
Acta Infologica
acin 2024, 8 (2), 133–156

DOI: 10.26650/acin.1447456

Research Article

Turkish Lira Banknote Classification using Transfer Learning and Deep
Learning

Mirsat Yeşiltepe1 , Harun Elkıran2 , Jawad Rasheed2

1Yıldız Technical University, Department of
Mathematical Engineering, İstanbul, Türkiye
2İstanbul Sabahattin Zaim University, Department of
Computer Engineering, İstanbul, Türkiye

Corresponding author : Mirsat Yeşiltepe
E-mail : mirsaty@yildiz.edu.tr

Submitted : 06.03.2024
Revision Requested : 26.08.2024
Last Revision Received : 17.10.2024
Accepted : 18.10.2024
Published Online : 03.12 .2024

This article is licensed un-
der a Creative Commons Attribution-
NonCommercial 4.0 International Li-
cense (CC BY-NC 4.0)

ABSTRACT
With the increasing exchange of foreign currencies due to globalization, there is a
need for systems that can recognize and validate multiple currencies in real time.
Such systems facilitate smooth international transactions and support the finance
sector in dealing with diverse currencies. This study focuses on classifying Turkish
banknotes using deep learning models. The dataset comprises 6901 images of six
different denominations (5 TL, 10 TL, 20 TL, 50 TL, 100 TL, and 200 TL) under
various conditions, such as flat, angled, curved, and bent. The proposed model imple-
ments pre-trained models, including VGG16, VGG19, DenseNet121, DenseNet169,
DenseNet201, MobileNet, and MobileNetV2, to classify the images. Different image
sizes (50x50, 100x100, 150x150, and 200x200) and optimizers (SGD, RMSprop,
Adam, Adamax, etc.) were tested to determine the most effective combinations.
The best result was achieved with DenseNet201 with an image size of 200 and the
SGD optimizer, achieving an accuracy of 98.84% in 12 epochs. Smaller image sizes
(50x50) resulted in reduced performance for all models. In addition, models such
as DenseNet169 and DenseNet121 also demonstrated high performance; however,
MobileNetV2 struggled with smaller images.

Keywords: DenseNet201, Optimizer, Banknote, Convolution, Accuracy.

133

http://orcid.org/0000-0003-4433-5606
http://orcid.org/0000-0002-5834-6210
http://orcid.org/0000-0003-3761-1641

Acta Infologica

1. INTRODUCTION
Banknote classification systems are increasingly used in applications such as self-service kiosks, vending machines,

and public transportation systems. With the increasing exchange of foreign currencies due to globalization, the rise in
counterfeit banknotes poses a significant threat to financial systems worldwide. Moreover, many developing countries
have limited access to reliable financial transaction infrastructure. Automated banknote classification systems, especially
when designed to work on mobile platforms, provide affordable and accessible solutions for these regions and promote
financial inclusion.

The classification and detection of banknotes are essential tasks in the financial and retail sectors, particularly as
global currency circulation and automated cash-handling processes increase in complexity. With the increasing threat
of counterfeit banknotes infiltrating markets, developing advanced systems to accurately classify and authenticate
currency has become a pressing need. Traditionally, manual banknote inspection has been used; however, it is prone to
human error and is inefficient in environments that demand high-speed processing. Automated banknote classification
driven by recent advances in artificial intelligence (AI) and machine learning offers robust solutions for real-time and
large-scale cash-handling applications.

Deep learning, a subset of machine learning, has gained attention as a powerful tool for image classification tasks,
including banknote recognition. Convolutional Neural Networks (CNNs), in particular, have proven effective in learning
complex features from banknote images, such as intricate patterns, watermarks, and holograms, that distinguish real
currency from counterfeit. The ability of deep learning models to automatically extract hierarchical features from raw
data makes them well-suited for handling the variations and challenges in currency classification. Transfer learning,
where pre-trained models are fine-tuned for banknote classification tasks, further enhances system performance,
particularly when limited datasets are available.

The need for accurate and efficient banknote classification is underscored by its diverse applications in automated
teller machines (ATMs), vending machines, and cashier systems, as well as in global foreign exchange operations.
Furthermore, counterfeit detection is of paramount importance because the proliferation of fake currency can disrupt
economies and undermine trust in financial systems. By leveraging deep learning techniques, automated systems can
not only identify legitimate currency and provide a defense against fraud by providing real-time analysis in high-volume
environments, such as banks, retail stores, and transportation hubs.

The classification of banknotes using machine learning and deep learning techniques has attracted considerable
attention in recent years due to the increasing need for automated systems capable of distinguishing between real and
counterfeit notes. Early research in this area primarily relied on traditional machine learning techniques, such as support
vector machines (SVMs) and decision trees, which manually extracted features like edge detection, color histograms,
and texture analysis for classification tasks. Although these methods provided moderate success, their reliance on
manual feature engineering limited their scalability and accuracy when confronted with the complex patterns present in
modern currency designs. These limitations have paved the way for more advanced techniques that leverage the power
of deep learning models, particularly CNNs, to address the shortcomings of earlier approaches.

One of the key breakthroughs in this field was the application of neural networks to banknote recognition, as introduced
by (Baek et al., 2018). Their study demonstrated that CNNs can effectively classify banknotes by automatically learning
hierarchical features directly from raw images without requiring manual feature extraction. This study demonstrated
that deep learning models can outperform traditional methods in terms of both accuracy and efficiency. The authors
employed a multilayer CNN architecture that captured spatial hierarchies, making it highly suitable for identifying
intricate patterns on banknotes, such as watermarks, holographic images, and fine textures. This approach provides a
foundation for the subsequent adoption of deep learning models in the field of banknote classification and counterfeit
detection.

Subsequently, other researchers explored the use of transfer learning to enhance the performance of banknote
classification systems, particularly when limited data were available. (Prakash et al., 2023) introduced a deep learning
approach combining CNNs for image analysis and recurrent neural networks (RNNs) for security feature assessment
in counterfeit banknote detection. Testing on a dataset of real and fake notes, the ensemble model shows superior
accuracy of 98.36% and precision of 96.8% compared to traditional methods. The transfer learning approach enables
the system to generalize well to unseen data, thereby making it more robust and scalable across different currencies
and denominations

In addition, multispectral imaging combined with deep learning has been explored as a way to further improve
counterfeit detection. (Wang et al., 2022) presented an automated approach using optical coherence tomography (OCT)
and machine learning to classify counterfeit banknotes by analyzing internal features. By training classifiers on OCT

134

Yeşiltepe, M., et al., Turkish Lira Banknote Classification using Transfer Learning and Deep Learning

image-derived features, the study achieved high accuracy in detecting and categorizing counterfeits, with the support
vector machine model reaching a sensitivity of 96.55% and specificity of 98.85%. Their research underscored the
potential of integrating multispectral data with CNNs, expanding the scope of banknote classification systems to better
handle sophisticated counterfeiting techniques that rely on non-visible features

In addition to CNNs and multispectral imaging, other studies have focused on lightweight architectures for real-time
banknote classification in mobile and embedded systems. (Linkon et al., 2020) evaluated lightweight CNN models
with transfer learning for Bangladeshi banknote classification using ResNet152v2, MobileNet, and NASNetMobile on
two datasets with 8000 and 1970 images, respectively. The experiment shows that MobileNet achieved 98.88% on the
larger dataset, NASNetMobile reached 100% on the smaller dataset, and MobileNet achieved 97.77% on the combined
dataset. This development has broadened the applicability of automated banknote classification, making it accessible
in areas where high-end hardware is unavailable.

