flexible, power associative and have x3 = 0
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for all x ∈ L (see [6, Proposition 2.37]) and so, in a sense, are not far removed from

Lie algebras.

Put I = ⟨{x2 : x ∈ L}⟩. Then I is an ideal of L and L/I is a Lie algebra called

the liesation of L. We define the following series:

L1 = L,Lk+1 = [Lk, L] and L(1) = L,L(k+1) = [L(k), L(k)] for all k = 2, 3, . . .

Then L is nilpotent (resp. solvable) if Ln = 0 (resp. L(n) = 0) for some n ∈ N. The
nilradical, N(L), (resp. radical, Γ(L)) is the largest nilpotent (resp. solvable) ideal

of L.

Throughout, L will denote a (right) Leibniz algebra over a field F of characteristic

zero unless otherwise specified. The Frattini ideal of L, ϕ(L), is the largest ideal

of L contained in all maximal subalgebras of L. The Leibniz algebra L is called

ϕ-free if ϕ(L) = 0 and elementary if ϕ(B) = 0 for every subalgebra B of L. Leibniz

algebras all of whose nilpotent subalgebras are abelian are called A-algebras; Leibniz

algebras L such that ϕ(B) ≤ ϕ(L) for all subalgebras B of L are called E-algebras.

The abelian socle, Asoc(L), of a Leibniz algebra L is the sum of its minimal abelian

ideals.

A linear Lie algebra L ≤ gl(V ) is almost-algebraic if L contains the nilpotent and

semisimple Jordan components of its elements; an abstract Lie algebra L is then

called almost-algebraic if adL ≤ gl(L) is almost-algebraic. Here we are exploring

whether an analogous concept to this last one can be developed for Leibniz algebras

and then to determine properties and inter-relationships between these five classes

of algebras analogous to those obtained by Towers and Varea in [15].

In Section 2, the concepts of an almost-reductive Leibniz algebra and of an

almost-algebraic Leibniz algebra are introduced and various basic properties of

them are produced. Descriptions of symmetric Leibniz algebras which are almost-

algebraic, and of those with an almost-reductive radical are obtained. In addition,

some analogues of the results in [15] are found for symmetric Leibniz algebras. In

Section 3, the inner derivation algebra, R(L), of L is defined. This is a Lie algebra

and some properties of almost-reductive and almost-algebraic Leibniz algebras L

are related to corresponding properties of R(L). We also introduce the concept of

an L-split element of a Leibniz algebra L and show that L is almost-algebraic if

every element of L is L-split. It is also shown that if every element of a subalgebra

B of L is L-split, then the idealiser of B in L is almost-algebraic. In the final section

we determine some consequences of these results for symmetric Leibniz A-algebras.
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2. Definitions and preliminary results

Definition 2.1. We call L almost-reductive if L = N(L)+̇Σ, where Σ is a Lie

algebra and N(L) is a completely reducible Σ-bimodule.

Lemma 2.2. Let L be an almost-reductive Leibniz algebra. Then Σ = C ⊕ S,

where S is a semisimple Lie algebra, C is an abelian Lie algebra and Rc|N(L) is

semisimple for all c ∈ C.

Proof. If A is an irreducible Σ-bimodule of L, we have that [Σ, A] = 0 or [σ, a] =

−[a, σ] for all a ∈ A, σ ∈ Σ, by [4, Lemma 1.9]. It follows that A is an irreducible

right Σ-module of L and the result now follows from [7, Theorem 11, p.47]. □

Definition 2.3. We call L almost-algebraic if L/I is an almost-algebraic Lie

algebra.

Theorem 2.4. Let L be an almost-reductive Leibniz algebra. Then L is almost-

algebraic.

Proof. Let L = N(L)+̇Σ be an almost-reductive Leibniz algebra where Σ = C⊕S,

and let N/I be the nilradical of L/I. Then N(L) ⊆ N and N = N(L) + N ∩ Σ.

Since N ∩ Σ is a solvable ideal of Σ, N ∩ Σ ⊆ C. Let C = N ∩ Σ ⊕ D. Then

L/I = N/I+̇(Σ′ + I)/I where Σ′ = D ⊕ S is reductive. Hence L/I is an almost-

algebraic Lie algebra. □

The converse of the above result is false, as the following example shows.

