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ABSTRACT Modeling, stabilization, and identification processes are significant stages in the process of developing
knowledge about chaotic dynamical systems which entail the effective prediction depending on the degree of uncertainty
toleration in the forecast, accuracy of the current state to be measured as well as a time scale resting on the dynamics of
the system. Control of under-activated dynamical systems has been considered substantially, and it is for periods and is
currently developing in various domains such as biology, data analysis, computing systems, and so forth. Dynamic systems
of growing population signifies a model describing the way a population evolves over time during which population goes
through major life events, split into discrete time periods. The size of the population at a given time period is determined by
the rate of growth as well as other related factors. Most progress has been made in model-based control theory, which
has drawbacks when the system under consideration is exceedingly complicated, and no model can be constructed.
Accordingly, a 3D-discrete and dynamic human population growth system with many controllers is proposed by examining
the stability and symmetry of controller system clarifications. The symmetric stability control results are presented by
considering a special parametric dynamic system in its coefficients besides suggesting periodic functional coefficients
in terms of sin and cos functions. The controllers have the ability to reduce population growth rate unpredictability or
enhance system stability under various external conditions. The unique and very effective strategies in relevant domains
could provide a deeper understanding of their impact as well as the theoretical or technological innovations thereof. These
controllers are capable of reducing population growth rate unpredictability or improving system stability under various
external conditions, and applicable strategies in the relevant domains can provide profound comprehension over the impact
along with the theoretical as well as technological advancements.
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INTRODUCTION

A difference equation is a type of mathematical equation that
describes the relationship between a function and its differences
(or "deltas"). The general form of a difference equation is:

h(n) = H(h(n − 1), h(n − 2), ..., h(n − k))
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where h(n) is the function being studied, H is some function of
the previous values of y, and n is the independent variable (often
thought of as time). The theory of difference equations involves
the study of properties and solutions of equations of this form,
including stability, existence and uniqueness of solutions, and
methods for finding explicit solutions.
Difference equations are used to model a wide range of phenomena
in fields such as mathematics, physics, engineering, economics and
many others. There are different methods to solve difference equa-
tions such as Z-transform, Laplace transform, generating function,
and more.

A discrete and dynamic system of growing population refers to
a model that describes how a population changes over time. In
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this type of system, the population going through major life events
is divided into discrete time periods, and the size of the popula-
tion at each time period is determined by the rate of growth and
other factors. The population may change due to various factors
such as births, deaths, migration, and changes in reproductive
rates (Keyfitz 2005; Schoen 2013). One common model used to
describe the growth of a population over time is the logistic growth
model. This model takes into account the carrying capacity of the
environment, which is the maximum number of individuals that
can be supported by the available resources. The logistic growth
model predicts that the population will grow at a faster rate until
it reaches the carrying capacity, at which point the growth rate
will start to decrease (Iannelli and Milner 2005; Salih and Al-Saidi
2022).
There are many different factors that can affect the growth of a pop-
ulation, including environmental conditions, resource availability,
and interactions with other species. Understanding how these
factors influence population growth can help us better predict and
manage the population of a given species (N. M. Al-Saidi 2023;
Shaw and Neubert 2018).
If a growing population has several controllers, it means that there
are multiple factors or mechanisms that can influence the rate
of population growth (Li and Ma 2022; Rending L. and P. 2022;
Dhinakaran V. and H. 2021; Yellin and Samuelson 1974). Some
common controllers of population growth going through major
life events include:

• Birth rate: The number of births in a population over a given
period of time can influence population growth. It can be
represented by:
Pbirth = β ∗ P,
where Pbirth refers to the increase in population based on
births, β is the birth rate, and P is the initial population.

• Death rate: The number of deaths in a population over a given
period of time can also influence population growth. It can be
represented by:
Pdeath = λ ∗ P,
where Pdeath refers to the decrease in population based on
death, λ is the death rate.

• Migration: The movement of individuals into or out of a
population can affect its size, such that, PM = M,
This represents the change in population based on migration.

• Reproductive rates: The number of offspring produced by
individuals in a population can impact the population growth.
It can be represented by:
PR = R ∗ P,
where PR refers to the change in population based on repro-
ductive, and R is the rate of reproductive.

• Environmental conditions: The availability of resources, such
as food and water, as well as the presence of predators or
other environmental factors, can affect population growth. It
can be represented by:
PE = f (E, P),
where PE refers to the change in population based on environ-
mental conditions, and f is the impact rate of the environmen-
tal impact on the population.

• Human activity: Human actions, such as habitat destruction
or the introduction of invasive species, can also influence
population growth.
PH = f (H, P),
where PH refers to the change in population based on human
activity, and f is the impact of the human activity on the
population.

Therefore, the total population dynamics after considering all
the influence factors can be represented by:
Ptotal = P + Pbirth-Pdeath + PM + PR + PE + PH

Understanding the various controllers of population growth can
help us better predict and manage the size of a population over
time.
For a long time, control of under-activated dynamical systems has
been considered. The majority of development has been made
in model-based control theory, which has limitations when the
system under examination is extremely complex and no model can
be built. This needs data-driven control approaches like machine
learning, which has now spread to many disciplines, including
control theory.