Several hybrid approaches that combine image processing techniques with machine learning models have also been
proposed for counterfeit detection. (Pachón, Ballesteros, and Renza, 2023) presented a pruning technique for sequential
CNNs that reshaped network layers and was tested on models including AlexNet, VGG11, and VGG16, using a dataset
of Colombian peso banknotes. The pruned models achieved up to a 75% reduction in parameters and computational
load (FLOPs) with minimal accuracy loss, while models with higher pruning rates (up to 95%) showed more significant
accuracy drops, especially for AlexNet and VGG16. Although more computationally intensive, these hybrid approaches
show promise in handling difficult cases where counterfeiters use advanced printing techniques.

Similarly, much research has been conducted on the classification and recognition of banknotes from different
countries. Authors in (Galeana Pérez and Bayro Corrochano, 2018) proposed a scheme to classify Mexican and Euro
banknotes. In contrast, some work on Indian banknotes has also been done, such as (Mittal and Mittal, 2018) proposed
a CNN-based deep learning model to classify Indian banknotes according to various states and positions. Their work
achieved an accuracy of 0.966. In (Veeramsetty, Singal, and Badal, 2020), the authors tested various transfer learning
models with several parameters to achieve an accuracy of 84.4

Research into automated banknote classification helps develop more sophisticated detection techniques that are vital
for preventing fraud, maintaining currency integrity, and ensuring trust in financial systems. Researchers worldwide
have implemented various automated banknote recognition and classification systems that reduce the need for manual
intervention in industries that handle cash, such as retail, banking, and public transportation. Thus, such an automatic
system can lower operational costs, streamlines workflows, and ensure high-speed processing of cash transactions.
However, few studies on Turkish banknote classification have been reported. For example, Researchers in (Baykal et al.,
2018) exploited a dataset, created using images of banknotes used in Turkey obtained under different conditions, and
the relationship between classes was examined in terms of color and features. They used a pretrained DenseNet121 and
other models to classify Turkish banknotes to achieve an accuracy of 93.15%. In another study (Khashman, Ahmed,
and Mammadli, 2019), the authors focused on classifying countries based on banknotes used in different countries,
including those used in Turkey. Their aim was to classify countries, not banknotes. The banknotes in the dataset’s
images are flat; thus, different shapes of banknotes were not tested. Similar studies like (Khashman and Sekeroglu,
2005) and (Khashman, Sekeroglu, and Dimililer, 2005) used Turkish notes to classify deformation rates of Turkish
and Euro banknotes using artificial neural networks. However, the banknotes used in these two studies are no longer
used in Turkey. In (İyikesici and Erçelebi, 2023), researchers exploited deep learning techniques to identify and detect
counterfeit Turkish banknotes. However, they considered limited classes, including 5- and 10-unit Turkish banknotes.

These studies provide a comprehensive overview of the advances in banknote classification using deep learning and
related techniques. The transition from traditional machine learning models to deep learning, along with innovations
in transfer learning, multispectral imaging, and lightweight architectures, has significantly enhanced the accuracy and
scalability of banknote classification systems. These studies collectively emphasize the importance of continuously
improving automated systems to handle the evolving complexities of currency fraud and classification, thereby ensuring
financial security and operational efficiency across industries.

Existing studies on banknote classification and counterfeit detection using deep learning have several shortcomings.
First, less work is required to classify new Turkish banknotes. Second, most research does not focus on all units of
banknotes (such as banknotes of 5 Turkish Lira (TL) and 10 TL), limiting their scalability to multi-unit scenarios,
which are crucial in global financial systems. Third, prior studies considered a limited amount of data due to data
availability and scarcity. Fourth, although some efforts have been made to develop lightweight models for mobile and
embedded platforms, the real-time performance of such models, especially in low-resource environments, remains
underexplored. In addition, counterfeit detection techniques primarily focus on visible features, often failing to detect
more sophisticated counterfeits that use non-visible features such as ultraviolet ink and watermarks. Moreover, there are

135

Acta Infologica

limited emphasis on making these deep learning models interpretable and explainable, which is essential for regulatory
compliance and trust in financial applications. These gaps suggest further research to address the complexity and
scalability of banknote classification systems.

This study explores the application of deep learning models, such as CNNs and transfer learning, to develop a
robust system for banknote classification. This study investigates various architectures and optimization techniques to
enhance the accuracy and efficiency of banknote recognition systems. Ultimately, the goal is to contribute to advancing
secure, scalable, and automated solutions that can be deployed across various industries to ensure operational efficiency,
financial security, and improved customer experiences when handling physical currency. This study makes the following
contributions:

• Merges two existing datasets to create a comprehensive dataset of Turkish banknotes, totaling 6901 images. These
images represent banknotes in various conditions (flat, angled, curved) across six denominations (5 TL, 10 TL,
20 TL, 50 TL, 100 TL, and 200 TL), providing diversity in angles, sides, and shapes.

• We tested various pretrained deep learning models for banknote classification, including VGG16, VGG19,
DenseNet121, DenseNet169, DenseNet201, MobileNet, and MobileNetV2.

• Examined the impact of different optimizers (SGD, RMSprop, Adam, etc.) and image sizes (50×50, 100×100,
150×150, and 200×200) to identify the most efficient combinations for accurate classification.

• In this study, the performance of different deep learning models in classifying Turkish banknotes is analyzed, and
the most effective model is determined.

• By analyzing the confusion patterns between different banknote values, the learning process of the model and
potential improvement areas can be evaluated.

• The training efficiency and overlearning problem will be addressed, and the necessary measures will be determined
to optimize the performance of the model.

• Provides detailed analysis of how different combinations of model architectures, optimizers, and image sizes
influence classification accuracy. It was found that no single parameter alone could guarantee high efficiency, and
testing different parameter combinations was crucial for high performance.

The remainder of this paper is divided as follows: Section 2 describes the dataset and outlines the methods and
models. Section 3 presents the experimental results, and Section 4 analyzes the results. Section 5 concludes the study.

2. DATA AND METHODOLOGY
With the increasing exchange of foreign currencies due to globalization, systems that can recognize multiple denom-

inations of currency in real time are required. Such systems facilitate smooth international transactions and support
the finance sector in dealing with diverse currencies. Thus, this study exploited various state-of-the-art deep learning
models to classify Turkish banknotes. Figure 1 shows the proposed scheme in this study. The information from two
distinct data sources is combined to create the dataset. In addition to separating the data into training and test sets,
the system performs preprocessing tasks, such as resizing images and other similar tasks. Then, it trains seven techno-
logically advanced models, including VGG16, VGG19, DenseNet121, DenseNet169, DenseNet201, MobileNet, and
MobileNetV2, in a separate manner. The trained models were then validated with a test set to determine whether the
proposed scheme is valid.

Figure 1. The workflow of the proposed system. The dataset was created by merging data from two different sources. The system performs pre-processing, such
as image resizing, etc., and splits the data into training and test sets. Then, seven different customized state-of-the-art models are trained separately. The trained
models were then tested on a test set to evaluate the validity of the proposed scheme.