Example 2.5. Let L be the four-dimensional solvable cyclic Leibniz algebra with

basis a, a2, a3, a4 and [a4, a] = a4. Then I = L2 and L/I is trivially almost-

algebraic. But N(L) = I and L is not completely reducible: for example, there is

no ideal A of L such that I = A⊕ (Fa3 + Fa4).

In fact, it even fails for symmetric Leibniz algebras, as shown in the next example.

Example 2.6. Let L be the three-dimensional symmetric Leibniz algebra with

basis e1, e2, e3 and non-zero products [e1, e2] = e1, [e2, e1] = −e1, e
2
2 = e3. Then

I = Fe3 and L/I ∼= Fe1 + Fe2, which has nilradical Fe1 and is clearly almost-

algebraic. However, N(L) = Fe1 + Fe3 and L does not split over this ideal, so L

is not almost-reductive.

Theorem 2.7. Let L be a Leibniz algebra.

(i) If L is ϕ-free, then L is almost-reductive (and so, almost-algebraic).
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(ii) Let L be almost-reductive. Then L is ϕ-free if and only if its nilradical is

abelian.

Proof. (i) Let L be ϕ-free. By [5, Theorem 2.4 and Corollary 2.9], we have that

L = N(L)+̇V where V is a Lie subalgebra of L acting completely reducibly on

N(L) and N(L) = Asoc L. It follows that L is almost-reductive.

(ii) Suppose that L is almost-reductive and that N(L) is abelian. Then N(L) =

Asoc L, so L is ϕ-free by the same argument as in [11]. The converse follows from

[5, Theorem 2.4 and Corollary 2.9]. □

Corollary 2.8. Let L be an almost-reductive Leibniz algebra. Then L is ϕ-free if

and only if L = Λ+̇I, where Λ = Σ+̇A is a ϕ-free almost-algebraic Lie algebra with

nilradical A, N(L) = A⊕ I, [I,Σ] = I and I is a completely reducible Σ-bimodule.

Proof. First, let L be ϕ-free. Then L = (A1⊕ . . .⊕An)+̇Σ where Σ is as described

in Lemma 2.2 and Ai is an abelian irreducible Σ-bimodule for each 1 ≤ i ≤ n.

Suppose that [a, σ] = −[σ, a] for all a ∈ A1 ⊕ . . . ⊕ Ar, σ ∈ Σ, but that there is

an ai ∈ Ai and a σi ∈ Σ such that [ai, σi] ̸= −[σi, ai] for each r + 1 ≤ i ≤ n. Put

Λ = A1 ⊕ . . . ⊕ Ar+̇Σ. Then [Ai,Σ] is a Σ-bimodule, and so [Ai,Σ] = Ai or 0 for

each i. Now [Σ, Ai] = 0 for r + 1 ≤ i ≤ n, by [4, Lemma 1.9], so [Ai,Σ] = Ai for

r+1 ≤ i ≤ n, by the choice of r. If a ∈ Ai and σ ∈ Σ, then [a, σ] = [a, σ+[σ, a]] ∈ I

for r + 1 ≤ i ≤ n. It follows that Ai = [Ai,Σ] ⊆ I for each r + 1 ≤ i ≤ n. Clearly,

Ar+1 ⊕ . . .⊕An ⊆ I since Λ is a Lie algebra.

Now let L = Λ+̇I, where Λ = Σ+̇A is a ϕ-free almost-algebraic Lie algebra with

nilradical A, N(L) = A⊕ I, [I,Σ] = I and I is a completely reducible Σ-bimodule.

Then L is ϕ-free since its nilradical is abelian. □

The following result is a generalisation of [2, Theorem 6 and its Corollary].

Corollary 2.9. Every ϕ-free Leibniz algebra in which I ⊆ Z(L) is a Lie algebra;

in particular, every ϕ-free symmetric Leibniz algebra is a Lie algebra.

Proof. Let L be a ϕ-free Leibniz algebra in which I ⊆ Z(L). It follows from

Corollary 2.8 that I = 0 and so L is a Lie algebra. □

Definition 2.10. The right centre of a Leibniz algebra is the set Zr(L) = {z ∈
L | [x, z] = 0 for all x ∈ L}.