Control of under-activated growth systems refers to the process of
regulating the growth of a system, such as a cell or organism, when
it is not growing at its optimal rate. This can be achieved through a
variety of methods; such as manipulating the levels of hormones or
other signaling molecules, changing the environment that system
is growing in, or applying genetic modifications. Hormones play a
crucial role in controlling growth and development, and a balance
of hormones is essential for normal growth. For example, the
hormone insulin promotes cell growth and division, while the
growth hormone stimulates the growth of bones and muscles.
Manipulating the levels of these hormones can help to regulate
growth in under-activated systems.
Environmental factors such as temperature, light, and nutrient
availability can also affect growth. By controlling these factors,
it is possible to regulate the growth of under-activated systems.
Genetic modifications can also be used to control growth. For
example, knocking out or over-expressing certain genes can
affect the rate of growth, and can be used to regulate growth
in under-activated systems. It is also important to note that in
some cases under activation could be a symptom of a disease or
malfunction of some internal process, in that case a medical or
biological approach should be taken.

In this paper, a 3D-discrete and dynamic human population
growth system with many controllers is proposed by examining
the stability and symmetry of controller system clarifications. The
symmetric stability control results are presented by considering
a special parametric dynamic system in its coefficients besides
suggesting periodic functional coefficients in terms of sin and cos
functions. The controller laws for one, two and three dimensions
are addressed, while numerical simulations are provided for sup-
porting the preliminary findings of the study.

THE GROWING HUMAN POPULATION SYSTEMS

In this part, some of the 3D-dynamic and discrete systems of the
growing human population (SGHP) P1, P2, P3 is formulated. In
Shaw and Neubert (2018), Joeland Samuelson presented the 3D-
SGHP, as follows:

dP1
dτ

= −λ1P1 + β1P3

dP2
dτ

= −λ2P2 + β2P3

dP3
dτ

= −λ3P3,

(1)

where λi, i = 1, 2, 3 are the population rate and β j, j = 1, 2 are
the connections of the population, which are admitted positive
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values. System (1) was extended into the following structure by
Waldstatter (Waldstatter 1989)

dP1
dτ

= −λ1P1 + β1P3

dP2
dτ

= −λ2P2 + β2P3

dP3
dτ

= −λ3P3 + β3,

(2)

where β3 is a realistic constant. Pollard (1997) generated System
(2) as follows

dP1
dτ

= −λ1P1 + β1P3

dP2
dτ

= −λ2P2 + β2P3

dP3
dτ

= −(λ3 + β3)P3.

(3)

Later, the author considered the Kendall observation to the system
to get non-linearity system. Kendall discovered that the differen-
tial equations could describe a population of single males, single
females, and couples, with the following system

dP1
dτ

= −λ1P1 + β1P3 − K1

dP2
dτ

= −λ2P2 + β2P3 − K2

dP3
dτ

= −(λ3 + β3)P3 + K3.

(4)

The Kendall coefficient of concordance is a measure of the strength
and direction of association between two variables in a population.
It can be used to determine whether there is a statistically signif-
icant relationship between the variables, and if so, whether the
relationship is positive or negative. The Kendall coefficient is often
used in studies of population growth, as it can help researchers
understand the factors that influence population size and change
over time. It is calculated by comparing the ranks of the values
of the two variables in a sample, and it can range from -1 (perfect
negative association) to +1 (perfect positive association). A value
of 0 indicates no association between the variables (Kendall 1997).
Hadeler (2012) suggested an extension of System (4) arithmetically
by adding the separation rate of pairs σ as follows:

dP1
dτ

= −λ1P1 + (β1 + σ)P3 − K1

dP2
dτ

= −λ2P2 + (β2 + σ)P3 − K2

dP3
dτ

= −(λ3 + β3 + σ)P3 + K3.

(5)

In this effort, we consider the system of the structure

dP1
dτ

= −λ1P1 + σ1P3 − K1

dP2
dτ

= −λ2P2 + σ2P3 − K2

dP3
dτ

= −(λ3 + σ3)P3 + K3,

(6)

where σi = βi + σ, i = 1, 2, 3.
A 3D dynamic system of rising population could refer to a math-
ematical model that mimics the three-dimensional growth of a

population through time. This could be used to investigate issues
such as food availability, sickness, and social and environmental
situations that influence population growth. Typically, the model
would include variables that reflect these components as well as
equations that describe how they interact and change over time.
It could also incorporate three-dimensional population growth
visualizations or simulations.
System (6) can be viewed as 3D discrete system of growing popu-
lation, using the information

∆nPi = Pn+1
i − Pn

i , i = 1, 2, 3

thus, we have 3D-SGHP

Pn+1
1 = (1 − λ1)Pn

1 + σ1Pn
3 − K1

Pn+1
2 = (1 − λ2)Pn

2 + σ2Pn
3 − K2

Pn+1
3 = −(λ3 + σ3 − 1)Pn

3 + K3.