136

Yeşiltepe, M., et al., Turkish Lira Banknote Classification using Transfer Learning and Deep Learning

2.1. Dataset
The dataset used in this study was created by merging two existing datasets from previous studies, namely (Baltaci,

2020) and (Sahin, 2018). resulting in a comprehensive collection of Turkish banknotes. The final dataset comprised
a total of 6,901 images representing six Turkish Lira denominations: 5, 10, 20, 50, 100, and 200 TL. Each class is
represented by a substantial number of images, providing a well-balanced dataset for training and testing deep learning
models. The images feature banknotes under various conditions, including flat, angled, curved, and bent conditions,
providing a challenging and realistic dataset that simulates real-world conditions in banknote handling. Figure 2 shows
sample images of banknotes under various conditions.

Figure 2. The sample banknote images with various conditions (angle, curved, bent, and flat) were taken in different brightness environments. Turkish Banknotes
are represented by 6 classes: 5, 10, 20, 50, 100, and 200 TL.

The diversity of the dataset is a significant strength because it includes images captured from different sides, angles,
and orientations of the banknotes. This ensures that deep learning models trained on these data can generalize well to
banknotes that may be presented under non-ideal conditions. The variations in the dataset—such as bends or curved
notes—mimic how banknotes appear in everyday transactions, which is critical for real-world applicability. In addition,
the representation of multiple denominations in the dataset allows for classification across a range of values, ensuring
that models can distinguish between banknotes of different monetary values.

Moreover, the proposed dataset provides a valuable contribution to the field of currency classification, especially
with the inclusion of challenging conditions such as different angles and bent banknotes. Such features increase the
dataset’s complexity, which makes it ideal for training deep learning models to be robust to variations in banknote
presentation. This dataset could be useful for not only this particular study but also future research in the areas of
currency recognition, counterfeit detection, and financial automation systems, where variability in banknote appearance
poses a critical challenge.

2.2. Methodology
VGG16: The VGG16 is a deep convolutional neural network model comprising 16 weight layers (13 convolutional

and 3 fully connected). The architecture follows a simple, uniform design in which convolutional layers are stacked
with small 3x3 kernels and ReLU activation functions. Max pooling is applied after groups of convolutional layers to
reduce the spatial dimensions. The network ends with three fully-connected layers and a softmax output. Despite its
simplicity, VGG16 has high computational and memory costs due to its numerous parameters.

VGG19: VGG19 is an extension of VGG16 with 19 weight layers (16 convolutional and 3 fully connected). Like
VGG16, it uses small 3×3 filters and ReLU activations in each layer but contains more convolutional layers, increasing
the depth. The additional layers improve the capacity to learn complex features but further increase the computational
requirements. VGG19 retains the same design philosophy, with max pooling applied after blocks of convolutions and
fully connected layers at the end.

DenseNet121: DenseNet121 is a densely connected convolutional network in which each layer is directly connected
to each other in a feedforward manner. Instead of learning redundant feature maps, DenseNet concatenates feature
maps from all preceding layers, which improves network efficiency and allows for better feature reuse. The architecture
consists of dense blocks separated by transition layers that downslope feature maps using convolution and pooling.
DenseNet121 has 121 layers, with relatively fewer parameters than traditional networks like VGG, making it more
computationally efficient.

DenseNet169: DenseNet169 follows the same architectural design as DenseNet121 but has 169 layers, thereby
offering deeper feature extraction. The dense connectivity pattern helps mitigate the vanishing gradient problem; thus,
deep networks can be trained more easily. The increased depth allows DenseNet169 to capture more complex features
while maintaining higher efficiency in terms of parameter count and computational cost compared to similarly deep
networks.

137

Acta Infologica

DenseNet201: DenseNet201 further extends the DenseNet architecture to 201 layers, providing deeper feature learning
capabilities. Like its counterparts, DenseNet201 employs dense connections and transition layers between dense blocks.
The deeper architecture allows for more complex hierarchical feature extraction, making it suitable for tasks requiring
fine-grained classification, although there is a trade-off in increased computational load compared to smaller DenseNet
models.

MobileNet: MobileNet is designed for mobile and embedded applications, focusing on efficiency and speed. This
method uses depthwise separable convolutions, where a standard convolution is factorized into a depthwise convolution
followed by a pointwise convolution, drastically reducing the number of parameters and computational cost. The
proposed structure allows MobileNet to maintain high accuracy while being computationally lightweight, which makes
it ideal for low-power devices and real-time applications.

MobileNetV2: MobileNetV2 improves upon MobileNet by introducing inverted residuals and linear bottlenecks. The
inverted residuals use a shortcut connection between thin bottleneck layers. In contrast, the linear bottleneck layer ensures
that the activation function does not destroy significant information during the bottleneck stage. MobileNetV2 retains
the use of depthwise separable convolutions for computational efficiency; however, it improves feature representation,
especially for complex tasks, by reducing information loss via the linear bottleneck structure. This resulted in better
performance on resource-limited devices.

3. WORKING ENVIRONMENT AND EXPERIMENTAL RESULTS
The working environment for this study was implemented using Python as the primary programing language, and

the Keras library was employed for building and training the deep learning models. Keras, a high-level API, was
selected for its ease of use and integration with TensorFlow, making it ideal for conducting experiments with various
deep learning models. The hardware setup included a system with GPU acceleration to facilitate faster model training
and testing, allowing for efficient experimentation across multiple models, optimizers, and image sizes (Keras Team,
2023a). The optimization functions are SGD, RMSprop, Adam, Adadelta, Adagrad, Adamax, Nadam, and Ftrl (Keras
Team 2023b)(Filter 2022). The development and testing were conducted in a controlled environment to ensure the
reproducibility of results and to measure each model’s performance accurately.

The dataset used in the experiments was created by merging two existing datasets, which resulted in 6901 images
of Turkish banknotes. These images were classified into six categories: 5, 10, 20, 50, 100, and 200 TL. The dataset
was highly diverse and contained images of banknotes in various orientations and conditions, such as flat, angled,
curved, and bent. The images were preprocessed by resizing them to four different sizes (50×50, 100×100, 150×150,
and 200×200), which allowed the models to be trained and tested on varying image dimensions. The dataset was
split into training and testing sets with ratios of 80% and 20%, respectively. Table 1 presents the dataset details. This
preprocessing step ensured that the models could handle different image resolutions and identified the optimal size for
maximum classification accuracy.

Table 1. Dataset description, number of samples in dataset, and train-test split for each class label in dataset

 7

MobileNet: MobileNet is designed for mobile and embedded applications, focusing on efficiency and speed. This
method uses depthwise separable convolutions, where a standard convolution is factorized into a depthwise
convolution followed by a pointwise convolution, drastically reducing the number of parameters and
computational cost. The proposed structure allows MobileNet to maintain high accuracy while being
computationally lightweight, which makes it ideal for low-power devices and real-time applications.

MobileNetV2: MobileNetV2 improves upon MobileNet by introducing inverted residuals and linear bottlenecks.
The inverted residuals use a shortcut connection between thin bottleneck layers. In contrast, the linear
bottleneck layer ensures that the activation function does not destroy significant information during the
bottleneck stage. MobileNetV2 retains the use of depthwise separable convolutions for computational
efficiency; however, it improves feature representation, especially for complex tasks, by reducing information
loss via the linear bottleneck structure. This resulted in better performance on resource-limited devices.

