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Makale Bilgisi OZET
Sanayilesmenin hizlanmasiyla birlikte artan enerji arz talebi artik konutlarda da kullanilan yeni nesil elektronik ekipmanlar
Gelis Tarihi: 09.03.2024 nedeniyle her gegen giin artmaktadir. Enerjinin klasik yontemlerle (dogalgaz, sosil yakitlar vb.) tiretilmesine alternatif

e olarak gelistirilen be yesil enerji adi verilen yenilenebilir enerjinin kullaniminin yayginlasmasiyla beraber bazi sorunlar
Kabul Tarihi: 02.09.2024 ortaya glkmaktadlr‘ Ei/de ediler;l elektrigin sis}t,eme entegre bir J§ekilde verilip takig ey(‘igilebilmesiyi(;in veri izlemesi biiyiik
Yaym Tarihi: 30.04.2025 onem arz etmektedir. Bu amagla kurulan mikro ve makro 6lgekteki akilli sebekelerin dinamik role haberlesmesi sayesinde
biiyiik olgeklerde enerji verileri elde edilmektedir. Nesnelerin interneti (IoT) ¢aginda elde edilen bu verilerin islenmesi ve
. analiz edilmesi i¢in derin 6grenmek algoritmalar1 ve makine 6grenmesi yontemleri kullamlmaktadir. Bu yontemlerin
Anahtar Kelimeler: saglamis oldugu dogru analizler sayesinde akilli sebekeler daha az kayipla (yiiksek verimle) ¢alismaktadir. En kiigiik
Akilli sistemler, 6lgekli bir kullanicinin enerji tilketim hesabi kestirimi optimize bir enerji yonetimi saglamaktadir. Elektrigin dogru
Derin 6grenme’ miktarda (giigte) akisi saglandiktan sonra ortaya ¢ikabilecek israfin da 6niine gegilebilmektedir. Makine ve derin 6grenme
algoritmalarinin hizli ve geligmis tepkileri sayesinde hem kullanicilar hem de iireticiler daha planli ve siirdiiriilebilir bir
enerji yonetimine sahip olmaktadirlar. Bu ¢alismada konutlara ait 4 yillik elektrik enerji verileri Convolutional Neural
Network, Long Short-Term Memory, Random Forest ve K-Nearest Neighbors Regression gibi yontemlerle analiz
edilmistir. Bu analizler neticesinde tiiketilecek enerjinin tahmini yapilmistir. Calismadaki 6grenme algoritmalarinin
etkinligini degisen egitim ve test veri oranlarina gore degerlendirmek igin veri seti ti¢ farkli bdlme yontemi kullanilarak
bolimlendi: %90 egitim - %10 test, %80 egitim - %20 test ve %67 egitim - %33 test bolimi. Ek olarak, daha ileri
degerlendirme igin 10 katli ¢apraz dogrulama yaklasimi kullanildi. Karsilastirmali analiz, LSTM modelinin giinliik
tahminler i¢in en diisitk MSE degeri olan 0,0054 ile en iyi performans gosteren model olarak ortaya ¢iktigini ortaya ¢ikardi.

Makine 6grenmesi.

Application of Contemporary Artificial Intelligence Algorithms in Real Energy
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Article Info ABSTRACT

. The acceleration of industrialisation has resulted in a corresponding increase in the demand for energy supplies, driven by
Received: 09.03.2024 the growing use of new generation electronic equipment in residential settings. The advent of renewable energy, or green
Accepted: 02.09.2024 energy, has prompted a shift away from traditional methods of energy production, such as the use of natural gas and fossil
Published: 30.04.2025 fuels. However, this transition has given rise to a number of challenges. It is of great importance to monitor data in order

to integrate the obtained electricity into the system and to monitor it. The acquisition of energy data on a large scale is
made possible by the implementation of dynamic relay communication within micro and macro scale smart grids, which
Keywords: have been specifically designed for this purpose. Deep learning algorithms and machine learning methods are employed
for the processing and analysis of data obtained in the context of the Internet of Things (10T). The implementation of these
Smart syste_ms, methods enables smart grids to operate with reduced loss and enhanced efficiency. The estimation of energy consumption
Deep Iearnlng, at the smallest scale facilitates the implementation of optimised energy management strategies. By ensuring the flow of
Machine learning. electricity in the optimal amount (power), the potential for waste can be mitigated. The rapid and sophisticated responses
of machine and deep learning algorithms facilitate more structured and sustainable energy management for both users and
producers. In this study, four years' worth of electrical energy data from residential sources was analysed using techniques
such as Convolutional Neural Network, Long Short-Term Memory, Random Forest and K-Nearest Neighbours Regression.
The resulting analyses enabled the estimation of energy consumption. To assess the efficacy of learning algorithms in the
study across varying training and test data ratios, the dataset was partitioned using three distinct division methods: hold-
out (90% training - 10% testing), hold-out (80% training - 20% testing), and a 67% training - 33% testing split.
Additionally, a 10-fold cross-validation approach was employed for further evaluation. Comparative analysis revealed that
the LSTM model emerged as the top-performing model, boasting the lowest MSE value of 0.0054 for daily forecasts.
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INTRODUCTION