For any (right) Leibniz algebra L, Zr(L) is an abelian ideal of L (see [6, Propo-

sition 2.9]). A special case of the above result is the following.
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Proposition 2.11. (cf. [2, Theorem 6 and its Corollary]) If L/Zr(L) is semisimple

and dimZr(L) = 1, then L is a Lie algebra.

Proof. By Levi’s Theorem for Leibniz algebras, L = Zr(L)+̇S where S is a

semisimple Lie algebra. Let Zr(L) = Fz and let s1, s2 ∈ S. Then [z, si] = λiz

for i = 1, 2 and [z, [s1, s2]] = [[z, s1], s2] − [[z, s2], s1] = λ1λ2z − λ2λ1z = 0. Thus

[Zr, L] = [Zr, S] = [Zr, S
2] = 0, whence Zr(L) = Z(L). It is now clear that L is a

Lie algebra. Note that L is ϕ-free and I = 0, so this is a special case of Corollary

2.9. □

Lemma 2.12. Let B be a subalgebra of a Leibniz algebra L. If B is almost-

algebraic, then so is the Lie algebra (B + I)/I.

Proof. Let J be the Leibniz kernel of B. Then B/J is almost-algebraic. But now

B + I

I
∼=

B

B ∩ I
∼=

B/J

(B ∩ I)/J
,

and (B ∩ I)/J is abelian and so is almost-algebraic. The result then follows from

[1, Lemma 4.1]. □

Theorem 2.13. Let L be a Leibniz algebra with radical Γ. Then,

(i) if Γ is almost-algebraic, then so is L; and

(ii) if L is almost-reductive, then so is Γ.

Proof. (i) If Γ is the radical of L, Γ/I is the radical of L/I. Let Γ be almost-

algebraic. Then Γ/I is almost-algebraic by Lemma 2.12. It follows from [1, Corol-

lary 3.1] that L/I and hence L is almost-algebraic.

(ii) This is clear from Lemma 2.2. □

For Lie algebras the converse is true. However, it appears that this may not

be the case even for symmetric Leibniz algebras, though examples are not easy to

construct. The best that we can achieve at the moment is given by the following

two results.

Theorem 2.14. Let L be an almost-algebraic symmetric Leibniz algebra with radi-

cal Γ and nilradical N . Then L = N +Σ, where N ∩Σ = I and Σ = Γ∩Σ⊕S with

(Γ ∩ Σ)3 = 0, S semisimple and Rc+I acting semisimply on N/I for all c ∈ Γ ∩ Σ.

Proof. We have that L = Γ+̇S, where S is a semisimple Lie algebra, by Levi’s The-

orem for Leibniz algebras. Also, L/I is almost-reductive. Thus, L/I = N/I+̇Σ/I

where Σ is a subalgebra of L, (Γ∩Σ)/I is abelian, Σ/I = (Γ∩Σ)/I⊕ (S+̇I)/I with
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S a semisimple Lie algebra and Rc+I acting semisimply on N/I for all c ∈ Γ ∩ Σ.

Hence L = N +Σ where N ∩ Σ = I and (Γ ∩ Σ)2 ⊆ I, so (Γ ∩ Σ)3 = 0. Moreover,

[Γ ∩ Σ, S] = [Γ ∩ Σ, S2] ⊆ [[Γ ∩ Σ, S], S] ⊆ [I, S] = 0 and

[S,Γ ∩ Σ] = [S2,Γ ∩ Σ] ⊆ [S, [S,Γ ∩ Σ]] + [[S,Γ ∩ Σ], S]

⊆ [S, I] + [I, S] = 0. □

Theorem 2.15. Let L be a symmetric Leibniz algebra with an almost-reductive

radical Γ. Then L is as described in Theorem 2.14 above and Γ = N+̇C where C

is an abelian subalgebra and Rc |N is semisimple for all c ∈ C.

Proof. Suppose that Γ is almost-reductive, so that Γ = N+̇C where C is an abelian

subalgebra and Rc |N is semisimple for all c ∈ C. Moreover, Γ is almost-algebraic

by Theorem 2.4 and hence so is L by Theorem 2.13(i). The result follows. □

Note that C in the above result is just a maximal torus of Γ and Γ = N ⋊ C.