(7)

In terms of a matrix formula, System (7) can be viewed as follows:

P(n + 1) = Λ(n)P(n)Ξ(n) + Σ(n), (8)

where Λ, Ξ and Σ are square matrices of the same order. The
solution of System (8) can be established by using the concept of
the technique of variation of parameters.

Proposition 1.

Let M1(n) and M2(n) be fundamental matrix solution of the
systems (Murty and Prasannam 1997)

P(n + 1) = Λ(n)P(n)Ξ(n)

and
P(n + 1) = Ξ∗(n)P(n)Ξ(n),

respectively. Then the solution of the of the homogeneous matrix
difference system

P(n + 1) = Λ(n)P(n)Ξ(n). (9)

is given by the formula

P(n) = M1(n)ΠM∗
2 (n)

where Π is an arbitrary constant square matrix of the same order.
Moreover, any the solution of System (8) is formulated by

P(n) = M1(n)ΠM∗
2 (n) + P̄(n),

where P̄(n) is a particular solution of System (8).

A 3D discrete system of growing population refers to a math-
ematical model that represents the growth of a population in
three dimensions over discrete intervals of time, rather than
continuously (H. Natiq 2022). This means that the population size
and other variables in the model are updated at specific points in
time, rather than constantly changing. A 3D discrete system could
be used to study the same types of factors that affect population
growth as a continuous model, but the equations and approach
may be different. Discrete models can be useful for understanding
how a system changes over time in a more granular way, as the
model is updated at specific points rather than continuously.
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Example 1.

Let Ki = 0 in System (7), then the general solution becomes

Pn
1 =

(σ1c3((λ1 − 1)n − (−λ3 − σ3 + 1)n))

(λ1 + λ3 + σ3 − 2)
+ c1(λ1 − 1)n

Pn
2 =

(c3σ2((λ2 − 1)n − (−(λ3 + σ3) + 1)n))

(λ2 + λ3 + σ3 − 2)
+ c2(λ2 − 1)n

Pn
3 = c3(−(λ3 + σ3) + 1)n, (c1, c2, c3) ∈ Z3

In general, when Ki ̸= 0, we have

Pn
1 =

(σ1c3((λ1 − 1)n − (−λ3 − σ3 + 1)n))

(λ1 + λ3 + σ3 − 2)
+ c1(λ1 − 1)n−

− σ1K3 + K1(λ3 + σ3)

(λ1 − 2)(λ3 + σ3)

Pn
2 =

(c3σ2((λ2 − 1)n − (−(λ3 + σ3) + 1)n))

(λ2 + λ3 + σ3 − 2)
+ c2(λ2 − 1)n−

− σ2K3 + K2(λ3 + σ3)

(λ2 − 2)(λ3 + σ3)

Pn
3 = c3(−(λ3 + σ3) + 1)n +

K3
λ3 + σ3

, (c1, c2, c3) ∈ Z3,

where λ3 + σ3 ̸= 0, λ1 ̸= 2 and λ2 ̸= 2.

Example 2.
Suppose the following data:

• λ1 = λ2 = σ1 = σ2 = 0.5 and λ3 + σ3 = 0.5 then we obtain
the following numerical solution of System (7) (see Fig.1-A)

(Pn
1 , Pn

2 , Pn
3 ) = ((−1/2)n(−2c + (−1)n − 1),

(−1/2)n(−2c + (−1)n − 1), 21−n
)

where c is a constant.
• λ1 = λ2 = 0.5, σ1 = 0.6, σ2 = 0.9 and λ3 + σ3 = 0.75

then we get the following numerical solution of System (7)
(see Fig.1-B)

(Pn
1 , Pn

2 , Pn
3 ) =

(
1
5
(−1)n+121−2n((5c1 + 8)2n − 8(−1)n),

1
5
(−1)n21−2n(12(−1)n − (5c2 + 12)2n), 41−n

)

Negative values of growing population

The suggested system may have negative values for the growing
population. There are several potential negative consequences
associated with a growing population, including:

• Strain on Resources: As the population grows, there is an
increased demand for natural resources such as food, water,
and energy. This can lead to depletion of resources and in-
creased pollution, which can have negative impacts on the
environment and public health.

• Overcrowding: A growing population can lead to overcrowd-
ing in cities and other areas, which can contribute to a range
of problems such as increased crime, congestion, and a lack of
affordable housing.

• Unequal Distribution: Even though the population may be
growing overall, the distribution of people is not always equal.
This can lead to disparities in access to resources and oppor-
tunities, which can contribute to social and economic inequal-
ities.

• Strain on Social Services: As the population grows, there can
be increased demand for social services such as healthcare,
education, and welfare programs. This can strain government
budgets and resources and can contribute to political and
social unrest.

• Environmental Impact: A growing population can have sig-
nificant impacts on the environment, including deforestation,
loss of biodiversity, and climate change. These negative im-
pacts can have long-term consequences for future generations.