In the current landscape, residential and commercial buildings account for approximately 30% to
40% of total energy demand [1,2], with projections indicating a further rise in this proportion. This
escalation in energy demand underscores the growing significance of renewable energy production. The
effective integration of renewable energy into the grid requires the development of efficient energy
transfer mechanisms, which has led to a significant increase in research activity focused on smart
electricity grids and the ability to meet societal demands.

Smart grids, characterized by enhanced communication channels between producers and
consumers [3,4], enable real-time monitoring, prediction, scheduling, and adaptive production based on
local energy consumption patterns. These networks promise substantial environmental and economic
benefits, including optimized electricity transmission with minimized energy losses due to shorter
transmission lines, expedited outage resolution, heightened security against sabotage, seamless
integration of renewable energy sources, and reduced costs associated with fault detection and repair

[5].

The incorporation of artificial intelligence (Al) in electrical network management facilitates
efficient planning and real-time control of dynamically evolving power supplies. Consequently, recent
research efforts have increasingly delved into this domain [6], with a notable emphasis on leveraging
deep learning and machine learning techniques for energy consumption estimation. Such endeavors hold
the promise of enabling future electricity networks to forecast energy consumption accurately, allowing
users to implement energy-saving measures at the building level. Traditionally, energy consumption
forecasting encompasses three temporal categories: short-term forecasts (ranging from one day to one
week), medium-term forecasts (spanning from one week to one year), and long-term forecasts
(extending beyond one year).

Energy estimation of buildings is a difficult problem because it depends on many different factors
(climatic conditions, devices used by the consumer, frequency of use, etc.) [7]. Therefore, taking
everything into account when estimating energy will produce more efficient results. Estimating energy
consumption; It will make it easier to calculate the amount of energy that needs to be produced and the
amount of energy that needs to be stored. In addition, it will enable quick decisions in energy
management as it will allow predicting where, when and how much cost will be required. In this way,
time-saving methods will be implemented more easily. Future programming will be healthier and more
reliable.

In the 2016 study led by Elena Mocanu and her colleagues, the focus was on estimating energy
consumption in buildings using deep learning methodologies. Specifically, newly developed stochastic
models, namely CRBM (Conditional Restricted Boltzmann Machine) and FCRBM (Fully Conditional
Restricted Boltzmann Machine), were employed for this purpose. The researchers utilized the
"Individual Household Electric Power Consumption Data Set" obtained by Hebrail and Berard, which
is publicly available in the UCI Machine Learning Repository [8]. This dataset comprises individual
residential customer data recorded at 1-minute intervals over a span of four years.

The study encompassed the application of predictions under seven distinct scenarios, each
employing various machine learning techniques. Specifically, Artificial Neural Networks (ANN),
Support Vector Machines (SVM), Recurrent Neural Networks (RNN), CRBM, and FCRBM methods
were employed across these scenarios. The scenarios investigated are delineated as in Table 1:
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Table 1
Different scenarios for deep learning (DL) application
Scenario Energy Consumption Solution Duration for DL
1 15 minutes 1 minute
2 1 hour 1 minute
3 1 day 1 minute
4 1 day 15 minutes
5 1 week 15 minutes
6 1 week 1 hour
7 1 year 1 week

In summary, the Fully Conditional Restricted Boltzmann Machine (FCRBM) demonstrated
superior performance compared to state-of-the-art prediction methods such as Artificial Neural
Networks (ANN), Support Vector Machines (SVM), Recurrent Neural Networks (RNN), and the
Conditional Restricted Boltzmann Machine (CRBM). As the prediction horizon expands, both FCRBM
and CRBM exhibit heightened efficacy, with error rates approximately half that of the ANN method.
These methodologies yield comparable results and demonstrate potential for real-time applications in
home and building automation systems. Notably, rather than estimating total active power directly, a
more efficient approach involves estimating and aggregating sub-measurements to arrive at total active
power.

