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Abstract

In this paper, we discuss various properties of the Riemann-Liouville operator over the
generalized distributions D, ([0, +0o[xR) and other spaces. Next, we examine some prop-
erties of the convolution of the generalized distributions on the space D, ([0, +00[xR).
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1. Introduction

In this paper, we consider the singular partial differential operators defined on ]0, +00[xR
by [1]

_ 0
A_%%’ 2a+1 9 0?
D=gm+ 5 — gz @20

The following integral transform associated with A and D is called the Riemann-Liouville
operator defined on the space of continuous functions on R?, even with respect to the first
variable, by

1 r1
g/ / FrsV1—12, 2 +rt)(1 — ) 2(1 — s2)* L dt ds;
m™J-1)-1
if a >0,
1

1 dt

- rvV1—12, o+ rt)——m—; if  =0.

T /_1 H ) V1—1t2
Many harmonic analysis results related to the Riemann-Liouville operator have been es-
tablished see for example [2,3,7-10, 16].

R(f)(r,z) =

The theory of the Fourier transform play an important role in several fields such as
mathematical, physical and engineering sciences. One of the most important concepts in
Fourier theory, is that of a convolution. In this context, the convolution theory has many
applications as signal processing, the theory of linear differential equations and quantum
mechanics. The theory of distributions allows, by placing itself in a broader framework
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than, classical, the ordinary differential equations, to solve many equations from physics,
fluid mechanics or signal processing. One of the fundamental ideas of this theory consists
of defining the distributions through their action on a space of functions, called functions
tests. This theory has gained considerable attention and has been extended to a wide class
of integral transforms, (see for example [4,5,11,15]).

The ultradistributions have been introduced by Beurling [4], Bjorck [5] and independently
by Roumieu [14]. Ultradistribution theory is a natural generalization of the distribution
theory. A unification of Beurling-Bjorck theory and Roumieu theory has been given by
Komatsu [12]. The Hankel transform of ultradistributions in Roumieu setting has been
given by Pathak and Pandey [13].

Based on the ideas of Bjorck [5] and Hormander [11], we discuss various properties
of the Riemann-Liouville operator over the generalized distributions D, ([0, +00[xR) and
other spaces.

This work is organized as follows. In the next section, we give a brief background of
some harmonic analysis results related to the Riemann-Liouville operator. In section 3,
we define and study the spaces of type D, ([0, +00[xR) and D, ([0, +oo[xR). In the last
section, using the theory of the Riemann-Liouville operator, we examine several properties
of convolutions of generalized distributions.

2. Preliminaries

In this section, we recall some harmonic analysis results related to the Riemann-Liouville
operator. For more details, see [1].
We denote by
e v the measure defined on [0, +00[xR by

2041
dv(r,x) = LA Y (dw)l
2m)2

- 20T(a+ 1)
e [P(dv), p € [1,+00] the Lebesgue space of measurable functions f on [0, +o0o[xR, such
that || f|p., < +o0.
e T the set given by

T =R xRU{(ir,z), (rz) e R xR, |r| < |z|}.
e By, the o-algebra defined on T by,
By, ={07(B), B € Bpo([0,+00[xR)},
where 6 is the bijective function, defined on the set

Yy =0, +oo[xRU{(is,y) ; (s,y) € [0, +0[xR; s < |y|},

0(s,y) = (/s> + 4%, 9). (2.1)

e v the measure defined on By, by, v(B) = v(0(B)).

e [P(dv), p € [1,+00] the Lebesgue space of measurable functions f on Ty, such that
1 llpy < +o0.

e 8.(R?) the space of infinitely differentiable functions on R?, rapidly decreassing together
with all their derivatives, even with respect the first variable.