STABILITY ANALYSIS

In this part, we analyze the suggested 3D-SGHP in (6) and its
discrete form (7). The Jacobian matrix of Model (6) is given by

J =


−λ1 0 σ1

0 −λ2 σ2

0 0 −λ3 − σ3


where |J| = −λ1λ2(λ3 + σ3). Therefore, the set of eigenvalues of J
is

ρ1 = −λ1, ρ2 = −λ2, ρ3 = −(λ3 + σ3).

System (6) is asymptotically stable whenever λ1 > 0, λ2 > 0 and
λ3 + σ3 > 0. The corresponding eigenvectors are

v1 = (1, 0, 0), v2 = (0, 1, 0), v3 =

(
σ1

λ1 − λ3 − σ3
,

σ2
λ2 − λ3 − σ3

, 1
)

,

where λ1 ̸= λ3 + σ3 and λ2 ̸= λ3 + σ3.

Model (6) has the following set of non-vanishing fixed points
for all axis

S =
{
(P1, P2, P3) :

(
(σ1K3 − K1(σ3 + λ3 + 1))
((λ1 + 1)(σ3 + λ3 + 1))

,

(σ2K3 − K2(σ3 + λ3 + 1))
((λ2 + 1)(σ3 + λ3 + 1))

,
K3

(σ3 + λ3 + 1)

)
(
− K1

λ1 + 1
,

(σ2K3 − K2(σ3 + λ3 + 1))
((λ2 + 1)(σ3 + λ3 + 1))

,
K3

(σ3 + λ3 + 1)

)
(
− K1

λ1 + 1
,

−K2
λ2 + 1

,
K3

(σ3 + λ3 + 1)

)}
whenever λ1 ̸= −1, λ2 ̸= −1 and λ3 + σ3 ̸= −1, and Ki ∈
[−1, 1], i = 1, 2, 3.
The set of the non-vanishing equilibrium points corresponding to
System (6) is

E =
{
(P1, P2, P3) :

(
(σ1K3 − K1(σ3 + λ3))

(λ1(σ3 + λ3))
,

(σ2K3 − K2(σ3 + λ3))

(λ2(σ3 + λ3))
,

K3
(σ3 + λ3)

)
(
−K1

λ1
,

(σ2K3 − K2(σ3 + λ3))

(λ2(σ3 + λ3))
,

K3
(σ3 + λ3)

)
(
−K1

λ1
, −K2

λ2
,

K3
(σ3 + λ3)

)}
,
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Figure 1 The plot of solutions (P1, P2, P3) of System (7) in Example, respectively.

whenever λ1 ̸= 0, λ2 ̸= 0 and λ3 + σ3 ̸= 0, and Ki ∈ [−1, 1], i =
1, 2, 3. Note that when Ki = 0, i = 1, 2, 3, then the origin is the only
equilibrium point and fixed point of System (6). Hence, (0, 0, 0) is
the unique solution for the system.

Special case: λ1 = λ2

In this case System (6) reduces into 2D-system, as follows:

dP4
dτ

= −λP4 + (σ1 − σ2)P3 − (K1 − K2)

dP3
dτ

= −(λ3 + σ3)P3 + K3,
(10)

where P4 = P1 − P2, and λ1 = λ2 = λ.

J =

−λ σ1 − σ2

0 −λ3 − σ3


where |J| = λ(λ3 + σ3). Therefore, the set of eigenvalues of J is

ϱ1 = −λ, ϱ2 = −(λ3 + σ3).

System (10) is asymptotically stable whenever λ > 0 and λ3 + σ3 >
0. The corresponding eigenvectors are

v1 = (1, 0), v2 =

(
− −σ1 + σ2

λ − λ3 − σ3
, 1
)

,

where λ ̸= −(λ3 + σ3).
Yields the following general solution;

P4(τ) =
−(σ1α1eτ(−(λ3+σ3))))

λ3 + σ3 − λ
+

σ2α1eτ(−(λ3+σ3))

λ3 + σ3 − λ
+

σ1K3
λ(λ3 + σ3)

−

− σ2K3
λ(λ3 + σ3)

− σ3K1
λ(λ3 + σ3)

− λ3K1
λ(λ3 + σ3)

+
σ3K2

λ(λ3 + σ3)
+

+
λ3K2

λ(λ3 + σ3)
+ α2eλτ

P3(τ) = α1e−λ3τ−σ3τ +
K3

(λ3 + σ3)
,

where α1 and α2 are fixed constants.

Example 3.