In a separate study by Tae-Young Kim et al., minute, hourly, daily, and weekly predictions were
conducted using Linear Regression, Long Short-Term Memory (LSTM), and Convolutional Neural
Network-Long Short-Term Memory (CNN-LSTM) algorithms [9]. The "Individual Household Electric
Power Consumption Data Set" by Hebrail and Berard served as the dataset [10]. Results indicate that
the CNN-LSTM algorithm outperformed other algorithms, achieving mean squared error (MSE) values
of 0.3738 per minute, 0.3549 per hour, 0.1037 per day, and 0.0952 per week.

In the research conducted by Xiaoou Monica Zhang and colleagues, the Support Vector
Regression (SVM) modeling approach served as the predictive algorithm. This methodology was
applied to conduct hourly and daily predictions for 15 distinct households' electricity usage data
spanning the years 2014 to 2016 [11]. Feature selection and data visualization techniques were employed
through exploratory data analysis. The ensuing analyses revealed the feasibility and reliability of
predicting residential energy consumption by leveraging weather conditions, calendar parameters, and
time-of-use pricing. Notably, the SVM model exhibited satisfactory accuracy in both daily and hourly
forecasts for specific residential applications.

Yasemin Kocadayi and her team endeavored to estimate the annual energy consumption of the
TR81 region (comprising Zonguldak, Karabuk, and Bartin) utilizing artificial neural networks (ANNS).
Input data for the ANN model included building surface areas, population figures, as well as import and
export data [12]. The model's performance was evaluated based on metrics such as mean square error,
mean absolute error, and correlation coefficient. Through the ANN model, energy consumption
projections for the TR81 region spanning 2016 to 2020 were obtained. The findings underscored the
ANN model's proficiency in accurately predicting electrical energy consumption within the region,
demonstrating a high level of precision.

Derya Yilmaz and her team investigated project risks with a specific focus on heating and
electricity demands in buildings. They introduced an innovative model for predicting performance gaps
using machine learning classification techniques. The study gathered data on performance gaps and
project risks through a web-based survey conducted across 77 buildings. Four machine learning
algorithms—Naive Bayes, k-NN, SVM and RF—were evaluated to determine the most effective model.

The results revealed that Naive Bayes demonstrated superior accuracy in predicting the direction
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of heating performance gaps (72.50%), negative heating performance gaps (71.81%), positive electricity
performance gaps (77.08%), and negative electricity performance gaps (83.85%). Furthermore, both k-
NN and SVM exhibited higher accuracy in predicting the direction of electricity performance gaps
(79.00%) and positive heating performance gaps (76.04%) [13].

A study performed by Flavian Emmanuel_Sapnken et al. utilizes a dataset from 7,559 buildings
and employs nine Machine Learning (ML) models to estimate their energy consumption. Results
indicate that the deep neural network (DNN) emerges as the most effective ML model, achieving MAE,
MSD, and RMSE of 0.93, 1.12, and 1.06, respectively, in less than 7 seconds, despite the large dataset
size. Its R? value is also the highest at 0.96, indicating that the DNN approach can explain 96% of the
energy consumption in buildings, with only 4% remaining unexplained, likely due to limitations in
independent variables. Moreover, this outcome remains consistent across building clusters and various
climate zones. Their model proposes a model that professionals can utilize during the design phase of
construction projects. This model enables consideration of all critical aspects for designing energy-
efficient buildings. It serves as a decision-making tool to control and optimize projects, allowing for
anticipation of energy consumption even before construction begins [14].

P. Balakumar et. al. suggest implementing a Demand Side Management (DSM) program within
a smart grid to decrease the utility grid's Peak to Average Ratio (PAR) and lower end-users' electricity
tariffs. It advocates for the use of renewable energy combined with an Energy Storage System (ESS) in
the DSM controller to improve both economic and environmental aspects for end-users. To develop the
DSM program, the article proposes a framework based on Recurrent Neural Network (RNN),
specifically Long Short-Term Memory (LSTM), for forecasting Science Block (SCB) energy
consumption every minute and 5 minutes for Energy Production Control (EPC) and Renewable Energy
Generation (REG). The performance of this deep learning model is evaluated using metrics such as
Mean Squared Error (MSE), Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and R-
squared. The suggested LSTM framework demonstrates superior performance compared to other listed
rival techniques in short-term Energy Production Control (EPC) for Science Block (SEIB) and
Renewable Energy Generation (REG). For both short-term REG and EPC forecasting, the LSTM model
achieves an accuracy with an R? value nearly close to one. With their proposed deep learning-based real-
time DSM controller, the electricity tariff of SEIB is reduced by 4.4% on January 1st, 2022, and by
14.86% on January 2nd, 2022. Similarly, the utility grid's Peak to Average Ratio (PAR) is minimized to
5.10% and 11.79%, respectively [15].