3. WORKING ENVIRONMENT AND EXPERIMENTAL RESULTS

The working environment for this study was implemented using Python as the primary programing language,
and the Keras library was employed for building and training the deep learning models. Keras, a high-level API,
was selected for its ease of use and integration with TensorFlow, making it ideal for conducting experiments
with various deep learning models. The hardware setup included a system with GPU acceleration to facilitate
faster model training and testing, allowing for efficient experimentation across multiple models, optimizers, and
image sizes (Keras Team, 2023a). The optimization functions are SGD, RMSprop, Adam, Adadelta, Adagrad,
Adamax, Nadam, and Ftrl (Keras Team 2023b)(Filter 2022). The development and testing were conducted in a
controlled environment to ensure the reproducibility of results and to measure each model’s performance
accurately.

The dataset used in the experiments was created by merging two existing datasets, which resulted in 6901
images of Turkish banknotes. These images were classified into six categories: 5, 10, 20, 50, 100, and 200 TL. The
dataset was highly diverse and contained images of banknotes in various orientations and conditions, such as
flat, angled, curved, and bent. The images were preprocessed by resizing them to four different sizes (50×50,
100×100, 150×150, and 200×200), which allowed the models to be trained and tested on varying image
dimensions. The dataset was split into training and testing sets with ratios of 80% and 20%, respectively. Table
1 presents the dataset details. This preprocessing step ensured that the models could handle different image
resolutions and identified the optimal size for maximum classification accuracy.

Table 1. Dataset description, number of samples in dataset, and train-test split for each class label in dataset

Class Train set Test set Total
5 TL 920 230 1150
10 TL 920 230 1150
20 TL 920 231 1151
50 TL 920 230 1150
100 TL 920 230 1150
200 TL 920 230 1150

Total 6901

The experiments used several pretrained deep learning models, including VGG16, VGG19, DenseNet121,
DenseNet169, DenseNet201, MobileNet, and MobileNetV2. Each model was fine-tuned using various
optimizers, such as SGD, RMSprop, Adam, Adadelta, Adagrad, Adamax, Nadam, and Ftrl. These optimizers were
applied with their default parameter values to assess their impact on model performance. Additionally, different
image sizes were tested to determine the optimal resolution for efficient model training. The classification task
involved training CNNs with a combination of predefined and custom layers, including two hidden layers of 1024
neurons with ReLU activation and a final output layer with a SoftMax activation function that matches the
number of banknote classes.

The experiments used several pretrained deep learning models, including VGG16, VGG19, DenseNet121, DenseNet169,
DenseNet201, MobileNet, and MobileNetV2. Each model was fine-tuned using various optimizers, such as SGD, RM-
Sprop, Adam, Adadelta, Adagrad, Adamax, Nadam, and Ftrl. These optimizers were applied with their default parameter
values to assess their impact on model performance. Additionally, different image sizes were tested to determine the
optimal resolution for efficient model training. The classification task involved training CNNs with a combination of
predefined and custom layers, including two hidden layers of 1024 neurons with ReLU activation and a final output
layer with a SoftMax activation function that matches the number of banknote classes.

138

Yeşiltepe, M., et al., Turkish Lira Banknote Classification using Transfer Learning and Deep Learning

The training process was conducted for 100 epochs with an early stopping mechanism based on validation accuracy
to avoid overfitting. If validation accuracy did not improve after a certain number of epochs, training was stopped to
obtain the best model. The validation accuracy served as a control point, and only the best performing model was
retained in each experiment. Various metrics can be used to measure the success of the classification process. This
study considered accuracy as an evaluation measure, which is the proportion of the total data that is in the correct
class. It is the most widely used metric, especially when the dataset is balanced (Foody, 2023). In addition, this study
measured the confusion matrix against each model exploited. Accuracy was the primary evaluation metric, and it was
monitored throughout the training process. Accuracy and loss values for both the training and validation datasets were
plotted in each experiment to assess the performance of the models at each epoch.

DenseNet201 achieved the highest accuracy of 98.84% with an image size of 200×200 and the SGD optimizer,
which was completed in 12 epochs. The reason for keeping the epoch value at 12 is that overlearning occurred at
this value. The model’s efficiency increased significantly after the third epoch and was maintained after the eighth
epoch. The performance of DenseNet201 decreased slightly with smaller image sizes; however, it still performed well
with an accuracy of 97.54% for both 150×150 and 100×100 image sizes using the Adamax optimizer. However, for
the smallest image size of 50, the performance decreased to 91.82% with the Adam optimizer, indicating that the
model benefits from larger image inputs that can extract more detailed features. Table 2 lists the performances of the
DenseNet201 model when trained on varying image sizes and optimizers. Figure 3 shows the accuracy and loss curves
of the DenseNet201 model, and Figure 4 shows the confusion matrix for each.

Table 2. Accuracy performance analysis of DenseNet201 trained on varying input sizes and optimizers

.

 8

The training process was conducted for 100 epochs with an early stopping mechanism based on validation
accuracy to avoid overfitting. If validation accuracy did not improve after a certain number of epochs, training
was stopped to obtain the best model. The validation accuracy served as a control point, and only the best
performing model was retained in each experiment. Various metrics can be used to measure the success of the
classification process. This study considered accuracy as an evaluation measure, which is the proportion of the
total data that is in the correct class. It is the most widely used metric, especially when the dataset is balanced
(Foody, 2023). In addition, this study measured the confusion matrix against each model exploited. Accuracy
was the primary evaluation metric, and it was monitored throughout the training process. Accuracy and loss
values for both the training and validation datasets were plotted in each experiment to assess the performance
of the models at each epoch.

DenseNet201 achieved the highest accuracy of 98.84% with an image size of 200×200 and the SGD optimizer,
which was completed in 12 epochs. The reason for keeping the epoch value at 12 is that overlearning occurred
at this value. The model's efficiency increased significantly after the third epoch and was maintained after the
eighth epoch. The performance of DenseNet201 decreased slightly with smaller image sizes; however, it still
performed well with an accuracy of 97.54% for both 150×150 and 100×100 image sizes using the Adamax
optimizer. However, for the smallest image size of 50, the performance decreased to 91.82% with the Adam
optimizer, indicating that the model benefits from larger image inputs that can extract more detailed features.
Table 2 lists the performances of the DenseNet201 model when trained on varying image sizes and optimizers.
Figure 3 shows the accuracy and loss curves of the DenseNet201 model, and Figure 4 shows the confusion matrix
for each.

Table 2. Accuracy performance analysis of DenseNet201 trained on varying input sizes and optimizers

Image Size Optimizer Accuracy Rate Epoch number

200×200 SGD 0.9884 12
150×150 Adamax 0.9754 16
100×100 Adamax 0.9754 14
50×50 Adam 0.9182 17

(a)

DenseNet169 also performed well, with its best accuracy of 98.62%, which was achieved using an image size
of 200×200 and the SGD optimizer, completing in 17 epochs. With a slightly smaller image size of 150×150, it
maintained strong performance, achieving 97.39% accuracy with the RMSprop optimizer. Like DenseNet201, its
accuracy decreased with smaller image sizes, achieving 97.47% at 100×100 and 90.15% at 50×50, indicating that
DenseNet169, like its deeper counterpart, benefits from larger images and performs better with optimizers like SGD
and RMSprop. Table 3 lists the performances of the DenseNet169 model when trained on varying image sizes and
optimizers. Figure 5 shows the accuracy and loss curves of the DenseNet169 model, and Figure 6 shows the confusion
matrix for each.