For a constant a, we suggest the parametric connections system
corresponding to (10), as follows

dP4
dτ

= − cos(a)P4 + (σ1 − σ2)P3 − (K1 − K2)

dP3
dτ

= − sin(a)P3 + K3.
(11)

Then the solution becomes

P4(τ) = e−1/2τ sin(2a) csc(a)
∫ τ

1

(
− 1/2e1/2ξ csc(a) sin(2a)−ξ sin(a)∗

csc(a)(−2eξ sin(a)σ1 − 2 sin(a)σ1 + 2eξ sin(a)σ2 + 2 sin(a)σ2+

+ 2eξ sin(a) sin(a)K1 − 2eξ sin(a) sin(a)K2

)
dξ + α1e−1/2τ sin(2a)K3 csc(a)

P3(τ) = α2e−τ sin(a) + K3 csc(a),

where α1 and α2 are constants. Fig. 2 shows the symmetric behav-
ior of the solution when σ1 = σ2 and K3 = ±1. In this case, we
obtain the solution

P4(τ) = α1e−τ cos(a) − K1 sec(a) + K2 sec(a)

P3(τ) = α2e−τ sin(a) ± csc(a).

A parametric dynamic system is a mathematical model that
describes the behavior of a system over time. It is defined by a set
of differential equations, which are functions that describe how the
system changes with respect to time. The parameters of the system
are variables that can be adjusted to change the behavior of the
system. These equations can be used to predict the future behavior
of the system, given the current state and the parameters. These
systems are widely used in fields such as physics, engineering,
and economics to model and analyze real-world systems.

A parametric dynamic system with periodic coefficients is a type of
mathematical model that describes the behavior of a sys- tem over
time, where the parameters of the system are functions that vary
periodically with time. These systems are often used to model
physical systems that exhibit periodic behavior, such as oscilla-
tions or waves. The mathematical equations that define the system
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Figure 2 The plot of solutions (P4, P3) of System (11) in Example, when σ1 = σ2 and K3 = ±1, respectively.

include terms that represent the periodic variations of the parame-
ters, and the solution of these equations will also exhibit periodic
behavior. These types of systems can be analyzed using techniques
from the field of dynamic systems, including frequency analysis
and bifurcation theory, to understand the behavior of the system
and how it responds to changes in the parameters.

TYPES OF STABILIZATION OF NONLINEAR DYNAMIC SYS-
TEMS

Stabilization of a dynamic system refers to the process of making
a system’s behavior more predictable and consistent over time.
This can be achieved by various means, such as adjusting the
system’s parameters, adding control inputs, or implementing a
feedback control loop. The specific methods used will depend on
the system’s characteristics and the desired behavior.

In control theory, the stability of a dynamic system refers to the
ability of the system to return to its equilibrium state after being
subjected to some disturbance. A system is considered stable if,
after a disturbance, the system returns to its equilibrium state or
settles into a new equilibrium state that is acceptable. There are
several ways to stabilize a dynamic system, including feedback
control and feedforward control.
Feedback control involves using the output of the system as input
to a controller, which then adjusts the input to the system to bring
the output back to the desired equilibrium state. This can be done
using a variety of control algorithms, such as PID (proportional-
integral-derivative) control or state-space control. Therefore, the
controller is a device or algorithm that regulates the behavior of a
dynamic system. It compares the system’s output (also called the
process variable) with the desired output (also called the set-point)
and calculates an error signal. The controller then uses this error
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signal to adjust the system’s inputs (also called the manipulated
variables) in order to bring the output closer to the set-point. There
are many different types of controllers, such as PID controllers,
state-space controllers, and model predictive controllers, each with
their own strengths and weaknesses (Hadeler 2012).
Feedforward control involves predicting the effect of a disturbance
on the system and applying a counteracting input to the system
to prevent the disturbance from affecting the equilibrium state.
This can be done using techniques such as model predictive con-
trol or adaptive control. In general, the choice of control strategy
will depend on the specific characteristics of the system and the
requirements of the application.
In mathematics and physics, a chaotic system is a system that
exhibits the property of chaos, which is defined as a periodic long-
term behavior that is highly sensitive to initial conditions. This
means that small differences in initial conditions can lead to drasti-
cally different outcomes over time. In other words, the behavior of
a chaotic system is seemingly random and unpredictable. Exam-
ples of chaotic systems include the weather, the stock market, and
some mechanical systems such as the double pendulum.

(1,2,3) D Controllers of System
By adding some control parameters, the chaotic system correspond-
ing to (6) can be reformulated as follows:

∆P1(τ) = −λ1P1(τ − 1) + σ1P3(τ − 1)− K1

∆P2(τ) = −λ2P2(τ − 1) + σ2P3(τ − 1)− K2

∆P3(τ) = −(λ3 + σ3)P3(τ − 1) + K3.

(12)

This proposition details the natural dynamics of the proposed
system with its solution. Based on these results, the manipulation
of the system toward desired outcomes using control strategies is
given in Proposition 2.
Proposition 2

System (12) can be controlled by 1D-controller

U1(τ) = −σ1P3(τ),

whenever λ1 > 0, λ2 > 0 and λ3 + σ3 > 0.

Proof.
Consider the system (12). Then under the suggested controller, we
have the following system

∆P1(τ) = −λ1P1(τ − 1) + σ1P3(τ − 1)− K1 + U1(τ − 1)

∆P2(τ) = −λ2P2(τ − 1) + σ2P3(τ − 1)− K2

∆P3(τ) = −(λ3 + σ3)P3(τ − 1) + K3.