This study examined the estimation of energy consumption in a house where smart systems are
used, comparing it with DL and ML methods. The findings may vary depending on the type of house,
for example if it is a smart building or in an urban area. Therefore, in this study, commercial enterprises
were excluded, as their consumption could not be evaluated. Within the scope of this study it is not to
estimate the demand factor or consumption, but rather to identify the most efficient method using
existing consumption data.

MATERIALS AND METHODS

With the advent of technological advancements, researchers are fervently engaged in enhancing
efficiency across various domains [16-18]. Among these endeavors, numerous studies are dedicated to
advancing the energy sector. Notably, smart grids represent a pivotal facet of these efforts, offering
streamlined energy distribution, management capabilities, and integration of renewable energy sources
into production processes [19-21]. Across such endeavors, the efficacy of predictive methodologies has
seen significant enhancement through the development of novel algorithms [22,23].

The principal objective of this study is twofold: firstly, to glean insights into future energy
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consumption patterns through the estimation of energy usage employing deep learning and machine
learning techniques; and secondly, to devise a model that not only aids in curbing energy consumption
but also facilitates prudent household expenditure planning.

Data Set

The dataset utilized in this study originates from the Individual Household Electric Power
Consumption dataset retrieved from the UCI Machine Learning Repository database. This dataset
comprises records of electrical power consumption, measured in kilowatt-hours, recorded every minute
within a household located in France, spanning from December 2006 to November 2010 (47 months).
The dataset, a time series, encompasses a total of 2,075,259 measurements, capturing various time-
dependent power-related variables. Notably, the dataset primarily focuses on the total active power
measurement values, denoted as "Global_active_power," representing kilowatts consumed by
households, amidst seven distinct variables [10].

To facilitate compatibility with machine learning and deep learning algorithms, the dataset
necessitated preprocessing and conversion into a suitable format. Notably, the household electrical
power consumption dataset exhibited some missing values within the measurements, such as observed
on April 28, 2007. Addressing this issue, missing values were imputed by replacing them with the
average power consumption values recorded during corresponding minutes across other years.
Subsequently, the processed dataset was saved as a new entity, ready for analysis.

In the final stage of data preprocessing, the observations recorded every minute were transformed
into daily electrical power consumption quantities measured in kilowatt-hours (kWh). This conversion
was implemented to facilitate the estimation of daily energy consumption, thereby condensing minute-
by-minute observations into daily totals. Consequently, the dataset encompasses a total of 1442 daily
observation values. The actual daily electrical power consumptions following the data preprocessing
phase are visually depicted in Figure 1, illustrating the variations in kWh consumption over time.
Furthermore, the characteristics of the active power data subsequent to the conversion of the dataset into
daily values are detailed in Table 2, providing insights into the statistical properties and distributional
aspects of the transformed dataset.
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Figure 1
Actual daily electrical power consumption graph after data preview phase
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Table 2
Properties of the data set

Data Set Length 1442
Average 1567.839069
Std 597.306856
Minimum 250.298000
25% 1176.195000
50% 1543.253000
75% 1894.467500
Maximum 4773.386000

When conducting time series analysis, the first step involves assessing whether the series exhibits
stationarity. Stationarity is characterized by consistent mean and variance of observations over time,
indicating that the series does not undergo significant changes across time periods. A stationary time
series typically lacks discernible trends or seasonality, making it more amenable to modeling. Statistical
modeling techniques often presuppose stationarity for effective application.

In contrast, non-stationary time series display temporal variations such as trends, seasonal effects,
or other structural dependencies on the time index. In such cases, summary statistics like mean and
variance may fluctuate over time, complicating the modeling process by introducing shifts in the
underlying data dynamics. Traditional time series analysis and forecasting methodologies aim to
stabilize non-stationary data by identifying and mitigating trends and seasonal effects.

Several approaches exist to assess stationarity in a time series dataset. These include:

Graphical Examination: Time series plots can be visually inspected for evident trends or seasonal
patterns.

Summary Statistics: Statistical metrics computed over different seasons or random segments of
the data can be compared to identify any pronounced differences, which may indicate non-stationarity.

Statistical tests serve as a valuable tool for assessing whether time series data meet the criteria for
stationarity. While these tests rely on certain data assumptions, they offer a swift means of confirming
stationarity or non-stationarity. In this study, the Augmented Dickey-Fuller (ADF) test was employed
to scrutinize the stationarity of the time series [24]. The ADF test belongs to a class of statistical tests
known as unit root tests and is among the most widely utilized methods in this domain. This test
leverages an autoregressive model and employs an information criterion to optimize across various lag
values.

