
BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING,     Vol. 13, No. 1, March 2025 

                                              

 

Copyright © BAJECE                                                                ISSN: 2147-284X                                                     http://dergipark.gov.tr/bajece        

Research Article 

 

Abstract— Chest X-ray analysis plays a vital role in diagnosing 

pneumonia, and recent advancements in Deep Learning (DL) 

methods have significantly improved the accuracy of automated 

diagnosis. This study explores the intersection of DL and 

explainable artificial intelligence (XAI) in the context of 

pneumonia diagnosis through chest X-rays. The dataset used in 

this study consists of 1,341 training images of healthy individuals 

and 3,875 images of pneumonia cases, with the test set comprising 

234 healthy and 390 pneumonia cases. Additionally, the validation 

set includes 8 images for both categories. This diversity aims to 

enhance the model's ability to generalize across different 

scenarios. The Convolutional Neural Network (CNN) and 

Transfer Learning (TL) methods utilizing the ResNet50 model 

achieved accuracies of 95.23 and 96.67, respectively. Subsequently, 

the models were explained using XAI methods such as SHAP and 

Grad-CAM. The study concludes by highlighting the potential of 

DL and XAI to enhance the interpretability and reliability of 

pneumonia diagnoses through chest X-ray analysis, aiming to 

contribute to future research in this field. 

 

Index Terms— Chest X-ray analysis, Convolutional Neural 

Networks (CNNs), Deep Learning (DL) methods, Explainable AI 

(XAI), Grad-CAM (Gradient-weighted Class Activation 

Mapping). 

I. INTRODUCTION 

ODAY, ARTIFICIAL intelligence (AI) technologies play a 

crucial role in the diagnosis and treatment of critical health 

issues such as pneumonia [1]. However, concerns regarding the 

safety, transparency, and comprehensibility of these 

technologies in clinical applications are significant. The 

primary objective of this study is to evaluate the role of AI 

models in pneumonia diagnosis and treatment, with a particular 

emphasis on the potential utilization of Explainable Artificial 

Intelligence (XAI) methods [2].  

With the widespread use of AI technologies in the healthcare 

sector, the understandability and traceability of decision-

making processes are becoming increasingly important. In this 

context, understanding the role of explainable AI models in 

pneumonia diagnosis and treatment is of critical importance. 

This study aims to highlight the potential of XAI in ensuring 

the effective use of AI technologies in pneumonia diagnosis.  

 

Deep learning (DL) methods, especially Convolutional 

Neural Networks (CNNs), have become the cornerstone of 

pneumonia diagnosis due to their remarkable ability to process 

complex visual data such as chest X-rays (CXR). CNNs are 

inspired by the human brain's visual processing mechanisms 

and are known for their proficiency in extracting hierarchical 

features from images. This adaptability allows CNNs to excel 

in medical image analysis, identifying subtle visual patterns 

critical to diagnosing pneumonia accurately [3]. Various layers 

within CNN architectures, including convolutional, pooling, 

and fully connected layers, contribute to this capability by 

analyzing features ranging from basic edges to more intricate 

structures indicative of disease. The use of CNNs in the 

healthcare field has extended far beyond pneumonia diagnosis, 

as they have proven their effectiveness in diverse domains, 

from medical imaging to wireless resource allocation [4,5]. 

Therefore, this article presents an analysis to evaluate the 

current status and future potential of AI models in pneumonia 

diagnosis and treatment, with particular emphasis on the role of 

CNNs and XAI techniques. A review of significant studies in 

the literature will be conducted to compile existing knowledge 

on how explainable AI methods can be utilized in pneumonia 

diagnosis and treatment to guide future research efforts. The 

findings of this study could contribute significantly to 

enhancing the effectiveness of AI technologies in pneumonia 

diagnosis and ensuring reliability in clinical applications. 

Pneumonia is an inflammation of the lung parenchyma 

caused by infectious microorganisms and non-infective agents. 

It can affect all age groups but is particularly severe in fragile 

populations such as children and the elderly. Early and accurate 

detection of pneumonia is crucial to prevent fatal 

outcomes.Recent advancements in deep learning (DL) methods 

have significantly improved the accuracy of automated 

pneumonia diagnosis through chest X-rays (CXR). 

