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ABSTRACT 
In this research paper, beginning with the Lagrangian and generalized velocity proportional (Rayleigh) dissipation 

function of a physical/engineering system, the Lagrange-dissipative model ( {L,D}-model briefly) of the system 

is initially developed. Upon satisfying the prerequisite condition for a Legendre transform, the Hamiltonian 

function can be obtained. With the Hamiltonian function and the generalized velocity proportional (Rayleigh) 

dissipation function, dissipative canonical equations can be derived. Using these dissipative canonical equations 

as the state-space equations of the system allows for the investigation of observability, controllability, and stability 

properties. In addition to the equilibrium (or critical or fixed) points of the system, stability properties can also be 

verified through a Lyapunov function as a residual energy function (REF). Since the proposed method is valid for 

both linear and nonlinear systems, it has been applied to the Van der Pol oscillator/equation. 

 

Keywords: Observability, Controllability and stability of Van der Pol oscillator/equation, Lyapunov function for 

stability of Van der Pol oscillator/equation. 

 

 

Van der Pol Osilatörü, Yitimli Kanonik Denklemler Kullanarak 

Kontrol Teorik Analizi ve Lyapunov Fonksiyonu 
 

ÖZ 
Bu araştırma makalesinde, bir fiziksel/mühendislik sisteminin Lagrangian ve genelleştirilmiş hız orantılı 

(Rayleigh) yitim fonksiyonu ile başlayarak, öncelikle bu sistemin Lagrange-dissipatif modeli (kısaca {L,D}-

modeli) oluşturulmuştur. Legendre dönüşümü için gerekli koşulunun sağlanmasıyla Hamilton fonksiyonu elde 

edilebilir. Hamilton fonksiyonu ve genelleştirilmiş hız orantılı (Rayleigh) yitim fonksiyonuyla, yitimli kanonik 

denklemler elde edilebilir. Yitimli kanonik denklemlerin sistemin durum uzayı denklemleri olarak kullanılması; 

gözlemlenebilirlik, kontrol edilebilirlik ve kararlılık özelliklerinin araştırılması için kullanılır. Sistemin denge 

(veya kritik veya sabit) noktalarının yanı sıra, sistemin kararlılık özellikleri, artık enerji fonksiyonu (REF) olarak 

bir Lyapunov fonksiyonu aracılığıyla da doğrulanabilir. Önerilen yöntem doğrusal ve doğrusal olmayan sistemler 

için de geçerli olduğundan, yöntem Van der Pol osilatörüne/denklemine uygulanmıştır. 

 

Anahtar Kelimeler : Van der Pol denklemi, Gözlemlenebilirlik, Denetlenebilirlik, Kararlılık, Van der Pol denklemi 

kararlılığı için Lyapunov fonksiyonu. 
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I. INTRODUCTION 
 

A non-conservative oscillator with a nonlinear damping was examined by Balthasar van der Pol in 1920, 

where the related equation and oscillation are called as Van der Pol equation and Van der Pol oscillation 

respectively.  

 

Dynamical systems described by Van der Pol equations occur in various fields of physical and 

engineering sciences. These cover also biological and geological/geophysical sciences. 

 

Some of the first articles on Van der Pol equation/oscillator are [1-2-3-4]. Also, different books available 

on nonlinear dynamics and chaos include Van der Pol equation/oscillator like [5-6-7-8]. The 

equation/oscillator has different applications in different sciences. The equation was also used even in 

seismology to model the two plates in a geological fault as in [9]. 

 

Physical and mathematical foundations of Lagrangians and Hamiltonians are contained in [10-11-12], 

where [12] is a very rare source including conditions for a Legendre transform. Modelling a physical or 

an engineering dynamical system by means of a Lagrangian L, a generalized velocity proportional 

(Rayleigh) dissipation function D and a Hamiltonian H depending on tensorial variables in contravariant 

and covariant forms was shown in [13], which also includes the dissipative canonical equations. In 

different tensorial forms, the extended Hamiltonians to obtain canonical equations in case of dissipative 

systems directly are given in [14] which contains also higher order {L,D}-models. Therefore, higher 

order Lagrangians, dissipation functions and nonconservative Hamiltonians are introduced in this study. 