The null hypothesis (HO) posited by the ADF test suggests that the time series contains a unit root
and is thus non-stationary. Conversely, the alternative hypothesis (H1) refutes the null hypothesis,
indicating that the time series lacks a unit root and is stationary. The outcome of the ADF test is typically
interpreted through the computed p-value. A p-value below a specified threshold (e.g., 5% or 1%)
signifies rejection of the null hypothesis, signaling stationarity. Conversely, a p-value surpassing the
threshold indicates failure to reject the null hypothesis, implying non-stationarity.

In the context of the Augmented Dickey-Fuller (ADF) test:

o When the p-value is greater than 0.05, the null hypothesis (HO) is not rejected. This indicates
that the data contains a unit root and is non-stationary.

e Conversely, when the p-value is less than or equal to 0.05, the null hypothesis (HO) is rejected.
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This suggests that the data lacks a unit root and is stationary.

The results of the Augmented Dickey-Fuller (ADF) test are presented in Table 3. The computed
ADF test statistics yielded a value of -3.697385. In the context of the ADF test, a more negative statistic
increases the likelihood of rejecting the null hypothesis. Notably, the calculated ADF value fell below
the critical value corresponding to a significance level of 1%. This discrepancy implies that the null
hypothesis will indeed be rejected with a significance level of less than 1%. Moreover, the computed p-
value was found to be less than or equal to 0.05. This observation leads to the rejection of the null
hypothesis, indicating that the time series exhibits stationarity or lacks a time-dependent structure. In
summary, both the ADF test statistic and the p-value converge to suggest the rejection of the null
hypothesis, thus affirming the stationarity of the time series data.

Table 3
ADF test results

ADF Statistics -3.697385
p-value 0.004150
Critical Values

1% -3.4357
5% -2.8645
10% -2.5686

Application of MLA

In machine and deep learning algorithms, it is worth noting that the percentages of training and
testing data can vary for different applications [25,26]. In studies involving large data sets, it is often the
case that set division is done at different percentages in order to get the most accurate results [27-29].
Therefore, in our study, we tested data division percentages at different rates in order to gain a better
understanding of the impact of this on the results.

To assess the efficacy of learning algorithms in the study across varying training and test data
ratios, the dataset was partitioned using three distinct division methods: hold-out (90% training - 10%
testing), hold-out (80% training - 20% testing), and a 67% training - 33% testing split. Additionally, a
10-fold cross-validation approach was employed for further evaluation. The implementation of the
proposed models was executed utilizing Keras version 2.2.4 with Tensorflow backend, leveraging the
Python 3.6 programming language. The machine learning and deep learning algorithms employed in
our investigation are extensively documented in scholarly literature. These methodologies find
application across various disciplines and are notably prevalent in estimating household energy
consumption, which constitutes the focal point of our research [30,31].The selected machine learning
algorithms for time series prediction tasks included RF, KNN and LR. By employing a range of diverse
partitioning strategies and meticulous algorithmic selections, the study sought to conduct a
comprehensive evaluation of the efficacy and resilience of the learning models in accurately forecasting
time series data.

Random Forest Algorithm

The Random Forest algorithm is comprised of multiple decision trees operating as an ensemble.
In this approach, each individual tree generates a set of predictions, and the class with the highest number
of votes among the trees is selected as the final prediction of the model [32].

Eanll tress*normfiij (1)

RFfii = T
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Rffii = Importance of feature calculated from all trees in RF algorithm
normfiij = Normalized coefficient for i in tree j
T= Total number of decision trees

The "n_estimators" parameter, which indicates how many decision trees will be drawn in the RF
algorithm, is taken as 10.

K-Nearest Neighbours Regression

The k-NNR algorithm is often employed in applications prioritizing interpretability of output,
computational efficiency, and predictive accuracy. When utilizing the k-NNR algorithm, the Euclidean
distance metric (as represented in equation 2) is frequently employed as the distance measure. This
metric is applicable to real-valued vectors and quantifies the straight-line distance between the query
point and another observed point, as depicted by the following formula [33].

Zi'{=1(xi —yi)? (2)

The Manhattan distance, denoted by Equation 3, is an alternative distance measure commonly
used in various applications. This metric calculates the absolute difference between two points
(x; ve ;). Due to its visualization resembling movement along city blocks, it is also known as taxi
distance or city block distance. This distance measure is often depicted using a grid, illustrating the path
one must traverse via city streets to travel from one address to another.

T lx — il (3)

(T, (i — y) 1) @)

The Minkowski distance, as expressed in Equation 4, serves as a versatile distance metric that
encompasses both Euclidean and Manhattan distance measurements. The parameter p within the formula
facilitates the creation of additional distance metrics. Specifically, when p equals two, the formula
reduces to represent the Euclidean distance, while when p equals one, it represents the Manhattan
distance. In the context of the k-Nearest Neighbors Regression (k-NNR) algorithm, the n_neighbors
parameter, indicating the value of k, is set to 3.