Yang et al. proposed a deep learning approach that considers 

the background factors of lung X-ray images to improve 

pneumonia identification accuracy. Using VGG16, they 

achieved an accuracy of 95.6 and emphasized the importance 

of considering background factors in the diagnostic process 

while using Grad-CAM to highlight model explainability [6]. 

De Moura et al. utilized SHAP and Grad-CAM to 

differentiate chest X-ray images of COVID-19-based 

pneumonia from other lung patterns. Their approach achieved 
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an accuracy of 82 with the XGBoost model, underscoring the 

importance of explainable AI in distinguishing COVID-19 

pneumonia from other types [7]. 

Ren et al. explored an interpretable approach combining deep 

learning with Bayesian Networks, achieving high performance 

in pneumonia detection using a dataset of 35,389 cases. This 

study emphasized the necessity of interpretability in AI models 

for clinical applications [8]. 

Zou et al. presented an ensemble AI explainability method 

combining SHAP and Grad-CAM++ to provide visual 

explanations for a deep learning prognostic model predicting 

the mortality risk of pneumonia patients. Their method showed 

high trust and localization effectiveness among radiologists, 

demonstrating the value of explainability in clinical decision-

making [9]. 

Stephen et al. developed a convolutional neural network from 

scratch for pneumonia classification, achieving significant 

validation accuracy through data augmentation techniques. 

Their work addressed the challenges of reliability and 

interpretability in medical imagery by using a large, well-

augmented dataset [10]. 

Alsharif et al. introduced PneumoniaNet, a novel CNN-based 

framework for automated detection and classification of 

pediatric pneumonia, achieving an accuracy of 99.7. Their 

model distinguished between viral, bacterial, and normal cases, 

demonstrating the potential of deep learning in improving 

diagnostic accuracy, especially in remote areas lacking expert 

radiologists [11].  

Varshni et al. evaluated the functionality of pre-trained CNN 

models for pneumonia detection, highlighting the effectiveness 

of using these models as feature extractors in conjunction with 

supervised classifiers. Their results indicated that pre-trained 

CNN models are highly beneficial for analyzing CXR images 

[12]. 

These studies collectively demonstrate the advancements and 

applications of deep learning and explainable AI in pneumonia 

diagnosis. The integration of SHAP and Grad-CAM provides 

comprehensive insights into model decision-making, which is 

critical for clinical acceptance and reliability. Our study builds 

upon these findings by employing a combination of ResNet50, 

SHAP, and Grad-CAM to enhance the interpretability and 

accuracy of pneumonia diagnosis models. 

Table 1 includes a literature review table that outlines the 

dataset, methods (architectures and XAI techniques), and 

results of various related studies, providing a comprehensive 

overview of the field: 
TABLE I 

LITERATURE REVİEW TABLE 

 

 SHAP 

Grad-

Cam 

LIM

E DL TL 

Chest 

Xray 

[3] - ✓ - - ✓ - 

[4] ✓ - - ✓ - ✓ 

[5] ✓ - - ✓ - ✓ 

[6] ✓ ✓ ✓ - ✓ - 

[7] - - - ✓ - ✓ 

[8] - - - ✓ - ✓ 

[9] ✓ - - ✓ ✓ ✓ 

Ours ✓ ✓ - ✓ ✓ ✓ 

 

II. MATERIALS AND METHODOLOGY 

A. DataSet 

The dataset used in this study consists of chest X-ray images, 

focusing on the diagnosis of pneumonia. The test set includes 

234 images of healthy individuals and 390 images of 

pneumonia cases. The training set comprises 1,341 images of 

healthy subjects and 3,875 images of pneumonia cases. 

Additionally, the validation set includes 8 images for both 

healthy and pneumonia cases. All images are in X-ray format, 

capturing various aspects of chest conditions. The diversity in 

the dataset aims to enhance the model's ability to generalize 

across different scenarios. Figure 1 provides a visual 

representation of selected images from the dataset. The 

composition of the dataset serves as a critical foundation for 

training, validating, and testing the models in subsequent 

phases of our methodology. Figure 1 illustrates selected 

examples from the dataset, providing a glimpse into the 

diversity of chest X-ray images used in this study. The dataset 

was obtained from 

https://www.kaggle.com/datasets/paultimothymooney/chest-

xray-pneumonia. 