Table 3. Accuracy performance analysis of DenseNet169 trained on varying input sizes and optimizers

 11

Figure 4. The confusion matrix of DenseNet201 when trained on images of various sizes with several
optimizers. Trained with (a) image size of 200×200 and SGD optimizer, (b) image size of 150×150 and Adamax
optimizer, (c) image size of 100×100 and Adamax optimizer, (d) image size of 50×50 and Adam optimizer.

DenseNet169 also performed well, with its best accuracy of 98.62%, which was achieved using an image size of
200×200 and the SGD optimizer, completing in 17 epochs. With a slightly smaller image size of 150×150, it
maintained strong performance, achieving 97.39% accuracy with the RMSprop optimizer. Like DenseNet201, its
accuracy decreased with smaller image sizes, achieving 97.47% at 100×100 and 90.15% at 50×50, indicating that
DenseNet169, like its deeper counterpart, benefits from larger images and performs better with optimizers like
SGD and RMSprop. Table 3 lists the performances of the DenseNet169 model when trained on varying image
sizes and optimizers. Figure 5 shows the accuracy and loss curves of the DenseNet169 model, and Figure 6 shows
the confusion matrix for each.

Table 3. Accuracy performance analysis of DenseNet169 trained on varying input sizes and optimizers

Image Size Optimizer Accuracy Rate Epoch number

200×200 SGD 0.9862 17
150×150 RMSprop 0.9739 19
100×100 Adamax 0.9747 11
50×50 RMSprop 0.9015 20

(a)

DenseNet121 reached its highest accuracy of 97.68% with an image size of 150×150 and the Adamax optimizer,
which completed in 11 epochs. For an image size of 200×200, it performed slightly lower with 97.38% using the
RMSprop optimizer; however, this performance was still strong. For smaller image sizes of 100×100 and 50×50,
the model’s accuracy decreased to 96.31% and 90.30%, respectively, confirming that, like other DenseNet models,
DenseNet121 performs better with larger image sizes but can still maintain decent performance on mid-sized images.
Table 4 lists the performances of the DenseNet121 model when trained on varying image sizes and optimizers. Figure
7 shows the accuracy and loss curves of the DenseNet121 model, and Figure 8 shows the confusion matrix for each.

139

Acta Infologica

Figure 3. Accuracy and loss curves of DenseNet201 when trained over varying image sizes with several optimizers. Trained with (a) image size of 200×200 and
SGD optimizer, (b) image size of 150×150 and Adamax optimizer, (c) image size of 100×100 and Adamax optimizer, (d) image size of 50×50 and Adam optimizer.

140

Yeşiltepe, M., et al., Turkish Lira Banknote Classification using Transfer Learning and Deep Learning

Figure 4. The confusion matrix of DenseNet201 when trained on images of various sizes with several optimizers. Trained with (a) image size of 200×200 and
SGD optimizer, (b) image size of 150×150 and Adamax optimizer, (c) image size of 100×100 and Adamax optimizer, (d) image size of 50×50 and Adam optimizer.

Table 4. Accuracy performance analysis of DenseNet121 trained on varying input sizes and optimizers

 13

(a) (b)

(c) (d)

Figure 6. The confusion matrix of DenseNet169 when trained on images of various sizes with several
optimizers. Trained with (a) image size of 200×200 and SGD optimizer, (b) image size of 150×150 and RMSprop
optimizer, (c) image size of 100×100 and Adamax optimizer, (d) image size of 50×50 and RMSprop optimizer.

DenseNet121 reached its highest accuracy of 97.68% with an image size of 150×150 and the Adamax optimizer,
which completed in 11 epochs. For an image size of 200×200, it performed slightly lower with 97.38% using the
RMSprop optimizer; however, this performance was still strong. For smaller image sizes of 100×100 and 50×50,
the model's accuracy decreased to 96.31% and 90.30%, respectively, confirming that, like other DenseNet
models, DenseNet121 performs better with larger image sizes but can still maintain decent performance on mid-
sized images. Table 4 lists the performances of the DenseNet121 model when trained on varying image sizes
and optimizers. Figure 7 shows the accuracy and loss curves of the DenseNet121 model, and Figure 8 shows the
confusion matrix for each.

Table 4. Accuracy performance analysis of DenseNet121 trained on varying input sizes and optimizers

Image Size Optimizer Accuracy Rate Epoch number

200×200 RMSprop 0.9738 22
150×150 Adamax 0.9768 11
100×100 Adamax 0.9631 17
50×50 RMSprop 0.9030 23

MobileNet achieved its highest accuracy of 97.47% with an image size of 200×200 and the Adamax optimizer,

completing in 20 epochs. For smaller image sizes of 150×150, 100×100, and 50×50, the model’s performance gradually
decreased to 96.81%, 95.51%, and a very low 19.55%, respectively, indicating that MobileNet struggles significantly
with very small image sizes. MobileNet’s performance suggests it is a good option for efficient classification with larger
image sizes; however, it becomes less reliable when image resolution is reduced. While conducting the experiments,
we also tried various other image sizes, such as 128×128 and 96×96. Table 5 lists the performance obtained by the
MobileNet model when trained on varying image sizes and optimizers. Figure 9 shows the accuracy and loss curves of
the MobileNet model, and Figure 10 shows the confusion matrix for each.

MobileNetV2 demonstrated moderate performance compared to the other models, with the highest accuracy of
95.51% at an image size of 150 using the Adamax optimizer. At the largest image size of 200, this value reached
95.37% with the Ftrl optimizer. However, with smaller image sizes of 100 and 50, MobileNetV2’s performance
decreased to 93.63% and 17.45%, respectively. This suggests that while MobileNetV2 can achieve decent performance
with mid-sized images, it struggles significantly with negligible images, which is similar to MobileNet. Table 6 lists
the performance obtained by the MobileNetV2 model when trained on varying image sizes and optimizers. Figure 11
shows the accuracy and loss curves for the MobileNetV2 model, and Figure 12 shows the confusion matrix for each.

141

Acta Infologica

Figure 5. Accuracy and loss curves of DenseNet169 when trained over varying image sizes with several optimizers. Trained with (a) image size of 200×200 and
SGD optimizer, (b) image size of 150×150 and RMSprop optimizer, (c) image size of 100×100 and Adamax optimizer, (d) image size of 50×50 and RMSprop
optimizer.

142

Yeşiltepe, M., et al., Turkish Lira Banknote Classification using Transfer Learning and Deep Learning

Figure 6. The confusion matrix of DenseNet169 when trained on images of various sizes with several optimizers. Trained with (a) image size of 200×200 and
SGD optimizer, (b) image size of 150×150 and RMSprop optimizer, (c) image size of 100×100 and Adamax optimizer, (d) image size of 50×50 and RMSprop
optimizer.

Table 5. Accuracy performance analysis of MobileNet trained on varying input sizes and optimizers

.

 16

Adamax optimizer, (c) image size of 100×100 and Adamax optimizer, (d) image size of 50×50 and RMSprop
optimizer.