The space 8.(R?) is equipped with the topology associated to the countable family of
norms

by

9 N 8614-52
VmEN,N g su 1+T +JZ - ’]"71'.
m((b) (TvI)E[O,POO[XR, ( ) | 87‘/81 01'62 (b( )|
k+[Bl<m
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If f is a non-negative measurable function on [0,4+oco[xR (respectively integrable on
[0, +00[xR with respect to the measure dv), then fofl is a measurable non-negative func-
tion on Y, (respectively integrable on Y with respect to the measure dy) and we have

/Y+ (fol)(p, \) dry(p, A /+Oo/f7“a: dv(r, z). (2.2)

For every (u, \) € C x C, the system
Aju(r,x) = —idju(r, x),
D’LL(’F, li) = —H2U(7’, ZL‘),
©(0,0) =

@
or

admits a unique solution ¢, \) given by

V(r,z) ERx R, @\ (rz)= ja(r\/m)e_“x,

where j, is the modified Bessel function defined by

(0,z) =0, z€R,

&

Jalz) =Tla+ DY o (50

__ DT Ak e
= a+1+k)2

The function ¢, y) is bounded on R x R if and only if (1, A) belongs to the set T and in
this case

sup ’go(#)\)(r, a:)‘ =1. (2.3)
(rax)ERxR

To define the translation operator associated with the Riemann-Liouville operator,
we use the product formula for the eigenfunction ¢, ), that is for (r,x) and (s,y) €
0, +00[ R,

I'a+1
QD(H’)\)(’F x)ap(%)\)(s y) = f;(oc + / (p(%)\) \/7«2 + 82+ 2rscos,x +y)

x sin*(6)d. (2.4)

Definition 2.1. For every (r,z) € [0, +00[xR, the translation operator T, ,) associated
with the Riemann-Liouville operator is defined on LP(dv), p € [1,+00], by

T ($)) = SH s

Remark 2.2. For every (r,z) €]0,+oo[xR, and by a standard change of variables, we
have

\V/(S, y) 6]07 +OO[XR7 T(r,x) (f)(S y)

where the kernel W, is given by

) iy / F(Vr2 + 52 + 2rscos 0, x + y) sin®*(0)d6.

+oo
- t W, 2ot g
3T (o £+ 1) Of(,x+y) (r,5,1) :

NI

Lla+1)2  ((r+s)*- tz)afé (t? — (r —s)?)
2010 (o + %)\/7? (rst)?e

Proposition 2.3. (1) For every f € LP(dv), p € [1,+0o0], and (r,z) € [0, +00[xR, the
function T, »y(f) belongs to LP(dv) and we have

H{I(r,x)(f) p,v < Hf”p,u-
(2) The product formula (2.4) can be written

Tr2) (@) (85 Y) = @) (1 2) 0,0 (55 Y)-

Wa (Ta 8, t) = 1]|r—s|,r+s[(t)'
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(8) The kernel W, is symmetric in the variables r,s,t and
1 +o0

2°T(a+1) Jo
Definition 2.4. The convolution product of f,g € L'(dv) is defined by

W) €10, 400l frorn) = [ [ Ton(Dnols.nivlsn). 26

W (r, s, t)t?at = 1. (2.5)

11 1
Let p, ¢, 7 € [1,400] such that f—i-f = 1+ . Then for every f € LP(dv) and g € Li(dv),
p
the function fx*g belongs to the space LT(dV) and we have the following Young’s inequality
1 gl < A flpwllgllg.0-

Definition 2.5. The Fourier transform JF associated with the Riemann-Liouville operator
is defined on L'(dv) by

V(p,\) e X, F(f /+Oo/frx O (rx)dv(r, ).
Proposition 2.6. (1) For f € L'(dv), we have
(1, A) €, F(F) (s A) = F () 001, \),
where for every (u, ) € R?,
~ +oo .
TN = [ [ 102ialrae P dv(r,2) (2.7

and 0 is the function defined by relation (2.1).

2) For every f € LY(dv) and (r,x) € [0, +00[xR, the function T(, » (f) belongs to L'(dv
(r,z)

and we have

V(s A) € [0, +00[XR, F(T(r0) () (s A) = Jalri)e A F(f)(p, V). (2.8)

(3) The Fourier transform F is a bounded linear operator from L'(dv) into L>(dy) and
that for every f € L'(dv), we have

I loor < 110 29)
(4) For all f,g € L*(dv), we have

F(f*9) =3F()F(9), (2.10)

and

F(f *9) = F(£)F(9)-
(5) For all f,g € L*(dv), we have

F(fg) = F(f) * F(g)- (2.11)

Theorem 2.7 (Inversion formula). Let f € L'(dv) such that F(f) € L'(dv), then for
almost every (r,z) € [0,4+00[xR

f) = [ [ 008 Mg )Y

“+o00 - .
= [ [FDGmialre)e (s, ). (212
0 R

Theorem 2.8 (Plancherel theorem). The Fourier transform F can be extended to an
isometric isomorphism from L?(dv) onto L?(dv). In particular, for every f € L?(dv)