 

 

Fig.1. Pneumonia Chest X-ray Database dataset examples 

B. DL Methods 

Deep Learning (DL) is a subfield of machine learning known 

for its automatic learning capability, particularly in complex 

datasets. Emphasizing the inclusion of multi-layered neural 

networks and the capacity to learn from extensive datasets, deep 

learning highlights its ability to successfully accomplish 

complex tasks. Among these methods,CNNs stand out as a 

significant component extensively used in areas involving 

visual data, such as image recognition and classification. In 

Transfer Learning, the ResNet50 model has been used. Transfer 

Learning is another method within this framework, allowing the 

adaptation of learned general features for another task. 

 

1) Convolutional Neural Networks (CNN) 

CNNs form the core of our pneumonia diagnosis 

methodology, leveraging their ability to comprehend complex 

visual information [13,14,15]. Inspired by the visual processing 

mechanisms of the human brain, CNNs demonstrate 

remarkable proficiency in image analysis tasks [16,17]. In the 

context of chest X-ray analysis, CNNs excel at capturing 

intricate patterns and nuanced features crucial for accurate 
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diagnosis [3]. The architecture of our CNN model, illustrated in 

Figure 2, consists of multiple layers, each contributing to the 

network's capacity to understand and interpret hierarchical 

visual information [16]. The convolutional layers, essential for 

feature extraction, utilize filters to detect hierarchical features, 

progressing from basic edges and textures to more intricate 

structures indicative of pneumonia [15]. 

 
 

Fig.2. Used Convolutional Neural Network (CNN) Model 

 

In this study, we adopt a CNN architecture with carefully 

designed layers, including convolutional layers for feature 

extraction, pooling layers for spatial down-sampling, and fully 

connected layers for decision-making [16,14]. These layers 

collectively contribute to the network’s capability to 

comprehend chest X-ray images and make accurate diagnostic 

predictions. Our choice of leveraging CNNs is rooted in their 

proven efficacy in various domains, from medical image 

analysis [4,5] to wireless resource allocation [3] and beyond. 

The adaptability and versatility of CNNs make them a valuable 

tool in addressing the complexities associated with pneumonia 

diagnosis, where identifying subtle visual cues is paramount 

[35]. The inherent hierarchical feature learning capabilities of 

CNNs allow them to discern patterns in medical images, 

making them particularly well-suited for tasks requiring 

nuanced understanding, such as the diagnosis of pneumonia 

from chest X-ray images [4]. This adaptability is further 

enhanced by fine-tuning the pre-trained models on specific 

medical datasets, optimizing the network for the intricacies of 

pneumonia diagnosis [16,4]. 

This study utilized a Convolutional Neural Network (CNN) 

model that was carefully structured by adjusting several 

hyperparameters. In the first two Conv2D layers, 32 and 64 

filters were used, respectively, with a filter size of 3×3. Each 

Conv2D layer was employed to extract specialized features, 

while MaxPooling2D layers were applied to reduce spatial 

dimensions. For instance, the first MaxPooling2D layer reduced 

the output dimensions to 111×111×32. All these layers utilized 

the ReLU activation function, allowing the model to learn non-

linear relationships. Additionally, the final stages of the model 

included fully connected (Dense) layers, which were adjusted 

to enable complex decision-making within the CNN. The 

Flatten layer transformed the output of the convolutional layers 

into a single vector, providing the necessary structure for 

classification. This model, which includes dense layers with a 

large number of parameters (e.g., 22,151,424 parameters in the 

dense1 layer), exhibits a strong learning capacity and delivers 

effective results in high-dimensional data processing. 

A Convolutional Neural Network (CNN) model was trained 

on the dataset, and the layers of the CNN model are provided in 

Table 2. 