The method to obtain a Lyapunovfunction as residual energy function in a systematic way was 

introduced in the reference [15].  

 

In general, observability and controllability of nonlinear systems are given in [16]. Mathematically, Lie 

derivatives for observability and Lie brackets for controllability for linear and nonlinear systems are 

explained in [17] in detail. And the approaches convert to the usual linear case of observability and 

controllability matrices if the system is a linear one. 

 

Physical system analysis related to observability, controllability and stability using its equations of 

generalized motion and canonical equations both in dissipative forms are studied in [18]. In the 

article[19], Duffing oscillator/equation was analyzed related the concepts given using equations of 

generalized motion including dissipation which can also be applied here.  

 

This time, dissipative canonical equations will rather be used in this study. But observability and 

controllability analysis of Van der Pol oscillator/equation in general lacks in the literature. And this 

analyze is performed first time using classical mechanical  approach including dissipation with 

statespace method as far as known by us.  Moreover, Lyapunov’s direct (or second) method is applied 

as residual energy function, and this is not considered for Van der Pol oscillator/equation in any other 

literature before which provides more precise results from the point of physics.  

 

Lagrange-dissipative model of the Van der Pol oscillator/equation was derived here firstly. Provided 

that the condition for a Legendre transform is fulfilled, the Hamiltonian of the system and the dissipative 

canonical equations can be obtained which differs than the usual approaches with no dissipation. In this 

context, the method proposed is explained in detail. As far as we know, Van der Pol oscillator is analyzed 

for the first time by means of observability, controllability using the method and stability using 

Lyapunov function which is valid for linear and nonlinear cases. Lyapunov function as a residual energy 

function obtained as sum of Hamiltonian and negative form of dissipative energy will be used for the 

stability analysis. Finally, the conclusions which were established was stated.  
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II.OBTAINING THE {L,D}-MODEL AND THE 

EQUATIONS OF GENERALIZED MOTION 
 

The Lagrangian in its most general form is  

 

 
(1) 

 

is the kinetic and is the potential energy parts of the Lagrangian. And the generalized 

velocity proportional (Rayleigh) dissipation function has the following form: 

 

 
(2) 

 

where k presents the degree of freedom. The extended Euler-Lagrange differential equation is 
 

 
(3) 

 

The external generalized force  may be included in the generalized velocity proportional (Rayleigh) 

dissipation function  in form  as negative loss or in the Lagrangian as negative potential in 

form of  to obtain the equations of generalized motion using extended Euler-Lagrange differential 

equation.  

 

The second-degree differential equation of the generalized motion obtained through extended Euler-

Lagrange differential equation has the most general form given below: 

 

 
(4) 

 

where  is the generalized mass,  is the generalized resistive and  is the generalized capacitive 

elements respectively,  is the constant when available. 

 

Equations of generalized motion can be written in state space form to analyze the generalized motion 

related to observability, controllability, and stability. But we here, will prefer to analyze the system 

related the concepts using state space form of dissipative canonical equations since the Hamiltonian is 

needed to construct a Lyapunov function in form of a residual energy function. 

 

 

III.LEGENDRE TRANSFORM, HAMILTONIAN H AND 

OBTAINING DISSIPATIVE CANONICAL EQUATIONS 
 

Prerequisite that the condition for a Legendre transform given as 

 

 
(5) 

 
İs fulfilled, one can obtain the Hamiltonian H related to the Lagrangian L  given as  



482 

 

 
(6) 

 
The canonical equations are: 

 

  ,   
(7) 

 

The dissipative canonical equations are in what follows: 

 

  ,    ;   
(8) 

 

Prerequisite that the external generalized force(s) are not included in any potential or dissipation function 

in any form, the dissipative canonical equations in general can be written in matrix form as below: 

 