Linear Regression

Linear Regression stands as one of the fundamental models in machine learning, employed to
discern the relationship between one or more predictor variables and outcome variables. This technique
is widely utilized for predictive analysis and modeling purposes, known by various names such as simple
linear regression, multiple regression, multivariate regression, ordinary least squares regression, and
simply regression.

The formulation of linear regression is represented by the equation:
y=ax+b

where: y denotes the dependent variable, x represents the independent variable(s), b signifies the slope
of the line, and a denotes the intersection point of the line with the y-axis.

The objective of this model is to establish a linear relationship that optimally describes the
association between the independent and dependent variables by fitting a straight line to the data points.
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Application of Deep Learning Algorithms

Traditionally, linear methods have been favored in time series forecasting due to their well-
established principles and effectiveness in handling simple forecasting tasks. However, deep learning
methods offer a compelling alternative by enabling the automatic learning of complex mappings from
inputs to outputs, accommodating multiple inputs and outputs simultaneously. CNNs are a specialized
type of neural network architecture tailored for processing image data. They are highly effective for
tasks like image recognition, classification, and object detection. Leveraging their capacity to
autonomously extract intricate features from raw input data, CNNs can be effectively applied to time
series forecasting problems. On the other hand, Recurrent Neural Networks (RNNSs), such as the Long
Short-Term Memory (LSTM) network, possess the capability to directly learn across multiple parallel
sequences of input data. This characteristic makes them particularly well-suited for time series
forecasting tasks. Given the effectiveness demonstrated by CNNs and LSTM methods in addressing
time series forecasting challenges, these methodologies were selected for inclusion in the study.

Convolutional Neural Networks

The foundational principles of the Convolutional Neural Network (CNN) algorithm were initially
introduced by Kunihiko Fukushima in 1980 [34]. Since its inception, continuous development has led
to its current state, where the CNN algorithm has emerged as one of the most prevalent techniques within
the realm of deep learning. Notably, CNNs are primarily utilized for the analysis of visual images and
are also referred to as invariant space artificial neural networks [35]. Their applications span diverse
domains including image and video recognition, recommendation systems, image classification, medical
image analysis, natural language processing, and data prediction.

In the proposed CNN model, a series of layers were employed, each serving specific functions
within the architecture. These layers include a 1D convolution layer, a dropout layer, a 1D maximum
pooling layer, a flatten layer, a fully connected layer (hidden layer), and a final fully connected layer for
output. Figure 2 illustrates the arrangement of these layers along with their respective parameter values.

INPUT

1D CONVOLUTION LAYER
filters=64, kernel_size=1, activation=relu

i)

DROPOUT LAYER
dropout rate=2=0.2

)

1D MAX POOLING LAYER
pool_size=1

i)

FLATTEN LAYER

)

FULLY CONNECTED LAYER(DENSE)
units=4, activation=relu

)

FULLY CONNECTED LAYER(DENSE)
units=1

OUTPUT

Figure 2
The layers of CNN model
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Long-Short Term Memory

LSTM networks are a type of Recurrent Neural Network (RNN) architecture designed to
effectively handle sequential data and address the vanishing gradient problem typically found in
traditional RNNs. LSTMs are widely used in deep learning for tasks involving time-series data, natural
language processing, and other sequence prediction problems [36]. The motivation behind the
development of the LSTM algorithm stems from the inherent long-term memory recall challenges
observed in traditional RNN algorithms. In contrast to the single layer in RNN models, LSTM models
incorporate four distinct layers, each representing feedback connections. These layers encompass
various gates, including the input gate, forget gate, and output gate [37].

LSTM algorithms are particularly well-suited for tasks involving classification, processing, and
prediction based on time series data. In the proposed Bidirectional LSTM (BLSTM) model, an LSTM
layer and a fully connected layer are employed for the output. Figure 3 provides a visual representation
of the model's layers, along with their respective parameter values.

FULLY
LSTM LAYER CONNECTED
INPUT |—p units=32, —» LAYER —p| OUTPUT
activation=relu (DENSE)
units=1

Figure 3
The layers of LSTM Model.

Evaluation Criterias
Root Mean Squared Error

RMSE serves as a metric to quantify the error rate between two datasets, specifically comparing
predicted values to observed values. As depicted in Equation 5, RMSE calculates the square root of the
average of the squared differences between predicted and observed values. A smaller RMSE value
indicates a closer correspondence between the predicted and observed values, reflecting higher accuracy
in the predictive model.