 
TABLE II 

CONVOLUTIONAL NEURAL NETWORK (CNN) LAYERS. 
Layer(type) Output Shape Param 

conv3d (Conv2D) None, 222, 222, 32) 896 

max\_pooling2d (MaxPooling2D (None, 111, 111, 32) 0 

conv2d\_1 (Conv2D) (None, 109, 109, 64) 18496 

max\_pooling2d\_1 (None, 54, 54, 64) 0 

conv2d\_2 (Conv2D) (None, 52, 52, 128) 73856 

max\_pooling2d\_2 (None, 26, 26, 128) 0 

flatten (Flatten) (None, 86528) 0 

dense (Dense) 
(None, 256) 

22151

424 

dense\_1 (Dense) (None, 1) 257 

 

2) Transfer Learning in Pneumonia Diagnosis 

 

Transfer Learning (TL) stands as a pivotal component in our 

methodology, facilitating the seamless adaptation of knowledge 

acquired from pre-training on a broader dataset to the specific 

task of pneumonia diagnosis. In our study, we adopted the 

ResNet50 model, pre-trained on a vast array of images 

encompassing diverse categories [18,19,20,21,22]. The weights 

obtained during the training of ResNet50 were then transferred 

to our pneumonia diagnosis model, serving as a foundational 

starting point. Transfer Learning is instrumental in addressing 

challenges associated with limited datasets specific to a 

particular medical domain [23,24,25,26,27]. 

By leveraging the learned features from ResNet50, our model 

gains a robust understanding of general image patterns and 

structures, significantly enhancing its ability to recognize 

relevant features in chest X-ray images. The process involves 

fine-tuning the pre-trained model on our pneumonia dataset, 

allowing the model to adapt its learned features to the intricacies 

of pneumonia diagnosis. This strategic integration not only 

accelerates the training process but also promotes better 

convergence and performance on our specific task. Transfer 

Learning, with its ability to transfer knowledge across domains, 

proves particularly beneficial in medical image analysis, where 

labeled datasets are often limited [18,19,20,21,22]. Our 

approach showcases the effectiveness of transferring pre-

learned features, emphasizing the adaptability and enhanced 

performance that Transfer Learning brings to the realm of 

pneumonia diagnosis. 
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C. DataSet 

In recent years, Explainable AI (XAI) has emerged as a crucial 

tool to address the interpretability challenges posed by complex 

machine learning models [27]. Particularly in critical domains 

like medical image analysis, where transparency is paramount, 

XAI aims to demystify the decision-making processes of these 

models. Our methodology places a strong emphasis on XAI 

principles, leveraging SHAP (SHapley Additive exPlanations) 

for enhanced interpretability [28]. Figure 3 provides a visual 

representation illustrating the working mechanism of 

explainable Artificial Intelligence (XAI) methods, showcasing 

the transparency and interpretability aspects integrated into our 

approach. 

 

Fig.3. Provides a visual overview of explainable Artificial Intelligence 

(XAI) methods, illustrating their working mechanisms. 

  

1) SHAP (SHapley Additive exPlanations) 

 

SHAP, rooted in cooperative game theory, offers a principled 

way to allocate contributions among features for each 

prediction made by a model. In the context of pneumonia 

diagnosis, SHAP facilitates the identification and visualization 

of critical regions within chest X-ray images that heavily 

influence the model’s classification decision. The SHAP value 

𝜙 for feature prediction is mathematically defined as seen in 

Equation 1: 

 

𝜙𝑔
𝑗(𝑓) =  ∑ 𝑠 ⊆ {𝑥1, … , 𝑥𝑝}{𝑥𝑗}

|𝑆|!(𝑝−|𝑆|−1)!

𝑃! (𝑔(𝑓, 𝑆 ∪

{𝑥𝑖}, 𝛺) −  𝑔(𝑓, 𝑆, 𝛺))                                                          (1) 

 

This equation serves as a foundational tool in our 

methodology, enabling the systematic evaluation of each 

feature's impact on the model's predictions. Here, 𝜙𝑔
𝑗(𝑓) 

represents the SHAP value for feature j in a given prediction. 

The summation across subsets S involves the consideration of 

different combinations of features, and the coefficients 
|𝑆|!(𝑝−|𝑆|−1)!