1T ll2ry = 120 = 1T 2,0
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Corollary 2.9. For all functions f and g in L*(dv), we have

/+°°/f7‘m (ryz)dv(r, z) /TJrS" (10, N F(9) (s N dry(pa, A)
N / h F(g)(s,y)dv(s,y). (2.13)

Remark 2.10. Let f,g € L?(dv), the function f * g belongs to L?(dv) if and only if
F(f)F(g) belongs to L?(dvy) and we have

1FHF (N2 = 1f * gll2,0-

We define a basic function for the Riemann-Liouville operator by

o0 .
Do(r,z, s, y,u,v) = / /]arz —ut
X ja(52)e jo(uz)e” tdy (2, t) (2.14)

_ 1 /-Iroo (/ JTr—— dt : )
QQF(()& + 1) 0 R (27‘[‘)5

2a+1dz

X Ja(r2)ja(52)ja(uz)z
Now according to [17], we have
+00 2a+ldu
FO( t Wa L] T/~ 1 1)
| datutyWatur Ve D) =

Also, by the inversion formula for the Fourier-Bessel transform ([9], p. 125), we get

Da(r,x,s,y,u,v) = Wq(r,s,u)d(x —y + v),

Ja(rt)ja(st).

where ¢ is the Dirac delta function.
Hence, from (2.5), we obtain

+o0 +00 2a+1
/ / Do(r,z, s, y,u,v)dv(u,v) = Wa(r,s,u)M
x/é(x—y+v) dvl
R 7'()5
= 1. (2.15)

Lemma 2.11. Let f € 8.(R?). The translation operator J(rz) associated with the Riemann-
Liouville operator can be expressed as

+o00
Ty (F)(5,9) / / flu,v)Dy(r, x, s, y, u,v)dv(u,v). (2.16)
Proof. Let f € 8.(R?). Then by (2.8) and (2.12), we have
Ty (F)(s,9) / / F() (s Nia(rp)e P jo(us)e¥ dv(p, ).
Then, the result follows from (2.7) and (2.14). O
We denote by A, the partial differential operator defined by
o* 2a+10 02 o
Mo = 2 = lat o,
or? T r o or + ox? + Ox?

where /£, is the Bessel operator.
The differential operator A, is continuous from 8.(R?) into itself, and that for every
f € 8¢(R?), we have

V(s,y) € T.F(Aa())(s.y) = ~10(s,9)PT(f) (s, 9)- (2.17)
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Proposition 2.12. Let ¢, € 8.(R?) and let 3 € N. Then
B2 p AT
(M) (@(rw)e(r2)) =D 3 > > ChCiCys 1 Ra,
i=0p=1q¢=0 ¢=0
i a€+q 82,872i+p7q76

Proof. Let ¢,1) € 8.(R?). Then according to ([6], p. 14), there is a constant Ng,, for
p € {0,1,..., 3} depending only on « satisfying

8 . aQﬁ 21 or
(Aa)”(9(r, )¢ 2%;( )Nﬁ,pr 57531 5,5 (P 2)P(r, 7).
Now, by Leibnitz formula we have
B 2 p . 82 B-2i Ha
(M)’ (p(r, 2)p(r,x)) = ;;;}%%NAM 9225 % 5ra (¢(r,z))
or—a
X o (0(r,)).

Again, from Leibnitz formula we get
2 p 2(8—1)

(Aa)?(9(r,2) ZZZ S CLCICS 5 Ry
i=0p=1¢=0 (=0
a€+q 826—2i+p—q—é
Oxtora ((25(7', 1‘)) Orp—a928—2i—L ("4?(7"7 w))

x PP

3. Properties of spaces of type D, ([0, +oo[xR) and D, ([0, +co[xR)

In this section, we define and study the spaces of type Dy, ([0, +00[xR) and D ([0, +00[xR).
For this we begin by the following definitions and notations.