(13)

Consequently, we obtain the difference system

∆P1(τ) = −λ1P1(τ − 1) + σ1P3(τ − 1)− K1 − σ1P3(τ − 1)

∆P2(τ) = −λ2P2(τ − 1) + σ2P3(τ − 1)− K2

∆P3(τ) = −(λ3 + σ3)P3(τ − 1) + K3,

(14)

which is equivalent to

∆P1(τ) = −λ1P1(τ − 1)− K1

∆P2(τ) = −λ2P2(τ − 1) + σ2P3(τ − 1)− K2

∆P3(τ) = −(λ3 + σ3)P3(τ − 1) + K3.

(15)

So,

J =


−λ1 0 0

0 −λ2 σ2

0 0 −λ3 − σ3


where |J| = −λ1λ2(λ3 + σ3).
Therefore, the set of eigenvalues of J is

υ1 = −λ1, υ2 = −λ2, υ3 = −(λ3 + σ3).

System (15) is asymptotically stable whenever λ1 > 0, λ2 > 0 and
λ3 + σ3 > 0. The corresponding eigenvectors are

v1 = (1, 0, 0), v2 = (0, 1, 0), v3 =

(
0,

σ2
λ2 − λ3 − σ3

, 1
)

,

where λ1 ̸= λ3 + σ3 and λ2 ̸= λ3 + σ3.
In view of the conditions, System (15) is asymptotically stable.
Note that the solution of System (15) is given by the formula

P1(n) = c1(−λ1)
n−1 − (K1(1 − (−λ1)

n))

(λ1 + 1)
,

P2(n) = c2(−λ2)
n − c3σ2((−λ2)

n − (−λ3 − σ3)
n)

λ2 − λ3 − σ3
−

λ3K2 + K2
(1 + λ2)(1 + λ3 + σ3)

,

P3(n) = c3(−λ3 − σ3)
n +

K3
λ3 + σ3 + 1

,

where (c1, c2, c3) ∈ Z3.

Proposition 3 builds on the simpler controller pertaining to
Proposition 2 by the incorporation of more extensive or reliable
control mechanisms. This progression not only shows how to
improve upon simpler models to achieve greater effectiveness, but
it also improves comprehension and applicability of controlling
complex dynamical systems in real-world situations.
Proposition 3
System (12) can be controlled by 2D-controller

U1(τ) = −σ1P3(τ), U2(τ) = −σ2P3(τ)

whenever λ1 > 0, λ2 > 0 and λ3 + σ3 > 0.
Proof.

Consider the system (12). Then under the recommended con-
trollers, we have the following system

∆P1(τ) = −λ1P1(τ − 1) + σ1P3(τ − 1)− K1 + U1(τ − 1)

∆P2(τ) = −λ2P2(τ − 1) + σ2P3(τ − 1)− K2 + U2(τ − 1)

∆P3(τ) = −(λ3 + σ3)P3(τ − 1) + K3.

(16)

Consequently, we obtain the difference system

∆P1(τ) = −λ1P1(τ − 1) + σ1P3(τ − 1)− K1 − σ1P3(τ − 1)

∆P2(τ) = −λ2P2(τ − 1) + σ2P3(τ − 1)− K2 − σ2P3(τ − 1)

∆P3(τ) = −(λ3 + σ3)P3(τ − 1) + K3,

(17)

which is equivalent to

∆P1(τ) = −λ1P1(τ − 1)− K1

∆P2(τ) = −λ2P2(τ − 1)− K2

∆P3(τ) = −(λ3 + σ3)P3(τ − 1) + K3.

(18)
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Hence,

J =


−λ1 0 0

0 −λ2 0

0 0 −λ3 − σ3


where |J| = −λ1λ2(λ3 + σ3). Therefore, the set of eigenvalues of J
is

ε1 = −λ1, ε2 = −λ2, ε3 = −(λ3 + σ3).

System (18) is asymptotically stable whenever λ1 > 0, λ2 > 0 and
λ3 + σ3 > 0. The corresponding eigenvectors are

v1 = (1, 0, 0), v2 = (0, 1, 0), v3 = (0, 0, 1) ,

where λ1 ̸= λ3 and λ2 ̸= λ3. In view of the conditions, System
(18) is asymptotically stable.

Note that the solution of System (18) is given by the formula

P1(n) = c1(−λ1)
n−1 − (K1(1 − (−λ1)

n))

(λ1 + 1)
,

P2(n) = c2(−λ2)
n−1 − (K2(1 − (−λ2)

n))

(λ2 + 1)
,

P3(n) = c3(−λ3 − σ3)
n−1 − (K3(λ3 + σ3)(1 − (−λ3 − σ3)

n))

((−λ3 − σ3)(λ3 + σ3 + 1))
,

where (c1, c2, c3) ∈ Z3.