𝑃!  balance the combinatorial interactions. The terms 

𝑔(𝑓, 𝑆 ∪ {𝑥𝑖}, 𝛺) and 𝑔(𝑓, 𝑆, 𝛺)  signify the model's 

predictions when including and excluding feature i, 

respectively. 

 

This integration provides valuable insights into the regions 

of chest X-ray images that contribute most to the final 

classification decision, ranging from basic edges and textures 

in the early layers to more complex structures indicative of 

pneumonia in the deeper layers. 

 

By visualizing SHAP values, we gain insights into regions of 

X-ray images that are crucial for explaining the model's 

decision-making process. Our approach utilizes masking 

techniques, such as the "inpaint telea" method, to identify 

specific areas of interest, facilitating a comprehensive 

understanding of the model's interpretability [28,29]. 

 

Fig.4. SHAP interpretation of randomly selected image from the dataset. 

 

2) Grad - CAM (Gradient-weighted Class Activation 

Mapping) 

 

In our exploration of Explainable AI (XAI) methodologies, 

we incorporated Grad-CAM (Gradient-weighted Class 

Activation Mapping) [20] alongside SHAP. This technique 

plays a pivotal role in unveiling the decision-making processes 

of CNNs, particularly in the realm of medical image analysis. 

Grad-CAM provides valuable visual insights into the 

influential regions of an input image affecting the model's final 

classification decision. This is achieved through the 

computation of gradients ∇ of target class scores 𝑌𝑐 with 

respect to the feature maps 𝐴𝑘 of the final convolutional layer. 

The resulting gradient-weighted activation maps 𝐿𝐺𝑟𝑎𝑑−𝐶𝐴𝑀
𝑐  

are obtained using global average pooling, as expressed in 

Equation 2: 

𝐿𝐺𝑟𝑎𝑑−𝐶𝐴𝑀
𝑐 =  ∑ 𝑤𝑘

𝑐   .  𝑅𝑒𝐿𝑈 (
𝜕𝑌𝑐

𝜕𝐴𝑘
)

𝐾

𝑘=1

 .  𝐹𝑘(𝑥, 𝑦)            (2) 

 

Here, 𝑤 represents the importance weight associated with the 

feature maps. This weight is determined by summing the 

gradients with respect to the corresponding feature maps, 

normalized by 𝑍 as seen in Equation 3: 

 

𝑤𝑘
𝑐 =

1

𝑍
∑ ∑

𝜕𝑌𝑐

𝜕𝐴𝑖𝑗
𝑘 . 𝑅𝑒𝐿𝑈 (

𝜕𝑌𝑐

𝜕𝐴𝑖𝑗
𝑘 )

𝑗𝑖

                       (3) 

 

Furthermore, the calculation of the gradient 
𝜕𝑌𝑐

𝜕𝐴𝑖𝑗
𝑘  involves the 

weighted summation of gradient values across spatial 

dimensions, denoted by 𝛼𝑘𝑐𝑖𝑗  as seen in Equation 4: 
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𝜕𝑌𝑐

𝜕𝐴𝑖𝑗
𝑘 =

1

𝑍
∑ ∑ 𝛼𝑘𝑐𝑖𝑗 . 𝑅𝑒𝐿𝑈 (

𝜕𝑌𝑐

𝜕𝐴𝑖′𝑗′𝑘

)

𝑗′𝑖′

                 (4) 

 

These mathematical formulations contribute to a 

comprehensive understanding of Grad-CAM's mechanism, 

elucidating the significance of each feature map in influencing 

the final decision. In our pneumonia diagnosis framework, 

Grad-CAM proved instrumental in uncovering the specific 

regions within chest X-ray images that played a critical role in 

the CNN's classification decisions. 

By applying Grad-CAM to various layers of the network, 

ranging from top to mid layers, we gained insights into the 

hierarchical features learned by the model. The transparency 

introduced by Grad-CAM enhances the interpretability of our 

pneumonia diagnosis model, which is crucial in medical 

applications for fostering trust among healthcare practitioners. 