MobileNet achieved its highest accuracy of 97.47% with an image size of 200×200 and the Adamax optimizer,
completing in 20 epochs. For smaller image sizes of 150×150, 100×100, and 50×50, the model's performance
gradually decreased to 96.81%, 95.51%, and a very low 19.55%, respectively, indicating that MobileNet struggles
significantly with very small image sizes. MobileNet’s performance suggests it is a good option for efficient
classification with larger image sizes; however, it becomes less reliable when image resolution is reduced. While
conducting the experiments, we also tried various other image sizes, such as 128×128 and 96×96. Table 5 lists
the performance obtained by the MobileNet model when trained on varying image sizes and optimizers. Figure
9 shows the accuracy and loss curves of the MobileNet model, and Figure 10 shows the confusion matrix for
each.

Table 5. Accuracy performance analysis of MobileNet trained on varying input sizes and optimizers

Image Size Optimizer Accuracy Rate Epoch number

200×200 Adamax 0.9747 20
150×150 Adamax 0.9681 15
100×100 Adamax 0.9551 17
50×50 Adamax 0.1955 26

(a)

Table 6. Accuracy performance analysis of MobileNetV2 trained on varying input sizes and optimizers

.

 18

(a) (b)

(c) (d)

Figure 10. The confusion matrix of MobileNet when trained on images of various sizes with several optimizers.
Trained with (a) image size of 200×200 and Adamax optimizer, (b) image size of 150×150 and Adamax
optimizer, (c) image size of 100×100 and Adamax optimizer, (d) image size of 50×50 and Adamax optimizer.

MobileNetV2 demonstrated moderate performance compared to the other models, with the highest accuracy
of 95.51% at an image size of 150 using the Adamax optimizer. At the largest image size of 200, this value reached
95.37% with the Ftrl optimizer. However, with smaller image sizes of 100 and 50, MobileNetV2’s performance
decreased to 93.63% and 17.45%, respectively. This suggests that while MobileNetV2 can achieve decent
performance with mid-sized images, it struggles significantly with negligible images, which is similar to
MobileNet. Table 6 lists the performance obtained by the MobileNetV2 model when trained on varying image
sizes and optimizers. Figure 11 shows the accuracy and loss curves for the MobileNetV2 model, and Figure 12
shows the confusion matrix for each.

Table 6. Accuracy performance analysis of MobileNetV2 trained on varying input sizes and optimizers

Image Size Optimizer Accuracy Rate Epoch number

200×200 Ftrl 0.9537 6
150×150 Adamax 0.9551 18
100×100 SGD 0.9363 22
50×50 Nadam 0.1745 15

VGG16 achieved the highest accuracy of 96.69% at an image size of 150×150 using the RMSprop optimizer. With
an image size of 200×200, it performed similarly, achieving 96.38% with the same optimizer. For smaller image
sizes of 100×100 and 50×50, the model accuracy decreased to 95.37% and 90.15%, respectively. VGG16 performed
reasonably well across different image sizes, although its performance was slightly lower compared to the DenseNet
models, indicating that it may not be as efficient in extracting intricate features from banknote images. Table 7 lists the

143

Acta Infologica

Figure 7. Accuracy and loss curves of DenseNet121 when trained over varying image sizes with several optimizers. Trained with (a) image size of 200×200 and
RMSprop optimizer, (b) image size of 150×150 and Adamax optimizer, (c) image size of 100×100 and Adamax optimizer, (d) image size of 50×50 and RMSprop
optimizer.

144

Yeşiltepe, M., et al., Turkish Lira Banknote Classification using Transfer Learning and Deep Learning

Figure 8. The confusion matrix of DenseNet121 when trained on images of various sizes with several optimizers. Trained with (a) image size of 200×200 and
RMSprop optimizer, (b) image size of 150×150 and Adamax optimizer, (c) image size of 100×100 and Adamax optimizer, (d) image size of 50×50 and RMSprop
optimizer.

performances of the VGG19 model when trained on varying image sizes and optimizers. Figure 13 shows the accuracy
and loss curves for the VGG19 model, and Figure 14 shows the confusion matrix for each.

Table 7. Analysis of accuracy of VGG16 trained over varying input sizes and optimizers

 21

Figure 12. The confusion matrix of MobileNetV2 when trained on images of various sizes with several
optimizers. Trained with (a) image size of 200×200 and Ftrl optimizer, (b) image size of 150×150 and Adamax
optimizer, (c) image size of 100×100 and SGD optimizer, (d) image size of 50×50 and Nadam optimizer.

VGG16 achieved the highest accuracy of 96.69% at an image size of 150×150 using the RMSprop optimizer. With
an image size of 200×200, it performed similarly, achieving 96.38% with the same optimizer. For smaller image
sizes of 100×100 and 50×50, the model accuracy decreased to 95.37% and 90.15%, respectively. VGG16
performed reasonably well across different image sizes, although its performance was slightly lower compared
to the DenseNet models, indicating that it may not be as efficient in extracting intricate features from banknote
images. Table 7 lists the performances of the VGG19 model when trained on varying image sizes and optimizers.
Figure 13 shows the accuracy and loss curves for the VGG19 model, and Figure 14 shows the confusion matrix
for each.

Table 7. Analysis of accuracy of VGG16 trained over varying input sizes and optimizers

Image Size Optimizer Accuracy Rate Epoch number

200×200 RMSprop 0.9638 24
150×150 RMSprop 0.9669 20
100×100 Adamax 0.9537 13
50×50 RMSprop 0.9015 24

(a)

VGG19 achieved its highest accuracy of 96.89% with an image size of 200×200 using the Adamax optimizer, and it
completed in 21 epochs. For smaller image sizes of 150×150 and 100×100, it achieved 96.02% and 94.57%, respectively.
At the smallest image size of 50×50, the performance dropped to 89.28%, suggesting that VGG19 also benefits from
larger image sizes but struggles more than VGG16 with smaller images. Table 8 lists the performance obtained by
the MobileNetV2 model when trained on varying image sizes and optimizers. Figure 15 shows the accuracy and loss
curves for the VGG19 model, and Figure 16 shows the confusion matrix for each.

The experimental results revealed that image size plays a significant role in determining model efficiency. For smaller
images (50×50), no model or optimizer achieved satisfactory results, indicating that the image resolution was too low
for the models to extract meaningful features. Some models performed reasonably well for image sizes of 100×100
and 150×150, especially when faster training times were prioritized. However, the best performance was observed with
an image size of 200×200, particularly when combined with the DenseNet201 model and the SGD optimizer. This

145

Acta Infologica

Figure 9. Accuracy and loss curves of MobileNet when trained over varying image sizes with several optimizers. Trained with (a) image size of 200×200 and
Adamax optimizer, (b) image size of 150×150 and Adamax optimizer, (c) image size of 100×100 and Adamax optimizer, (d) image size of 50×50 and Adamax
optimizer.

146

Yeşiltepe, M., et al., Turkish Lira Banknote Classification using Transfer Learning and Deep Learning

Figure 10. The confusion matrix of MobileNet when trained on images of various sizes with several optimizers. Trained with (a) image size of 200×200 and
Adamax optimizer, (b) image size of 150×150 and Adamax optimizer, (c) image size of 100×100 and Adamax optimizer, (d) image size of 50×50 and Adamax
optimizer.

Table 8. Analysis of accuracy of VGG19 trained over varying input sizes and optimizers

 23

(a) (b)

(c) (d)

Figure 14. The confusion matrix of VGG16 when training for various image sizes with several optimizers.
Trained with (a) image size of 200×200 and RMSprop optimizer, (b) image size of 150×150 and RMSprop
optimizer, (c) image size of 100×100 and Adamax optimizer, (d) image size of 50×50 and RMSprop optimizer.