Proposition 4 is essential to the development of the study con-
trol strategy narrative because it demonstrates extensive and re-
liable control capabilities and broadens our understanding of the
dynamics and control mechanisms of the system from a theoretical
and practical standpoint.
Proposition 4

System (12) can be controlled by 3D-controller

U1(τ) = −σ1P3(τ), U2(τ) = −σ2P3(τ), U3(τ) = σ3P3(τ)

whenever λi > 0, i = 1, 2, 3.

Proof.
Consider the system (12). Then under the recommended con-
trollers, we have the following system

∆P1(τ) = −λ1P1(τ − 1) + σ1P3(τ − 1)− K1 + U1(τ − 1)

∆P2(τ) = −λ2P2(τ − 1) + σ2P3(τ − 1)− K2 + U2(τ − 1)

∆P3(τ) = −(λ3 + σ3)P3(τ − 1) + K3 + U3(τ − 1).

(19)

Consequently, we obtain the difference system

∆P1(τ) = −λ1P1(τ − 1) + σ1P3(τ − 1)− K1 − σ1P3(τ − 1)

∆P2(τ) = −λ2P2(τ − 1) + σ2P3(τ − 1)− K2 − σ2P3(τ − 1)

∆P3(τ) = −(λ3 + σ3)P3(τ − 1) + K3 + σ3P3(τ − 1),

(20)

which is equivalent to

∆P1(τ) = −λ1P1(τ − 1)− K1

∆P2(τ) = −λ2P2(τ − 1)− K2

∆P3(τ) = −λ3P3(τ − 1) + K3.

(21)

Then,

J =


−λ1 0 0

0 −λ2 0

0 0 −λ3


where |J| = −λ1λ2λ3. Therefore, the set of eigenvalues of J is

ϑ1 = −λ1, ϑ2 = −λ2, ϑ3 = −λ3.

System (21) is asymptotically stable whenever λ1 > 0, λ2 > 0 and
λ3 > 0. The corresponding eigenvectors are

v1 = (1, 0, 0), v2 = (0, 1, 0), v3 = (0, 0, 1) .

In view of the conditions, System (21) is asymptotically stable.
Note that the solution of System (21) is given by the formula

P1(n) = c1(−λ1)
n−1 − (K1(1 − (−λ1)

n))

λ1 + 1
,

P2(n) = c2(−λ2)
n−1 − (K2(1 − (−λ2)

n))

λ2 + 1
,

P3(n) = c3(−λ3)
n−1 +

K3(1 − (−λ3)
n)

λ3 + 1
,

where (c1, c2, c3) ∈ Z3.

Stabilization of System (10)
There are several methods for stabilizing a 2D dynamic system,
including: feedback control, Lyapunov stability analysis, state-
space representation, etc. In our study, the adaptive control is
considered; and thus, the related method involves adapting the
control input to the system based on the current state, in order to
achieve stability. However, to stabilize (10) for the special case,
when λ1 = λ2, it will perform as follows:

The chaotic system corresponding to (10) can be realized as follows:

∆P4(τ) = −λP4(τ − 1) + (σ1 − σ2)P3(τ − 1)− (K1 − K2)

∆P3(τ) = −(λ3 + σ3)P3(τ − 1) + K3.
(22)

Proposition 5
System (22) can be controlled by 1D-controller

V1(τ) = −(σ1 − σ2)P3(τ),

whenever λ > 0 and λ3 + σ3 > 0.

Proof.

Consider the system (22). Then under the suggested controller,
we have the following system

∆P4(τ) = −λP4(τ − 1) + (σ1 − σ2)P3(τ − 1)− K1 + V1(τ − 1)

∆P3(τ) = −(λ3 + σ3)P3(τ − 1) + K3.
(23)

Consequently, we obtain the difference system

∆P4(τ) = −λP4(τ − 1) + (σ1 − σ2)P3(τ − 1)− K1 − (σ1 − σ2)P3(τ − 1)

∆P3(τ) = −(λ3 + σ3)P3(τ − 1) + K3,
(24)
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which is equivalent to

∆P4(τ) = −λP4(τ − 1)− K1

∆P3(τ) = −(λ3 + σ3)P3(τ − 1) + K3.
(25)

Thus,

J =

−λ 0

0 −λ3 − σ3


where |J| = λ(λ3 + σ3). Therefore, the set of eigenvalues of J is

υ1 = −λ, υ2 = −(λ3 + σ3).

System (25) is asymptotically stable whenever λ > 0 and λ3 + σ3 >
0. The corresponding eigenvectors are

v1 = (1, 0), v2 = (0, 1).

In view of the conditions, System (25) is asymptotically stable.
Note that the solution of System (25) is given by the formula

P4(n) = c1(−λ)n−1 − (K1(1 − (−λ)n))

λ + 1
,

P3(n) = c3(−λ3 − σ3)
n−1 +

K3(λ3 + σ3)(1 − (−λ3 − σ3)
n)

(−λ3 − σ3)(λ3 + σ3 + 1)
,

where (c1, c2) ∈ Z2.