This integration aligns with the current trend of leveraging 

XAI techniques to bridge the gap between complex model 

architectures and interpretability, promoting the responsible 

and ethical deployment of AI, especially in critical domains 

such as healthcare. Our work is inspired by prior research 

successfully applying XAI techniques in medical image 

analysis [30,31,32,33,34], emphasizing the significance of 

transparent and interpretable models in AI-based medical 

diagnosis systems. 

III. MATERIALS AND METHODOLOGY 

In the context of this study, the dataset contains chest X-ray 

images focusing on pneumonia diagnosis. This versatile 

research employs an advanced approach that combines the 

Transfer Learning model ResNet50 with SHAP (SHapley 

Additive exPlanations) and the CNN model with Grad-CAM 

(Gradient-weighted Class Activation Mapping). 

The confusion matrix is a matrix used, particularly, to 

evaluate the performance of a classification model, focusing on 

comparing the model's predictions with the actual classes. This 

matrix includes True Positive (TP) and True Negative (TN) 

values, representing cases where the model accurately predicts 

Pneumonia classes, along with False Positive (FP) and False 

Negative (FN) predictions. Each cell represents a combination 

of the true class and the predicted class. This visual is used to 

understand which classes the model predicted correctly and in 

which cases it made errors. The resulting confusion matrix is 

presented in Figure 5. 

 

Fig.5. Confusion matrix results 

 

• True Positive (TP): Represents the case where the model 

accurately predicts the positive class. 

 

TP = Numerical Value 

 

• True Negative (TN): Represents the case where the model 

accurately predicts the negative class. 

 

TN = Numerical Value 

 

• False Positive (FP): Represents the case where the model 

incorrectly predicts the positive class. 

 

FP = Numerical Value 

 

• False Negative (FN): Represents the case where the model 

incorrectly predicts the negative class. 

 

FN = Numerical Value 

 

Performance metrics such as precision, recall, and accuracy 

are obtained from the confusion matrix values. 

Precision measures how many of the samples predicted as 

positive are actually positive. It expresses the ratio of true 

positives to the total positive predictions, as shown in Formula 

5. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                  (5) 

 

Recall measures how many of the true positives are detected. 

It expresses the ratio of true positives to the total number of 

positive examples, as shown in Formula 6. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                      (6) 

 

Accuracy expresses the ratio of correctly predicted examples to 

the total number of examples. It is a metric that evaluates the 

overall model performance, as shown in Formula 7. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
               (7) 

 

F1-score balances precision and recall. This metric tends to 

minimize both false positives and false negatives, especially in 

balanced classification problems. Formula 8 illustrates the F1-

score. 

𝐹! = 2 𝑥 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
                   (8) 

 

When the ResNet50 model, used as a Transfer Learning (TL) 

method, is applied to the same dataset, the F1 score, precision, 

recall, and support metrics are provided in Table 3. 
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TABLE III 

CONFUSİON MATRIX RESULTS  

 Accuracy precision Recall F1-score Support 

NORMAL 0.92 0.91 0.87 0.89 234 

PNEUMANIA 0.92 0.93 0.95 0.94 234 

 

Subsequently, Grad-CAM was applied to visualize activation 

patterns within the convolutional layers of the CNN. This study 

clarified each step by emphasizing specific layers such as 

"conv2d2" for Grad-CAM Top and "conv2d1" for Grad-CAM 

Mid. 

The integration of SHAP's analysis involved applying an 

image mask to the model's predictions, enabling a deeper 

understanding of the decision-making process with 15,000 

evaluations. An example containing 15,000 evaluations is 

presented in Figure 6. 

 

Fig.6. tems contributing to model misinterpretation in Shap analysis with 
15,000 evaluations. 

 

A notable issue encountered in this study is the model's 

susceptibility to misinterpretations. SHAP analysis highlights 

situations where the model may be misled by seemingly 

insignificant artifacts or misplaced objects in the image mask. 

This underscores the importance of meticulous preprocessing 

and awareness of potential errors in medical image analysis. 

To illustrate this situation, we present a visual representation 

of misclassifications, showing instances where the model made 

correct predictions and errors in Figure 7. 