Definition 3.1. A real valued function w on [0, +00[xR is called subadditive function if
it satisfies

V(r,z), (s,y) € [0, +oo[xR, 0 =w(0,0) = lim  w(u,v)
(u,v)—>(0,0)
w(r+s,z+y) <w(r,z)+w(s,y). (3.1)

We denote by My be the set of all continuous real valued functions w on [0, +oo[xR
satisfying the condition (3.1) and

wof(s,y)
———2dv(s
D= [ fpon gl D <

where 6 is the function defined by relation (2.1).
Let w satisfy (3.1). If ¢ € L!(dv) and if o is a real number, we write

~ [ 1m@) s e sy, (32

We denote by D, ([0, +00[xR) the set of all ¢ € L!(dv) such that ¢ has compact support
and ||¢||s,w < co. The elements D,, ([0, +00[xR) will be called test functions.

Definition 3.2. Let ¥ is an open subset of [0, +00[xR, then
Dy (X) = {¢ € Dy([0, +00[xR), supp(¢) C X}.
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Theorem 3.3. Let w € My and ¢ € Dy, ([0, +00[xR). If g € L' (dv) with compact support,
then g % ¢ € Dy ([0, +00[xR) and

16 % gllow < gllLuldllo,w-

Proof. 1t is clear that the function g * ¢ belongs to L!(dv), then from (3.2), (2.10) and
(2.9), we get

16 % gllow = // (6 % ), y) ™"V dry (s, y)
=[] OIS s nle S r (s,
< 17(0) e / [, @)l Vi 5, )

< gllvli@llow-
Our demonstration of Theorem 3.3 is thus completed. ]

Theorem 3.4. Let wi,wy € My satisfies for some real number n and positive C
wa00(s,y) <n+ C(wy 0b(s,y)). (3.3)

Then Dy, ([0, +00[xXR) is dense subset of Dy, ([0, +00[xR).

Proof. Let ¢ € Dy, ([0, +00[xR). Then we have ||¢]/sw, < 0o. Now, by (3.3), we obtain

6l < [ | 15000010 s )
e | / F(8) (s, ) D s, )
Ty

= 7|l couw < oo

This show that ¢ € Dy, ([0, +oo[xR).
Now, let g € Dy, ([0, +00[xR), then by Theorem 3.3, the function gx¢p. € Dy, ([0, +00[xR),
where ¢, is the function defined by

Ve >0, V(r,z) € [0,400[XR, @.(r,z) =
We have
9= el = [ [ 1509 = g 6) (5.l Vtr(s,)
+

-/ /T F(9) (5,5) (1 = F(00) (s, )] Ddy(s.)
= [, B 6011 =) s en)le™ Dy (s.).

Then, by using the Dominated Convergence Theorem, we get
li — g * =0.
tim lg = g% éellow,
Hence Dy, ([0, +00[xR) is dense in D, ([0, +oo[xR). O

We denote by 8 the set of all continuous real valued functions w satisfying the conditions
(3.1) and (3.2) and such that

Va € R,b>0,Y(s,y) € T,wol(s,y) = a+bln(l+10(s,y)|)- (3.4)
Definition 3.5. Let w € § and let ¢ € L'(dv). For every real number o, we define

[6lle = Bllow = sup |F()(s,y)]e w0,

(s,y)eT
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Proposition 3.6. Let w € 8§ and ¢ € L'(dv). Then there exists a positive constant C,,
such that

Vo € R, [[¢lle < Cpllollotps

C, = / / e Po0(0) gy (5, ).
Ty
Proof. Let w € 8 and ¢ € L'(dv). We have

Collolosp = s rff<¢><s,y)\e“*pw“’y”// ey (s,y)
Ty

(s,y)eY

/ / (5, )| (7P woB(5)) o =p(wob(5)) gy (5. )
Ty

// (5,9)]e” @0 dy(s,y) = [|o]o-
Ty

where

Hence,

[6lle < Cpllllotp-
O

Theorem 3.7. Let w € 8§ and let ¢ € Dyy([0, +00[xR). Then, for every multi-indez 3,
the function (Ay)®(¢) belongs to Dy ([0, +00[xR).