Proposition 2.16. Let L be a Leibniz algebra.

(i) If L is almost-algebraic and J is an almost-algebraic ideal of L, then L/J

is almost-algebraic.

(ii) If L is almost-reductive and J is an ideal of L with J ⊆ ϕ(L), then L/J is

almost-reductive.

Proof. (i) It follows from Lemma 2.12 and [1, Lemma 4.1] that (J+I)/I and hence

L/(J + I) ∼= (L/I)/((J + I)/I) is an almost-algebraic Lie algebra. But (J + I)/J

is the Leibniz kernel of L/J and (L/J)/((J + I)/J) ∼= L/(J + I). Thus L/J is

almost-algebraic.

(ii) We have that N(L/J) = N(L)/J as in [14, Lemma 2.3]. Let N(L) = A1 ⊕
. . . ⊕ An where Ai is an irreducible Σ-bimodule of L. Then Ai ∩ J = 0 or Ai for

each i = 1, . . . , n. Let A1 ∩ J = . . . = Ar ∩ J = 0, J = Ar+1 ⊕ . . . ⊕ An, so

L/J ∼= (A1 ⊕ . . .⊕Ar)+̇Σ, which is almost-reductive. □

Corollary 2.17. Let L be an almost-reductive Leibniz algebra. Then ϕ(L) = N2,

where N is the nilradical of L.

Proof. First, N2 = ϕ(N) ⊆ ϕ(L), as in [11, Theorem 6.5]. Hence N(L/N2) =

N/N2, by [14, Lemma 2.3], giving that N(L/N2) is abelian. Moreover, L/N2 is

almost-reductive by Proposition 2.16 (ii) and so L/N2 is ϕ-free by Theorem 2.7 (ii).

It follows that ϕ(L) ⊆ N2. □
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Note that the above Corollary is false if ‘almost-reductive’ is replaced by ‘almost-

algebraic’, as the following example shows.

Example 2.18. Let L be as in Example 2.5. Then the only maximal subalgebras

are I and F (a− a2) + F (a2 − a3) + F (a3 − a4) (see [9, proof of Proposition 6.1]).

Hence ϕ(L) = F (a2 − a3) + F (a3 − a4) ̸= 0 = N2.

Once again, it is not even true if L is a symmetric Leibniz algebra.

Example 2.19. Let L be as in Example 2.6. Then ϕ(L) = Fe3 ̸= 0 = N2.

Proposition 2.20. Let L be an almost-reductive symmetric Leibniz algebra. If

every almost-algebraic subalgebra of L is ϕ-free, then L is an elementary Lie algebra.

Proof. Since ϕ(L) = 0, we have that L is a Lie algebra by Corollary 2.9. The

result now follows from [15, Proposition 2.3]. □

Proposition 2.21. Let L be an almost-reductive symmetric Leibniz algebra. If

every almost-algebraic subalgebra of L/I is ϕ-free, then ϕ(L) = N2 = I and L is

an E-algebra.

Proof. We have that L/I is almost-algebraic by Theorem 2.4, so N2 = ϕ(L) ⊆ I

by Corollary 2.17. Now, if M is a maximal subalgebra of L with Z(L) ̸⊆ M ,

L = M + Z(L) which gives that L2 ⊆ M . Hence Z(L) ∩ L2 ⊆ ϕ(L). Thus

N2 ⊆ I ⊆ Z(L) ∩ L2 ⊆ ϕ(L) = N2.

Let B be a subalgebra of L. Then IL/I((B + I)/I) is almost-algebraic by [1,

Theorem 2.3] and so is ϕ-free by assumption. It follows that (B + I)/I is ϕ-free by

[11, Lemma 4.1] whence ϕ(B) ⊆ I = ϕ(L) and L is an E-algebra. □

3. The inner derivation algebra of a Leibniz algebra

Definition 3.1. The inner derivation algebra of L is the set

R(L) = {Rx | x ∈ L}.

Note that R(L) is a Lie algebra under bracket product. For every subset U of

L, we will write RU = {Rx | x ∈ U}. It is easy to check that R[y,x] = [Rx, Ry]. To

simplify notation, put [y,n x] = Rn
x(y). Then a simple induction proof yields the

following.