 

Fig.7. Misleading items causing model misinterpretation in Shap analysis. 

 

 
 

Fig.8. Comparison of (a) Original Image and (b) SHAP Output 

 

Fig.9. Grad-CAM Output 

 

True Positive (TP): In the case of True Positive, where the 

model correctly identified instances of the disease, we initiated 

the analysis with the original image and progressed through 

subsequent stages. Figure 8 (a) shows our starting point with 

the original image. SHAP elucidated why the ResNet50 model 

classified this example as positive, highlighting the features 

supporting the positive decision. Figure 8 (b) presents the 

SHAP output, offering a detailed glimpse into the model's 

decision rationale. Grad-CAM, as illustrated in Figure 9, plays 

a crucial role in unraveling the rationale behind the 

Convolutional Neural Network (CNN) recognizing the 

provided example as positive. Figure 9 (a) serves as the anchor, 

showcasing the original image for our analysis. Figures 9 (b) 

and 9 (c) spotlight the two phases of Grad-CAM. Figure 9 (b) 

shows the completed Grad-CAM highlighting the top 

contributing regions, while Figure 9 (c) captures the ongoing 

process, emphasizing the mid regions. The integration of SHAP 

and Grad-CAM not only enriches our understanding of positive 

classification but also provides a unique perspective on the 

model's decision-making process. 

 

 
Fig.10. Comparison of (a) Original Image and (b) SHAP Output 
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Fig.11. Grad-CAM Output 

 

True Negative (TN): In the case of True Negative, where the 

model correctly identified a healthy state, our analysis began 

with the original image, setting the stage for subsequent 

examinations. Figure 10 (a) depicts the initial step with the 

original image, followed by Figure 10 (b), presenting the SHAP 

output that sheds light on the reasons behind the negative 

classification. Grad-CAM, featured in Figure 11, was employed 

to unravel the Convolutional Neural Network's (CNN) 

reasoning behind identifying this instance as negative, visually 

emphasizing the contributing regions. Figure 11 (a) presents the 

original image, forming the basis for our analysis. Figures 11 

(b) and 11c shed light on the two distinctive phases of Grad-

CAM. In Figure 11 (b), the completed Grad-CAM showcases 

the highlighted top contributing regions, while Figure 11 (c) 

captures the ongoing process, accentuating the mid regions. The 

strategic fusion of SHAP and Grad-CAM not only enhances our 

understanding of negative classifications but also introduces a 

fresh dimension to the interpretability of the model. 

 

 
 

Fig.12. Comparison of (a) Original Image and (b) SHAP Output 

 

 

Fig.13. Grad-CAM Output 

 

False Positive (FP): For False Positive instances where the 

model inaccurately predicted disease presence, our 

investigation began with the original image, offering insights 

into the misclassification. Figure 12 (a) captures the starting 

point with the original image, followed by Figure 12 (b), 

showcasing the SHAP output that explains the false positive 

classification by the ResNet50 model. Grad-CAM, showcased 

in Figure 13, extensively explored the reasons behind the 

Convolutional Neural Network (CNN) model's erroneous 

positive identification, visually spotlighting the regions 

responsible for the misclassification. Figure 13 (a) exhibits the 

original image, forming the basis for our analysis. Figures 13 

(b) and 13 (c) illustrate the two significant phases of Grad-

CAM. In Figure 13 (b), the completed Grad-CAM reveals the 

highlighted regions contributing to the false positive 

identification, while Figure 13 (c) captures the ongoing process, 

emphasizing mid regions that played a role in the 

misclassification. The strategic amalgamation of SHAP and 

Grad-CAM not only exposes the misclassification patterns of 

the model but also introduces innovation in comprehending 

false positives. 