Proof. Let w € 8. From (3.4), we have
wob(s,y) > a+bln(l+10(s,y)|).
On other words, we obtain
wob(s,y)—a
e 214 16(s,9)] > [6(s.)]. (3.5)
Now, by (2.17) and (3.5), we get

(80)* () = | /T F((Aa) ()5 e 5.)
= [, @606, 9 e,
) / Jo @), ety s, )

,2Ba // 8 Y |€ +U)(w°9(5’y))d'y(s,y)
Ty

O'+¥,’LU.
This show that (Ay)?(¢) € Dew([0, +00[xR). O

Definition 3.8. Let N = (Ng)ren be an increasing sequence of positive numbers and let
¥ be an open subset of [0, +co[xR. Then CV(X) is the set of all g € C*°(X) such that,
for each compact subset K of 3, there exists a constant C' such that

sup |(Aa)”| < CHFINE,
K
where § is multi-index with |3| =k, k =0,1,....
Theorem 3.9. Let g € D,,(3) and suppose that

c
F @) s ) < e T T 18G9
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where C' and a are positive numbers with

+o00 s 2
pvisy) = 3 (L0 (e, (37)

i Nk
Then g € CN(X).
Proof. Let g € Dy,(X). Then from (2.12), we get

(8agtr.2) = [ [ 7)) (80)" (16 2) ) (5.9)
= // 3"(9)(8721)(%)‘3(9'(1(7"\/82 +y2)e "0 ) dy (s, y)

1P [ F @6 i (s (0)

Now, by using (2.3), (3.6) and (3.7), we obtain

max su A)Pg(r,

< max [ / (s, 10(s, )2y (s, )

~ |Bl=k

C
< f}gla);i//h pn(as, ay)(1 + |0(s,y)|)2’9(379)!26617(3’?4)

CN
émax// k 0(s,y)|*Pdv(s,
max a’f!esy!%(lH@(s,yﬂ)?H uFdv(s,y)

T ( +|98y|)

=Cia™*NF k=0,1,2,....
Hence, g € CN(X). O

4. Convolutions of the generalized distributions

In this section, by using some harmonic analysis related to the Riemann-Liouville oper-
ator, we discuss various properties of convolutions of generalized distributions. We start
by the following definition.

Definition 4.1. Let w € 8 and let ¥ be the open subset of [0, +oo[xR. We denote by
D.,(£) the space of all linear functionals g on D, ().

Theorem 4.2. Let g € D, (%), then

Vo € Do /+o°/ (r,2)(r, 2)du(r, ) = g % $(0,0),
where ¢(r,z) = d(r, —x).
Proof. Let g € D, () and ¢ € Dy, (). Then from (2.6) and (2.16), we get

geolra) = [ ] T @), 0)05, )5,

Z/m/é(s,y)
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Now, by using (2.14), (2.12) and Fubini’s theorem, we obtain

g*o(r,x) = /+OO/ /+m/¢8yja8lt )l du(s,y))

([ ton hgatum)e™ o)) arie™ (s )
0 R

= [ 5600 TNl = ).
Putting (r,2) = (0,0), we get

900,00 = [ [ 50) (0 NF) 1 ~N)
= [ [ 50 VTG 1 N )

Then the desired result follows from the Parseval formula (2.13). O

Definition 4.3. Let g € L}, .(¥), then we identify g with the element in D, () which is
defined by

Vo € Doy /+Oo/gr$ o(r,x)dv(r, ). (4.1)

Definition 4.4. Let w € 8. If g € D, ([0, +00[xR) and ¢ € D, ([0, +-00[xR), then the
convolution g * ¢ is defined by

gx ¢(r,x) = (9(s,9), ¢(r,z,8,9)) = (9, Tra) ())- (4.2)
Theorem 4.5. Let w € 8. If ¢, € Dy ([0, +00[xR) and g € D, ([0, +00[xR), then
(g% ) x =g (¢x).
Proof. Let w € 8§ and ¢,1 € Dy, ([0, +oo[xR). For £ > 0, we form the Riemann sum
fe(r,x) = 2% (Z) Tiesen) (@) (1, 2)(es, €y), (4.3)
5,

where (s,y) denotes the integer co-ordinates. We claim that f.(r, ) converges to ¢x(r, x)
in Dy, ([0, +oo[xR) as e — 0.
Now, by using (2.8), we obtain

T A) = €272 3" es, ey)inca (eps)e™ NV F(9) (1, )
(s:y)

= F(0) (1, M) F e V),
where F.(u,\) = g2a+3 > (s.9) Y(es, ey)jni (cus)e ) is the Riemann sum for the in-
’ 2

tegral defining F (1), which tends to 0 as € — 0.
On the other hand, by (2.2) we have