Lemma 3.2. R[y,nx] = (−1)n[Ry,n−1 Rx].
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Definition 3.3. For any algebra A, the opposite algebra, A◦, has the same

underlying vector space and the opposite multiplication, (x, y) 7→ x⋆y = yx, where

juxtaposition denotes the multiplication in A.

The following is easy to check (see, for example, [6, Proposition 2.26] or [3, page

42]).

Proposition 3.4. For any (right) Leibniz algebra L, the map θ : L → R(L)◦ : x 7→
Rx is a homomorphism with kernel Zr(L), so the Lie algebra L/Zr(L) is isomorphic

to R(L)◦.

The following two lemmas are easy to see.

Lemma 3.5. For any Lie algebra L,

(i) U is a subalgebra of L if and only if U◦ is a subalgebra of L◦;

(ii) U is an ideal of L if and only if U◦ is an ideal of L◦;

(iii) U is solvable if and only if U◦ is solvable;

(iv) U is nilpotent if and only if U◦ is nilpotent.

Lemma 3.6. For every Leibniz algebra L, we have:

(i) If U is a subalgebra of L, then RU is a subalgebra of R(L).

(ii) Every subalgebra of R(L) is of the form RU where U is a subalgebra of L.

(iii) If U is an ideal of L, then RU is an ideal of R(L).

(iv) Every ideal of R(L) is of the form RU where U is an ideal of L.

Lemma 3.7. Let L be a Leibniz algebra. Then

(i) Γ is the radical of L ⇔ RΓ is the radical of R(L) (This is also given in [3,

page 44]);

(ii) if Zr(L) ⊆ ϕ(L), then N is the nilradical of L ⇔ RN is the nilradical of

R(L).

Proof. (i) Clearly, Γ(L/Zr(L)) = Γ/Zr(L) and so Γ/Zr(L) ∼= Γ(R(L)◦) = Γ(R(L)).

Moreover, θ |Γ is a homomorphism from Γ onto RΓ whence the result.

(ii) Clearly, Zr(L) ⊆ N and so N/Zr(L) ⊆ N(L/Zr(L)) = K/Zr(L), say. But K is

nilpotent, by [4, Theorem 5.5], so N/Zr(L) = N(L/Zr(L)). The proof now follows

in similar manner to (i). □

Proposition 3.8. If the Leibniz algebra L is almost-algebraic, then so is the Lie

algebra R(L).
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Proof. Let L be almost-algebraic. Then L/I is almost-algebraic. Now L/Zr(L) ∼=
(L/I)/(Zr(L)/I) and Zr(L)/I is abelian and so is almost-algebraic. It follows that

L/Zr(L) is almost-algebraic, by [1, Lemma 4.1]. The result follows from Proposition

3.4. □

Definition 3.9. If B is a subalgebra of L, the idealiser of B in L, IL(B) = {x ∈
L | [x, b], [b, x] ∈ B for all b ∈ B}.

Corollary 3.10. Let B be a subalgebra of an almost-algebraic Leibniz algebra L.

Then the idealiser, IR(L)(RB), of RB in R(L) is an almost-algebraic Lie algebra.

Proof. This follows from Proposition 3.8 and [1, Theorem 2.3]. □

Definition 3.11. The element x ∈ L is called L-split if there exist elements

s, n ∈ L such that Rx = Rs + Rn is the decomposition of Rx into its semisimple

and nilpotent parts.

Proposition 3.12. If every element of the Leibniz algebra L is L-split, then L is

almost-algebraic.

Proof. Let x ∈ L. Then Rx+I = Rs+I+Rn+I if Rx = Rs+Rn and Rs+I , Rn+I are

the semisimple and nilpotent parts of Rx+I , so the result follows from [1, Theorem

2]. □

The following result is now proved as in [1, Theorem 2.3].

Proposition 3.13. Let B be a subalgebra of a Leibniz algebra L in which every

element is L-split. Then the idealiser, IL(B), of B in L is almost-algebraic.

Proof. Let J = IL(B). Since RL(B) leaves B invariant, so does its algebraic hull.