 
Fig.14. Comparison of (a) Original Image and (b) SHAP Output 

 

Fig.15. Grad-CAM Output 

 

False Negative (FN): In cases of False Negative, where the 

model wrongly predicted a healthy state, our scrutiny began 

with the original image, providing insights into the 

misclassification. Figure 14 (a) marks our starting point with 

the original image, succeeded by Figure 14 (b), showcasing the 

SHAP output that explains the false-negative classification by 

the ResNet50 model. Grad-CAM, depicted in Figure 15, delved 

deeper into understanding the reasons behind the Convolutional 

Neural Network (CNN) model's erroneous negative 

identification, visually representing the regions accountable for 

the misjudgment. Figure 15 (a) showcases the original image as 

the foundation for our analysis. Figures 15 (b) and 15 (c) 

delineate the two key phases of Grad-CAM. In Figure 15 (b), 

the completed Grad-CAM unveils the highlighted regions 

contributing to the false negative identification, while Figure 15 

(c) captures the ongoing process, emphasizing mid regions that 
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played a role in the misjudgment. The collaborative synergy of 

SHAP and Grad-CAM not only brings to light the model's 

misjudgments but also introduces a fresh perspective on 

comprehending false negatives. 

The results obtained in this study are noteworthy when 

compared to other studies in the literature, revealing both 

similarities and differences. For instance, Yang et al. used the 

VGG16 model, considering background factors in pneumonia 

diagnosis, and achieved an accuracy of 95.6 [6]. Their results, 

particularly in terms of model explainability using Grad-CAM, 

align with our ResNet50-based model. However, our model 

incorporates an additional layer of explainability through 

SHAP, allowing for a deeper understanding of the decision-

making process. This added explainability supports the model's 

reliability in clinical applications. 

In the study conducted by De Moura et al. on COVID-19 

pneumonia, SHAP and Grad-CAM were utilized with the 

XGBoost model, resulting in an accuracy of 82 [7]. In 

comparison, the integration of SHAP and Grad-CAM in our 

model achieved higher accuracy, underscoring the robustness 

of ResNet50 as a transfer learning model in medical image 

analysis tasks. 

Moreover, Zou et al.’s work, which combined Grad-CAM++ 

and SHAP to predict the mortality risk in pneumonia patients 

[9], highlighted the critical role of explainability in clinical 

decision-making. Similarly, in our study, the integration of 

SHAP and Grad-CAM significantly enhanced the 

explainability of the model, thereby strengthening its reliability 

for clinical use. 

Finally, while Alsharif et al. achieved a remarkable accuracy 

of 99.7 with their CNN-based PneumoniaNet framework for 

pediatric pneumonia diagnosis [11], our results are comparably 

strong. Although their model demonstrated high accuracy, the 

addition of explainability techniques such as SHAP and Grad-

CAM in our model offers a clearer understanding of the 

decision-making process. These explainability methods not 

only improve the reliability of deep learning models but also 

enhance their acceptance in clinical settings by providing 

greater transparency. 

IV. CONCLUSIONS AND THE SCOPE FOR FUTURE WORK 

Chest X-ray analysis plays a vital role in pneumonia 

diagnosis, and recent advancements in Deep Learning (DL) 

methods have significantly increased the accuracy of automated 

diagnosis. This article explores the intersection of DL and 

explainable artificial intelligence (XAI) in the context of 

pneumonia diagnosis through chest X-rays. Using the 

ResNet50 model from CNNs and Transfer Learning (TL) 

methods, an accuracy of 95.23 was achieved. 

In this study, we found that the combination of ResNet50, 

SHAP, and Grad-CAM provides a robust methodology for 

interpreting and explaining pneumonia diagnosis model 

decisions. SHAP's ability to individually evaluate the 

contribution of each input to the model output allows medical 

professionals to better understand why the model made a 

particular decision and assess the reliability of that decision. 

Grad-CAM, on the other hand, visually shows which regions 

the model considers, but it may sometimes be insufficient for a 

deep understanding of the decision-making process. 

Our results show that when SHAP and Grad-CAM are used 

together, they can enhance interpretability in medical imaging 

analyses. Future studies should aim to further explore the 

synergy between these two methods to develop and improve 

methodologies for medical imaging analyses. The combination 

of SHAP's quantitative explanations with Grad-CAM's visual 

explanations can provide medical professionals with a more 

holistic and reliable interpretation. Such integration could 

enhance the reliability of machine learning models in clinical 

applications and contribute to the development of more 

effective decision support systems. 
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