Ife = ¢*1/1||aw_// ) (5.9) | @D (5.4
-], +OO/ O
N /0+°° /R [F(f2)(5:y) = F()(5,9)F (W) (5, )7V (s, y)
= [T [ 36 @) 5,0) ol P, 9)
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Since F(4)(s,y) — 0 when |(s,y)| — oo, then
fe— o *x1, ase — 0. (4.4)
Now from (4.2), (4.4) and (4.3), we have
g (9% ¥)(rz) = (g(s,y), & V(r,z,5,1) )
= <g(87y>7€hir)lof6(raxa S7y)>

= <g(8, y), im0y Ty ) (0)(r @, 5, 9) (et 6Z)>
(t,2)

_ . 2a+3
= <g(s,y),6h_n>105 (tz)qb(et,sz,r,x,s,y)¢(5t,€z)>
— lim eza+3<g(8,y), > ¢(8t,6z,r,x,s,y)>¢(€t, £z)

—0
: (t,2)

= lim ¢2**3 Z g* ¢(et ez, r,x))(et, e2)

—0
‘ (t,2)

= lim "3 Z T(st,sz) (g * ¢) (T, $)¢(€t7 62)'

—0
° (t,2)

Therefore the desired result follows from (4.3). O
Lemma 4.6. Let w € 8. If ¢ € Dy ([0, +00[xR) and g € D, ([0, +0o[xR), then

F(w(g 0))(s,5) = (9% ) * (0, 0),
where Y,z (1, ) = Ja(r)e= A (r, x).

Proof. By using (2.6) and (2.16), we get

v +oo v
(9% 0)+ U (r0) = [ [ Tea(g0)(s 90 (s, 1) (5.9)
+o0 o +oo
:/O /Rw(u,)\)(sﬁg)(/o /]Rg*¢(u’ ’U)
X Dy (r, z, 8,9, u,v)du(u,v))du(s,y).
Now, from (2.14), (2.12) and Fubini’s theorem, we obtain
y +o0 oo .
(g0 i) = [ [ ([ [ grooiaws)e  dv(u,v))
+oo . )
([ [ B osiatsareants, )
X ja(rz)e”®dy(z,t)
— [ 5 5 (rz)e
= [ [ 35+ 05 W)z Dialr2)e vz, 0)
Putting (r,z) = (0,0), we get
v +oo ~ ~
(940) G 0.0) = [ [ F(g %) 0T Wi (2, (2, 1).

Parseval formula (2.13) and the fact that 1, »)(r, z) = Ja(rp)e= e (r, x), completes the
proof of this lemma. O
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Proposition 4.7. Let ¢ € D, ([0,+00[xR) and g € D, ([0,400[xR). If supp(¢) is
contained in fixed compact set then there exists a constant C such that

(g, &) < Cllollow-
Proof. Let ¢ € Dy ([0, +00[xR) and g € D, ([0, +00[xR). From (4.1), (2.13) and (2.2),

we get
:/O+Oo/Rg(r,x)¢(r,a:)du(r,x)

_ / /T T@ VT ey Y.

Then
< 130008 M) Wm0 1, )
< [ [ 130 NF@) NN 1, )
< sup [F(6) (NI [ [ 17g) (1,0 ey, A)
(mAN)ET Ty
where €= [ [ 17(g) (0 ) e~y (0 ), O
.

Lemma 4.8. Let ¢ and 1) in Dy, ([0, +00[xR). Then
(1)

pxtp=1vx¢.
(2) for every p € N, we have

(80)7(@) x 9 = 6 * (ha) (1)) = (Aa)” (6% ). (45)
Definition 4.9. Let 8. be the set of all w € 8 such that w(r,z) = f(|(r,x)|), where f is

an increasing continuous concave function on [0, +-o00[.

Definition 4.10. Let w € 8. and 8, ([0, +oo[xR) is defined to be the set of all functions
¢ € L'(dv) with the property that ¢, F(¢) € C([0,4+00[xR) such that, for each § € N
and for each non-negative number o, we have

Poo(@)=  sup  e™T|(A) b(r,2)| < o0, (4.6)
(r,x)€[0,400[ xR

and

o (¢) = sup 7 |(AQ)?F(6) (s, y)| < 0. (4.7)
(s,y)€[0,400[xR

Theorem 4.11. Let w € 8, then 8,([0,+oo[xR) is topological algebra under point-wise
multiplication.