In particular, if x ∈ J , both the semisimple and nilpotent parts of RL(x) leave B

invariant. Hence, every element of J is J-split and so by Proposition 3.12, J is

almost-algebraic. □

4. Leibniz A-algebras

Proposition 4.1. Let L be a Lie A-algebra and let K be an ideal of L with K ⊆
Z(L). If L/K is almost-algebraic, then so is L.

Proof. Let L/K be almost-algebraic and let R be the radical of L. Then R/K is

almost-algebraic by [1, Corollary 3.1] and so ϕ(R/K) = 0 by [15, Lemma 2.1 (ii)].

Hence ϕ(R) ⊆ K ⊆ Z(R) by [11, Corollary 4.4]. It follows that ϕ(R) ⊆ Z(R)∩R2 =

0, by [12, Theorem 3.3] since R is an A-algebra. Thus R is almost-algebraic, by

[15, Proposition 2.1] whence so is L by [1, Corollary 3.1] again. □
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Corollary 4.2. Let L be a Leibniz A-algebra and let K be an ideal of L with

K ⊆ Z(L). If L/K is almost-algebraic, then so is L.

Proof. Let L/K be almost-algebraic. Then

L/I

(I +K)/I
∼=

L/K

(I +K)/K
,

which is almost-algebraic by Proposition 2.16. Moreover, (I +K)/I ⊆ Z(L/I) and

L/I is a Lie A-algebra by [12, Lemma 2], so L/I is almost-algebraic by Proposition

4.1. Hence L is almost-algebraic. □

Lemma 4.3. Let L be an almost-reductive symmetric Leibniz A-algebra. Then L

is a Lie algebra.

Proof. Since L is almost-reductive, ϕ(L) = N2 by Corollary 2.17 and N2 = 0 since

L is an A-algebra. Hence L is a ϕ-free symmetric Leibniz algebra and so is a Lie

algebra by Corollary 2.9. □

Lemma 4.4. If L is a symmetric Leibniz A-algebra, then L/I is a Lie A-algebra.

Proof. If K/I is a nilpotent subalgebra of L/I, Kr ⊆ I for some r > 0, whence

Kr+1 = 0. It follows that K is nilpotent and thus abelian. □

Theorem 4.5. Let L be a symmetric Leibniz A-algebra. Then L is an almost-

reductive algebra if and only if it is an elementary Lie algebra.

Proof. (⇒) Let L be an almost-reductive symmetric Leibniz A-algebra. Then L is

a Lie algebra by Lemma 4.3. It now follows that it is elementary by [15, Theorem

2.4].

(⇐) The converse follows from [15, Theorem 2.4]. □

Corollary 4.6. Let L be a symmetric Leibniz A-algebra with radical Γ. If Γ is

ϕ-free, then L is an elementary Lie algebra.

Proof. Assume that Γ is ϕ-free. Then Γ is almost-reductive by Theorem 2.7 (i). It

follows that L is as described in Theorem 2.15. Moreover, (Γ∩Σ)2 = 0 since L is an

A-algebra and if σ ∈ Γ∩Σ, σ = n+ c for some n ∈ N , c ∈ C. Hence [n′, σ] = [n′, c]

for all n′ ∈ N and so Rσ |N is semisimple. It follows that L is almost-reductive and

hence that L is an elementary Lie algebra by Theorem 4.5. □

Corollary 4.7. Let L be an almost-reductive symmetric Leibniz A-algebra. Then

L splits over each of its ideals.

Proof. This follows from Lemma 4.3 and [15, Corollary 2.6]. □
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Proposition 4.8. Let L be a Leibniz algebra over any field. Then L is an E-algebra

if and only if L/ϕ(L) is elementary.

Proof. The proof is the same as for the Lie case in [10, Proposition 2]. □

Proposition 4.9. Let L be a symmetric Leibniz A-algebra. Then L is an E-algebra.

Proof. Let L be a Leibniz A-algebra. Then L/ϕ(L) is an A-algebra by [13, Lemma

2]. But L/ϕ(L) is ϕ-free and so is almost-reductive by Corollary 2.17 (i). Hence

L/ϕ(L) is elementary by Theorem 4.5 and so L is an E-algebra by Proposition

4.8. □
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