LEmi- oo ©

T = expected values, o = observed values, n = number of samples
Mean Squared Error

MSE quantifies the proximity of a regression line to a set of data points. It serves as a risk function,
representing the expected value of the square of the error loss. Calculated by averaging the squared
errors from the data regarding a function, MSE is expressed as the mean of these squared errors. Unlike
RMSE, which involves taking the square root of the average squared errors, the formula for MSE
(equation 6) does not include the root operation, thereby providing a measure of the average squared
discrepancy between predicted and observed values [38].

~YI (fy — 0)? (6)

The implemented code encompasses the following steps:

1. Perform the data reading operation: Read the dataset containing the relevant information for the
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analysis.

2. Prepare for cross-validation: Define the parameters and setup necessary for conducting cross-
validation.

3. Normalize the data: Scale the input features to ensure uniformity and facilitate the modeling
process.

4. Separate the data into training and testing: Partition the dataset into training and testing subsets
for model evaluation.

Model building: Construct the machine learning or deep learning model using the training data.
Make predictions: Utilize the trained model to predict outcomes for the testing data.

Obtain cross-validation results: Evaluate the model's performance using cross-validation
techniques to assess its generalization ability.

8. Calculate MSE, RMSE, and Accuracy Rates: Compute performance metrics such as MSE,
RMSE and Accuracy Rates to quantify the model's predictive accuracy and effectiveness.

These steps collectively form a structured approach to data analysis and model building, ensuring
thoroughness and reliability in the analytical process.

RESULTS

In this article, various algorithms were applied with optimized parameter values using different
data splitting methods (90% training - 10% test, 80% training - 20% test, and 67% training - 33% test)
and cross-validation techniques. Performance analysis results were then presented. Specifically,
evaluations of the algorithms applied to the dataset, where training and test data were different splitting
rate test method, were conducted based on performance criteria, focusing on daily and weekly data. The
findings of these evaluations are summarized in Table 4.

According to the results presented in Table 4, the LSTM model yielded the lowest MSE value of
0.0055. Comparatively, the CNN algorithm achieved an MSE of 0.0056, the RF algorithm attained
0.0066, the k-NNR algorithm resulted in 0.0073 MSE, and the LR algorithm produced an MSE of
0.0058.

Table 4
The comparison of algorithms based on different splitting data rate
- . Daily Weekly
Data Splitting Algorithm MSE RMSE Accuracy rate MSE RMSE Accuracy rate
CNN 0.0056 0.0750 0.9944 0.01 0.10 0.9899
LSTM  0.0054 0.0748 0.9946 0.01 0.1022 0.9896

90% training

10% testing RF 0.0066 0.0816 0.9933 0.015 0.122 0.9849

k-NNR  0.0073 0.0856 0.9927 0.0085 0.0919 0.9915
LR 0.0058 0.0765 0.9941 0.0090 0.0949 0.9909
CNN 0.0057 0.0760 0.9943 0.0068 0.0828 0.9931
LSTM  0.0056 0.0753 0.9944 0.0075 0.0866 0.9925
RF 0.0072 0.0851 0.9927 0.0098 0.0988 0.9902
k-NNR  0.0084 0.0921 0.9915 0.0067 0.0825 0.9932
LR 0.0055 0.0745 0.9945 0.0073 0.084 0.9927
CNN 0.0061 0.0785 0.9939 0.0084 0.0919 0.9916
LSTM  0.0059 0.0774 0.9941 0.0089 0.0944 0.9910
RF 0.0075 0.0868 0.9924 0.010 0.10 0.9891
k-NNR  0.0094 0.0973 0.9905 0.012 0.1122 0.9874
LR 0.0062 0.0786 0.9938 0.0088 0.094 0.9911

80% training
20% testing

67% training
33% testing

According to the results in Table 4, it was seen that the Linear Regression model was the model
that gave the smallest MSE value with a value of 0.0055. When MSE values of other methods are
examined; The CNN algorithm showed performance with 0.0057, LSTM algorithm 0.0056, RF
algorithm 0.0072 and k-NNR algorithm 0.0084 MSE values, respectively.
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The LSTM model demonstrated the lowest MSE value, registering at 0.0059. In comparison, the
CNN algorithm exhibited an MSE of 0.0060, the RF algorithm yielded 0.0075, the k-NNR algorithm
resulted in 0.0094 MSE, and the LR algorithm achieved an MSE of 0.0062.

Additionally, Table 5 outlines the accuracy rates obtained from transactions conducted with
Cross-Validation. These results provide further insights into the performance of the algorithms under
evaluation.