Proof. Let ¢,1 € 8,([0,+00[xR). Then by (2.18), we have

B 20 p 28—
(Aa)? (o(r,2)y(r2) =D 33 Y cgcgcg(ﬁ_i)z%,prp*ﬂ

i=0p=1¢=0 (=0
otta §2B—2i+p—q—L
X Satara ) g (Y (1, @)
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Again, by (4.6), we get

Poo(h) = sup owlra)
(nx)e[O,—i—oo[xR

ZZZ Z Cﬁcqce Nﬁprp—ﬁ

i=0p=1qg=0 ¢=0

a€+q 825—2i+p—q—€
x W@(m)) o (¥(r,))|
2 p 2(B—i

< sup ZZZ > 060q05<ﬁ Rap
(r;2)€[0,+00[XR j— p=1 g=0 ¢=0

aQﬁ—Qz‘—l—p—q—é
8T'p7q8$2ﬁ72i7£ (1/}(717 .’E)) |) k 6 N

ocw(r,z) az+q o'+2k:w(,r,’x)‘

X e 2 |W(¢(T,a}))|e 2

( l) ¢ ocw(r,z) 664’(]
ZZZ > ChCECo_yNayp sup e 2 |W(¢’(T,$))|

1=0 p= 1(1 0 ¢=0 (Tyx)€[0,+OO[XR
2ﬁ—2i+p—q—f
ﬂw(rm) 0
X sup e 2 )| — —— (Y (r,x))|.
(@) €[0,4-00[xR Orp—ay28—2i—¢ )

Also, using (4.6), we get

2i p 2(B—i

Pso(dY) < ZZZ Z Cﬂcqcé(ﬁ 15,

i=0p=1qg=0 ¢=0

X ?Z+q,%(¢)?25_2i+p_q_g7%2k(1/}) < 0.

This show that Pg (1) < co. Next, we have to prove that Iz ,(¢1) < oco.
From (4.7), (2.11) and (4.5), we have

Moo(op) = sup ™ 0D|ASF () (r, )|
(r,x)€[0,+00[xR

= s AL (F(0) « T(W)(r )
(r,x)€[0,+00[xR

= s ODF(Q) « AT W) ).
(r,x)€[0,+00[xR
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On the other hand, by (2.14), we obtain

F(6) * AT (W) ()]
ol h [ T .0)T 0 (ALT (W) s, (s, )
= ’/+OO/3" (5,9)
/+°O/ (u, 0)AZDa(r. 2, 5., u, ) (o, ) ) d(s, )|
—!/m/? )(s.9)( /+O°/9 ¥)(u.v)

00 .
xAﬁ/ /jarz TG (52)eV o (uz)

< e wtdy(z’t))dy(u, U))dV(S,y)‘

| [T [soea([ T [ 5w
([ [ a2 0 a5 o (02)

% e—ivtdy(z t))dy( ))dV(S y)‘

]/W/? )59 ( /m/&" (u, v)

X (Aq )(u 0 Da (r,z,s,y,u,v)dv(u, v))du(s y)‘
Now integrating by parts, we get

F(0) % ALF(W)(r, )|

| [T L@ [ [0 g, Fwnw)

X D (1, 2, 5,9, , v)d(,v) ) du(s, y)

<[ [JF@sal| ([ [ taf,Teon

X Do (r, 2, 8,y,u,v)dv(u, ?J)DdV(S Y)
< sup

(u,v)€[0,+oo[><]R (u U) u v ’/ / ’9: S y

X ’(/O—i_oo/R‘Da(r,x,s,y,u,v)du(u, v))}dv(s,y).

1423
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Therefore, combining (2.15) and (4.7), we obtain

g q(¢p) = sup e”w(T =)
(r,z)€[0,+00[X

/ /e@w(s Y) g—ow Sy)‘f}'(gb)(s,y)‘dl/(s’y)

<Tpo () sup  |F(B)(s,y)|et V)
(s,y)€[0,+00[ xR

+oo
/ /e ow(s) dy (s, )
+o0o
=Moo (o(@) [ [ et n(sy) < o

Which evidently completes the proof of the theorem. O

(Aa)?T () (r, )|

Theorem 4.12. Let w € 8., then 8,,(]0, +00[xR) is topological algebra under convolution.

Proof. The results can be proved in the same way of Theorem 4.11. O
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