VGG19 achieved its highest accuracy of 96.89% with an image size of 200×200 using the Adamax optimizer, and
it completed in 21 epochs. For smaller image sizes of 150×150 and 100×100, it achieved 96.02% and 94.57%,
respectively. At the smallest image size of 50×50, the performance dropped to 89.28%, suggesting that VGG19
also benefits from larger image sizes but struggles more than VGG16 with smaller images. Table 8 lists the
performance obtained by the MobileNetV2 model when trained on varying image sizes and optimizers. Figure
15 shows the accuracy and loss curves for the VGG19 model, and Figure 16 shows the confusion matrix for each.

Table 8. Analysis of accuracy of VGG19 trained over varying input sizes and optimizers

Image Size Optimizer Accuracy Rate Epoch number

200×200 Adamax 0.9689 21
150×150 Adamax 0.9602 16
100×100 Adamax 0.9457 13
50×50 Adamax 0.8928 28

combination achieved an impressive accuracy of 98.84%, which improved efficiency significantly after the third epoch
and stabilized by the eighth epoch, demonstrating that larger image sizes provide models with more detailed features
for classification.

4. DISCUSSION
In this section, the results of the tests performed in the test environment are analyzed for the three variables studied,

two of which are fixed variables. The data in the graphs were sorted from smallest to largest according to the appropriate
cases, and the value analyzed was the accuracy value.

The image size parameter is a parameter tested in the test environment and is the first step of the feature detection
process in the learning process. In the test environment, the width and height of the images were set to be the same.
Although it seems to be an advantage to choose a high dimension, it can be observed that after a certain value, it is not
useful and sometimes decreases the performance value.

The VGG, Mobile, and DenseNet models were selected as the types of transfer learning to be tested. Mobile

147

Acta Infologica

Figure 11. Accuracy and loss curves of MobileNetV2 when trained over varying image sizes with several optimizers. Trained with (a) image size of 200×200 and
Ftrl optimizer, (b) image size of 150×150 and Adamax optimizer, (c) image size of 100×100 and SGD optimizer, (d) image size of 50×50 and Nadam optimizer.

148

Yeşiltepe, M., et al., Turkish Lira Banknote Classification using Transfer Learning and Deep Learning

Figure 12. The confusion matrix of MobileNetV2 when trained on images of various sizes with several optimizers. Trained with (a) image size of 200×200 and
Ftrl optimizer, (b) image size of 150×150 and Adamax optimizer, (c) image size of 100×100 and SGD optimizer, (d) image size of 50×50 and Nadam optimizer.

models were selected because they are fast and have fewer layers, VGG models have more layers, and Dense models
have a balanced number of layers but run slower than other models. In this study, another tested parameter was the
optimizer function. These functions affect learning speed and weight. For this reason, they also affect the performance
measurement value.

From Figure 17, it can be observed that there is no efficiency with any transfer model or optimizer function when
images with a width and height of 50 are used in the test environment. For the other image sizes, low efficiency was
observed in some cases, but high efficiency was observed in most cases. A size of 100 is good if the training process
must be rapid, and a size of 200 is good if performance is important. Increasing the size is not an important parameter
alone; however, it is advantageous when used in conjunction with other parameters in the test environment.

In Figure 18, the effect of the examined model on the performance accuracy value was not significantly different
from that of the appropriate parameters. The most efficient models were DenseNet201 and DenseNet121, and the
least efficient models were MobileNetV2. It can be seen that the selection of the appropriate model is not the only
condition that provides sufficient efficiency; the appropriate optimizer function and appropriate image size should also
be determined. It can be observed that appropriate accuracy values can occur under appropriate conditions for all
models.

Figure 19 shows that Ftrl is the least efficient optimizer function. With the other functions, efficient results can be
obtained in an appropriate test environment. The efficiency criterion can be reached when the parameters are tested
using various combinations of parameters that do not have appropriate values for the parameters alone for efficient
operation in the test environment.

149

Acta Infologica

Figure 13. Accuracy and loss curves of VGG16 when training for various image sizes with several optimizers. Trained with (a) image size of 200×200 and
RMSprop optimizer, (b) image size of 150×150 and RMSprop optimizer, (c) image size of 100×100 and Adamax optimizer, (d) image size of 50×50 and RMSprop
optimizer.

150

Yeşiltepe, M., et al., Turkish Lira Banknote Classification using Transfer Learning and Deep Learning

Figure 14. Accuracy and loss curves of VGG16 when training for various image sizes with several optimizers. Trained with (a) image size of 200×200 and
RMSprop optimizer, (b) image size of 150×150 and RMSprop optimizer, (c) image size of 100×100 and Adamax optimizer, (d) image size of 50×50 and RMSprop
optimizer.

151

Acta Infologica

Figure 15. Accuracy and loss curves of VGG19 after training on various image sizes with several optimizers. Trained with (a) image size of 200×200 and Adamax
optimizer, (b) image size of 150×150 and Adamax optimizer, (c) image size of 100×100 and Adamax optimizer, (d) image size of 50×50 and Adamax optimizer.

152

Yeşiltepe, M., et al., Turkish Lira Banknote Classification using Transfer Learning and Deep Learning

Figure 16. The confusion matrix of VGG19 when training for various image sizes with several optimizers. Trained with (a) image size of 200×200 and Adamax
optimizer, (b) image size of 150×150 and Adamax optimizer, (c) image size of 100×100 and Adamax optimizer, (d) image size of 50×50 and Adamax optimizer.

Figure 17. The image size and test performance relationship.

153

Acta Infologica

Figure 18. The accuracy comparison relationship between transfer learning models with respect to the test set.

Figure 19. Figure 19 shows that Ftrl is the least efficient optimizer function. With the other functions, efficient results can be obtained in an appropriate test
environment. The efficiency criterion can be reached when the parameters are tested using various combinations of parameters that do not have appropriate values
for the parameters alone for efficient operation in the test environment.

154

Yeşiltepe, M., et al., Turkish Lira Banknote Classification using Transfer Learning and Deep Learning

5. CONCLUSION
With advancements in artificial intelligence and deep learning, research into banknote classification has provided new

opportunities to realize more accurate, reliable, and scalable systems. These systems can leverage new technologies
such as edge computing and Internet of Things, to improve the efficiency of real-time recognition systems. Efficient real-
time classification ensures faster transactions and enhances user experience. This study investigated the performance
of various deep learning models in the classification of Turkish banknotes using a comprehensive dataset of 6901
images across six denominations (5 TL, 10 TL, 20 TL, 50 TL, 100 TL, and 200 TL). The dataset includes banknotes
under different conditions such as flat, angled, and bent conditions, providing a realistic testing environment. The
study evaluates the performance of pre-trained models, including VGG16, VGG19, DenseNet121, DenseNet169,
DenseNet201, MobileNet, and MobileNetV2, by varying key parameters, such as image size (50×50, 100×100, 150×150,
200×200) and optimizers (SGD, RMSprop, Adamax, Adam, and others). The best results were obtained using the
DenseNet201 model, which achieved an accuracy of 98.84% with an image size of 200 and the SGD optimizer in just
12 epochs. DenseNet169 also performed well, achieving 98.62% accuracy under similar conditions. The study highlights
the importance of selecting appropriate image sizes and optimizers because smaller image sizes significantly reduced
model performance, particularly for MobileNet and MobileNetV2, which showed poor results with images sized 50×50.
In addition, models using the Ftrl optimizer consistently exhibited lower performance. These findings demonstrate the
effectiveness of DenseNet models for banknote classification, especially when combined with larger image sizes and
optimizers like SGD. The results provide valuable insights into developing robust and efficient automated currency
recognition systems, especially for real-time applications in financial sector.