  ;   

(9) 

 

 

IV. OBSERVABILITY USING THE DISSIPATIVE 

CANONICAL EQUATIONS 
 

For a physical system, observability is proven using Lie derivatives of h with respect to f 

 

 
(10) 

 

where the first Lie derivative is as follows: 

 

 

(11) 

 

The related vector of all Lie derivatives G and the observability matrix O that is the multiplication of 

the matrix O with the operator  have the forms given below: 

 

 

(12) 

 

For such a physical system to be observable (locally, if the system is a nonlinear one) at a point , the 

rank of the observability matrix O must be . 
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V. CONTROLLABILITY USING THE DISSIPATIVE 

CANONICAL EQUATIONS 
 
With the Lie bracket given below  

 

 
(13) 

 
controllability of a physical system modelled by the Hamiltonian H together with dissipation function 

D) can be proven, if the controllability matrix has the rank . 

 

 

VI. EQUILIBRIUM POINTS AND THE STABILITY USING 

THE EIGENVALUES AND THE LYAPUNOV FUNCTION IN 

FORM OF A RESIDUAL ENERGY FUNCTION 
 

Equilibrium points for dissipative Hamiltonian systems are obtained using the term below:  

 

 
(14) 

 

The Hamiltonian leads to a system of 2f differential equations of order one compared to the f differential 

equations of order two obtained through extended Euler-Lagrange differential equations. Its state space 

form is given in the following: 

 

  ;   

(15) 

 
    

where   𝑥 = [𝑞𝑘 , 𝑝𝑘]𝑇
  is the vector of the canonical variables, T stands for transpose and   is the 

Jacobian of the matrix . This is valid for linear and also, for nonlinear systems if the nonlinear 

terms are linearized in the matrix  and written in form of a Jacobian matrix. And the eigenvalues 

of characteristic equation of the Jacobian matrix are given by the equation 

 

 

(16) 

 

The system is (asymptotically) stable if 

 

 

(17) 

 

and marginally stable in case of a lossless system, when the roots are in complex conjugate form: 
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(18) 

 

When the Hamiltonian  together with the generalized velocity proportional (Rayleigh) 

dissipation function  is known, then the system can be analyzed for observability, controllability 

and stability.  

If the Jacobian matrix covers nonlinear terms through which the eigenvalues can not be found, the 

Lyapunov function in form of residual energy function can be used for stability. 

 

Since the REF is defined as  

 

 
(19) 

 

and the first-time derivative of the REF, is total power, which reads 

 

 
(20) 

 

 

VII. OBSERVABILITY, CONTROLLABILITY AND 

STABILITY ANALYSIS OF VAN DER POL OSCILLATOR 

USING THE DISSIPATIVE CANONICAL EQUATIONS 
 

A. OBTAINING the {L,D}-MODEL and the EQUATIONS of GENERALIZED 

MOTION of VAN DER POL OSCILLATOR 
 

In its most general form, the Van der Pol oscillator with a nonlinear damping is a non-conservative 

dynamical system and the dynamics of the system is governed by the differential equation: 

 
(21) 

 

which is an important special case of the Liénard equation, where the variable q is the time dependent 

generalized coordinate, F is the external generalized force and the scalar  is the parameter indicating 

nonlinearity and also the strength of the damping. Accordingly, if , that is no damping, then the 

case converts to harmonic oscillator which is always conservative. Other cases are: 

 

 
 

 

(22) 

 

Here, we will be interested of positive damping factor   which will deliver positive or negative damping 

depending on   or , where  means the non-dissipative case.  
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In our case, through comparing one obtains  

 

 

(23) 

 

The generalized velocity proportional (Rayleigh) dissipation function in this case is: 

 

 
(24) 

 

The related {L,D}-model with an autonomous Lagrangian  and the related momentum is  

 

 

 

(25) 

 

Here, the generalized velocity proportional (Rayleigh) dissipation function  does not only depend on 

generalized velocity   in form of  but also generalized coordinate in form of . 