Proposition 6
System (22) can be controlled by 2D-controller

V1(τ) = −(σ1 − σ2)P3(τ), V2(τ) = σ3P3(τ)

whenever λ > 0 and λ3 > 0.

Proof.

Consider the system (22). Then under the suggested controllers,
we have the following system

∆P4(τ) = −λP4(τ − 1) + (σ1 − σ2)P3(τ − 1)− K1 + V1(τ − 1)

∆P3(τ) = −(λ3 + σ3)P3(τ − 1) + K3 + V2(τ − 1).
(26)

Consequently, we obtain the difference system

∆P4(τ) = −λP4(τ − 1) + (σ1 − σ2)P3(τ − 1)− K1 − (σ1 − σ2)P3(τ − 1)

∆P3(τ) = −(λ3 + σ3)P3(τ − 1) + K3 + σ3P3(τ − 1),
(27)

which is equivalent to

∆P4(τ) = −λP4(τ − 1)− K1

∆P3(τ) = −λ3P3(τ − 1) + K3.
(28)

But,

J =

−λ 0

0 −λ3


where |J| = λλ3; therefore, the set of eigenvalues of J is

υ1 = −λ, υ2 = −λ3.

System (28) is asymptotically stable whenever λ > 0 and λ3 > 0.
The corresponding eigenvectors are

v1 = (1, 0), v2 = (0, 1).

In view of the conditions, System (28) is asymptotically stable.
Note that the solution of System (28) is given by the formula

P4(n) = c1(−λ)n−1 − (K1(1 − (−λ)n))

λ + 1
,

P3(n) = c3(−λ3)
n−1 +

K3(1 − (−λ3)
n)

λ3 + 1
,

where (c1, c2) ∈ Z2.

EXEMPLARY APPLICATIONS

An application of the above examples is when dynamic systems
with controllers are assumed to be informative systems. The in-
formative problem for control refers to the challenge of ensuring
that an autonomous system has enough information to make ap-
propriate decisions and execute its intended actions. This can be
especially difficult in complex or dynamic environments where
the system may need to process and interpret a large amount of
data in real time. It can also be a concern in situations where the
system’s decision-making process is opaque or difficult to under-
stand. To address the informative problem, researchers may use
techniques such as machine learning, computer vision, and sensor
fusion to help the system make more accurate and informed deci-
sions. Additionally, they may also implement methods to increase
the transparency of the system’s decision-making process, such
as explainable AI or interpretative machine learning. Note that
the data set is informative for the property P (.) if there is if there
exists a controller U such that,

Ω∆ ⊆ Ω{P,U},

where Ω∆ indicates the set of all systems that are consistent with
the data ∆. The growth of population can present a number of
challenges, including strain on resources such as food, water, and
housing, as well as increased pressure on infrastructure and public
services. Therefore, it can be viewed as an informative problem.
Additionally, population growth can contribute to environmental
degradation and climate change. It can also exacerbate economic
and social inequality. It is a complex issue that requires a multi-
faceted approach to address, involving strategies such as family
planning, education and economic development, and sustainable
resource management.

The question is how to control growth of population?
There are several strategies that can be implemented to control
population growth and address its associated challenges. Some of
these include the following points:

• Family planning: Providing access to birth control and ed-
ucation about reproductive health can help individuals and
couples make informed decisions about their fertility and
family size.

• Education and economic development: Investing in education
and economic opportunities for women and girls can lead
to lower fertility rates, as women with more education and
economic resources tend to have fewer children.

• Sustainable resource management: Managing resources such
as water, food, and energy in a sustainable manner can help
to mitigate the strain that population growth places on these
resources.
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• Migration management: Implementing policies to manage
migration can help to prevent overpopulation in certain areas
and balance the population in a more sustainable way.

• Climate change mitigation: Mitigating climate change and its
effects can help to reduce the negative impact of population
growth on the environment.

It is important to note that population growth is a complex issue
that is influenced by a variety of variables and factors, and address-
ing it will require a multifaceted approach that concerns diverse
sectors and stakeholders across different fields and areas.

CONCLUSION

Control of under-activated dynamical systems refers to the process
of manipulating the inputs of a system in order to achieve a de-
sired behavior or output. This can be achieved through a variety
of methods, such as feedback control, adaptive control, or optimal
control. The specific approach used will depend on the character-
istics of the system and the desired outcome. In under-activated
systems, the control inputs may have limited effect on the sys-
tem’s behavior, making control more challenging. In these cases,
techniques such as input shaping or hybrid control may be used
to improve performance. From above, we considered different
3D- systems for growing population of humans. Furthermore, we
suggested a set of special cases of the system, including 2D-system
and parametric 2D-system. We further discussed the stability of
the proposed systems in view of its analysis. Moreover, we gave a
set of controllers of chaotic systems. We showed that the proposed
system can be controlled by 1D, 2D and 3D controller laws through
reverse-engineering efforts extracted from existing systems to be
modeled and developed accordingly. For the future efforts, one
can generalize the proposed systems using any types of fractional
calculus, fractals (locally fractional calculus) and quantum calcu-
lus.
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