In future work, it is planned to conduct tests using banknotes from different countries. Another field of study is to
work with a test environment in which the effect of optimizing functions as variables can be better observed.

Peer Review: Externally peer-reviewed.
Conflict of Interest: Authors declared no conflict of interest.
Grant Support: The authors received no specific funding for this work.

ORCID IDs of the authors
Mirsat Yeşiltepe 0000-0003-4433-5606
Harun Elkıran 0000-0002-5834-6210
Jawad Rasheed 0000-0003-3761-1641

REFERENCES
Baek, S., Choi, E., Baek, Y., & Lee, C. (2018). Detection of counterfeit banknotes using multispectral images. Digital Signal Processing, 78,

294–304. https://doi.org/10.1016/j.dsp.2018.03.015
Baltaci, F. (2020). Turkish lira banknote dataset. Retrieved January 2, 2024, from https://www.kaggle.com/datasets/baltacifatih/

turkish-lira-banknote-dataset
Baykal, G., Demir, U., Shyti, I., & Unal, G. (2018). Turkish lira banknotes classification using deep convolutional neural networks. In 2018 26th

Signal Processing and Communications Applications Conference (SIU) (pp. 1–4). IEEE.
Filter, J. (2022). Split-folders - PyPI. Retrieved January 15, 2024. from https://pypi.org/project/split-folders/
Foody, G. M. (2023). Challenges in the real world use of classification accuracy metrics: From recall and precision to the Matthews correlation

coefficient. PLOS ONE, 18(10), e0291908. https://doi.org/10.1371/journal.pone.0291908
Galeana Pérez, D., & Bayro Corrochano, E. (2018). Recognition system for euro and Mexican banknotes based on deep learning with real scene

images. Computación y Sistemas, 22(4). https://doi.org/10.13053/cys-22-4-3079
İyikesici, B., & Erçelebi, E. (2023). An efficient deep learning architecture for Turkish lira recognition and counterfeit detection. Turkish Journal

of Electrical Engineering and Computer Sciences, 31(3), 678–692. https://doi.org/10.55730/1300-0632.4009
Keras Team. (2023a). Keras application. Keras. Retrieved January 15, 2024, from https://keras.io/api/applications/
Keras Team. (2023b). Optimizers. Keras. Retrieved January 17, 2024, from https://keras.io/api/optimizers/
Khashman, A., Ahmed, W., & Mammadli, S. (2019). Banknote issuing country identification using image processing and neural networks. In

Proceedings (pp. 746–753). https://doi.org/10.1007/978-3-030-04164-9_98
Khashman, A., & Sekeroglu, B. (2005). Multi-banknote identification using a single neural network. In Proceedings (pp. 123–129).
Khashman, A., Sekeroglu, B., & Dimililer, K. (2005). Deformed banknote identification using pattern averaging and neural networks. In

Proceedings of the 4th WSEAS International Conference on Computational Intelligence, Man-Machine Systems and Cybernetics (pp.
233–237).

155

https://orcid.org/0000-0003-4433-5606
https://orcid.org/0000-0002-5834-6210
https://orcid.org/0000-0003-3761-1641
https://doi.org/10.1016/j.dsp.2018.03.015
https://www.kaggle.com/datasets/baltacifatih/turkish-lira-banknote-dataset
https://www.kaggle.com/datasets/baltacifatih/turkish-lira-banknote-dataset
https://pypi.org/project/split-folders/
https://doi.org/10.1371/journal.pone.0291908
https://doi.org/10.13053/cys-22-4-3079
https://doi.org/10.55730/1300-0632.4009
https://keras.io/api/applications/
https://keras.io/api/optimizers/
https://doi.org/10.1007/978-3-030-04164-9_98

Acta Infologica

Linkon, A. H. M., Labib, M. M., Bappy, F. H., Sarker, S., Jannat, M.-E., & Islam, M. S. (2020). Deep learning approach combining lightweight
CNN architecture with transfer learning: An automatic approach for the detection and recognition of Bangladeshi banknotes. In 2020 11th
International Conference on Electrical and Computer Engineering (ICECE) (pp. 214–217). IEEE. https://doi.org/10.1109/icece51571.2020.
9393113

Mittal, S., & Mittal, S. (2018). Indian banknote recognition using convolutional neural network. In 2018 3rd International Conference On Internet
of Things: Smart Innovation and Usages (IoT-SIU) (pp. 1–6). IEEE. https://doi.org/10.1109/iot-siu.2018.8519888

Pachón, C. G., Ballesteros, D. M., & Renza, D. (2023). An efficient deep learning model using network pruning for fake banknote recognition.
Expert Systems with Applications, 233, 120961. https://doi.org/10.1016/j.eswa.2023.120961

Prakash, H., Yadav, A., Ushashree, P., Jha, C., Sah, G. K., & Naik, A. (2023). Deep learning approaches for automated detection of fake
Indian banknotes. In 2023 IEEE International Conference on Integrated Circuits and Communication Systems (ICICACS) (pp. 1–5). IEEE.
https://doi.org/10.1109/icicacs57338.2023.10100265

Sahin, O. (2018). GitHub - Ozgurshn/TurkishBanknoteDataset. Retrieved January 2, 2024, from https://github.com/ozgurshn/
TurkishBanknoteDataset.

Veeramsetty, V., Singal, G., & Badal, T. (2020). CoinNet: Platform independent application to recognize Indian currency notes using deep
learning techniques. Multimedia Tools and Applications, 79(31–32), 22569–22594. https://doi.org/10.1007/s11042-020-09031-0

Wang, L., Zhang, Y., Lanchi, X., Zhang, X., Guang, X., Li, Z., Li, Z., Shi, G., Hu, X., & Zhang, N. (2022). Automated detection and classification
of counterfeit banknotes using quantitative features captured by spectral-domain optical coherence tomography. Science & Justice, 62(5),
624–631.https://doi.org/10.1016/j.scijus.2022.09.004.

How cite this article
Yeşiltepe, M., Eklıran, H., & Rasheed, J. (2024). Turkish Lira Banknote Classification using Transfer Learning and

Deep Learning. Acta Infologica, 8(2), 133-156. https://doi.org/10.26650/acin.1447456

156

https://doi.org/10.1109/icece51571.2020.9393113
https://doi.org/10.1109/icece51571.2020.9393113
https://doi.org/10.1109/iot-siu.2018.8519888
https://doi.org/10.1016/j.eswa.2023.120961
https://doi.org/10.1109/icicacs57338.2023.10100265
https://github.com/ozgurshn/TurkishBanknoteDataset
https://github.com/ozgurshn/TurkishBanknoteDataset
https://doi.org/10.1007/s11042-020-09031-0
https://doi.org/10.1016/j.scijus.2022.09.004
https://doi.org/10.26650/acin.1447456

	INTRODUCTION
	DATA AND METHODOLOGY
	Dataset
	Methodology

	WORKING ENVIRONMENT AND EXPERIMENTAL RESULTS
	DISCUSSION
	CONCLUSION