 

B. LEGENDRE TRANSFORM, HAMILTONIAN H, the EXTENDED HAMILTONIAN 

H OBTAINING DISSIPATIVE CANONICAL EQUATIONS of VAN DER POL 

OSCILLATOR and THEIR MATRIX EQUATION FORM 

 
The condition for a Legendre transform is already fulfilled since: 

 

 
(26) 

 

Thus, the related Hamiltonian reads: 

 

 
(27) 

 

The extended Hamiltonian cannot be used here to obtain the dissipative canonical equations directly as 

the generalized velocity proportional (Rayleigh) dissipation function has the form of  and 

not . And the dissipative canonical equations for this system are 

 

 

 

(28) 

 

The dissipative canonical equations in state space form for Van der Pol oscillator can be rewritten in 

form of a matrix equation including generalized external force as follows: 
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  ;   

(29) 

 

 

C. OBSERVABILITY USING the DISSIPATIVE CANONICAL EQUATIONS of the 

VAN DER POL OSCILLATOR 

 
The Lie derivatives of h with respect to f are 

 

  ;   (30) 

 

Accordingly; 

 

 
(31) 

 

The vector of all Lie derivatives and its multiplication with   are for the case is  

 

 
(32) 

 

And the determinant of which has rank two, when 

 

 
(33) 

 

i.e. the system is (locally) observable everywhere except the points  . 

 

D. CONTROLLABDLDTY USING THE DISSIPATIVE CANONICAL EQUATIONS of 

the VAN DER POL OSCILLATOR 
 

Calculating the Lie brackets yields here: 

 

 
(34) 

 

 

Hence the controllability matrix Q is in the form 

 

 
(35) 

 
Q has rank zero, implying that, this system is not controllable. 

 

E. EQUILIBRIUM POINTS and the STABILITY USING the EIGENVALUES of the 

VAN DER POL OSCILLATOR and its LYAPUNOV FUNCTION in FORM of a 

RESIDUAL ENERGY FUNCTION 
 

Equilibria condition for such a dissipative Hamiltonian system in general is 

 

 
(36) 
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Therefore, equilibrium points are: 

 

 

 

(37) 

 

The state space equation related the dissipative canonical equations of Van der Pol equation can be 

written as: 

 

  ;   

(38) 

 

Using Jacobian matrix  of the system and its eigenvalues, stability of the equilibrium points can be 

understood better.  With the characteristic equation, results can be obtained as follows:  

 

 
(39) 

 

 

The (asymptotic) stability is proven when   

 

 
(40) 

 

The characteristic equation for the equilibrium point  is 

 

 
(41) 

 

Thus, the equilibrium point is unstable.  

Lyapunov function in form of a residual energy function, that must be positive definite, is  

 

 
(42) 

 

with the first-time derivative 

 

 
(43) 

 

which must be in negative semidefinite form to ensure stability and fulfill the following condition: 

 

 
(44) 

 

where equality means marginal while less means asymptotic stability. Accordingly, one obtains the 

result satisfying the Eq.(44) 

 

  ;   (45) 
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And as such the regions with border lines  in phase space are stable regions while the region 

  is unstable.  

 
 

VIII. CONCLUSIONS 
 
It was demonstrated that for a Van der Pol oscillator/equation as a nonlinear system, when {L,D}-model 

and thus Hamiltonian are known, then the system can be analyzed by means of observability, 

controllability and stability using the approach which was performed for the first time in order to Van 

der pol oscillator/equation in general here. Moreover, stability analysis can also be performed using 

Lyapunov function as residual energy function. As can be seen that this kind of Lyapunov function is 

constructed using Hamiltonian and dissipative function together for linear and also nonlinear systems. 

This kind of analysis method is valid for every linear and nonlinear system where kinetic, potential 

energies and (generalized velocity proportional) Rayleigh dissipation functions are involved. It can also 

be applied specially to coupled engineering/physical systems, where different physical quantities are 

available, with no need to convert the physical quantities to the other. 
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