Table 5
Comparison of Algorithms According to Transactions Performed with Cross-validation.
Daily Weekly
Algorithm Accuracy Accuracy
MSE RMSE rate MSE RMSE rate

RF 0.006011 0.07752 0.993998 0.013841 0.11764 0.986162
k-NNR  0.03121 0.17665 0.96884 0.11812 0.34374 0.88198

According to the comparisons made, the loss rate graph of the LSTM model, which is the best
performing model applied to the data set for which training and test data were created with the 90%
training-10% test splitting method, is shown in Figure 4.

0.05

0.04

Loss (Mse)

0.02

0.01 L

0 20 a0 60 80 100
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Figure 4
LSTM model loss rate graph (90% training-10% testing)

The figure depicting the comparison between predictions generated by the LSTM model and
actual observations from the dataset, where training and test data were partitioned using the 90%
training-10% test splitting approach, is presented in Figure 5.

Figure 6 illustrates the graph comparing the actual values and predicted values of the k-NNR
algorithm, utilizing the highly effective 80% training-20% test splitting method for estimating weekly
consumption values.

DISCUSSION AND CONCLUSIONS

Given the surge in smart grid technologies and the widespread adoption of electricity generation
methods, the measurement of energy usage and the formulation of savings plans have gained paramount
significance. The literature abounds with numerous studies aimed at estimating consumption through
various methodologies. This is owing to the profound potential of modeling and forecasting future
electricity consumption, which can lead to substantial energy conservation efforts.
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Comparison of real data and LSTM prediction (Daily) values
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Figure 6
Comparison of real data and k-NNR predicted (weekly) values

The main goal of our work is to establish an infrastructure capable of forecasting future energy
consumption by leveraging DL and ML techniques for estimating energy usage. Moreover, the
envisaged model is poised to contribute significantly to curbing energy consumption and facilitating the
planning of household expenditures. Furthermore, insights will be gleaned into the requisite production
levels. The methodologies selected for our study are extensively employed in scholarly literature.
Specifically, the LSTM method has demonstrated a noteworthy increase in accuracy percentage
compared to existing literature in our research [39,40]. This achievement is readily apparent upon
comparison with the literature, where other utilized methods have also exhibited substantial success
[41]. The research yielded favorable outcomes in estimating electrical power consumption through the
application of CNN, LSTM, RF, k-NNR, and Linear Regression methods. Comparative analysis
revealed that the LSTM model emerged as the top-performing model, boasting the lowest MSE value
of 0.0054 for daily forecasts. Conversely, for weekly predictions, the k-NNR algorithm exhibited
superior performance with an MSE value of 0.0067. Notably, the study indicated a higher success rate
in estimating daily energy consumption compared to weekly energy consumption.

Furthermore, when subjected to Cross-Validation, the Linear Regression algorithm demonstrated
perfect accuracy with an accuracy rate of 1.0, signifying an exact match with the dataset. The developed
model is poised to estimate electrical power consumption with remarkable precision, closely
approximating actual observation values. Consequently, the LSTM model, which demonstrated superior
performance in estimating electrical power consumption, was deemed the most suitable choice.
Moreover, the developed LSTM model showcased enhanced efficacy in smart grid management or
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evaluation compared to other applied methods. Through the predictions generated by this approach,
savings plans can be formulated effortlessly and with heightened reliability.

When evaluating the performances of LSTM models across different division methods, notably,
a superior success rate was attained with the LSTM model applied to the dataset partitioned with the
90% training-10% test splitting method, surpassing other splitting techniques. Similarly, for CNN
models, enhanced performance was evident when employing the 90% training-10% test splitting method
compared to alternative methods. In the case of RF models, optimal success rates were achieved when
utilizing the 90% training-10% test splitting method. Likewise, for k-NNR models, superior
performance was observed with the 90% training-10% test splitting method. Conversely, when
analyzing the performances of Linear Regression models across division methods, intriguingly, a higher
success rate was attained with the Linear Regression model applied to the dataset partitioned with the
80% training-20% test splitting method, diverging from the trends observed with other algorithms. It is
noteworthy that Linear Regression did not exhibit a proportional increase in efficiency with the
extension of the training series, distinguishing it from other algorithms.

Upon examining the impact of training and test data splitting methods on the performance of the
proposed models, a discernible trend emerges: as the size of the training set increases across the utilized
splitting methods, the prediction performance of the models demonstrates a consistent improvement.
This observation underscores the pivotal role of a larger training set in enhancing model training and
subsequently yielding more accurate and reliable predictions. This finding underscores the importance
of expanding the dataset for future studies, as it facilitates the development of more robust models and
ensures greater consistency in predictions. Moreover, future endeavors may explore the potential of
enhancing predictions through the utilization of different deep learning models, leveraging increased
dataset sizes to further refine and optimize model performance.
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