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Anahtar Kelimeler: 

Akıllı sistemler, 
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Makine öğrenmesi. 

Sanayileşmenin hızlanmasıyla birlikte artan enerji arz talebi artık konutlarda da kullanılan yeni nesil elektronik ekipmanlar 

nedeniyle her geçen gün artmaktadır. Enerjinin klasik yöntemlerle (doğalgaz, sosil yakıtlar vb.) üretilmesine alternatif 

olarak geliştirilen be yeşil enerji adı verilen yenilenebilir enerjinin kullanımının yaygınlaşmasıyla beraber bazı sorunlar 

ortaya çıkmaktadır. Elde edilen elektriğin sisteme entegre bir şekilde verilip takip edilebilmesi için veri izlemesi büyük 

önem arz etmektedir. Bu amaçla kurulan mikro ve makro ölçekteki akıllı şebekelerin dinamik röle haberleşmesi sayesinde 

büyük ölçeklerde enerji verileri elde edilmektedir. Nesnelerin interneti (IoT) çağında elde edilen bu verilerin işlenmesi ve 

analiz edilmesi için derin öğrenmek algoritmaları ve makine öğrenmesi yöntemleri kullanılmaktadır. Bu yöntemlerin 

sağlamış olduğu doğru analizler sayesinde akıllı şebekeler daha az kayıpla (yüksek verimle) çalışmaktadır. En küçük 

ölçekli bir kullanıcının enerji tüketim hesabı kestirimi optimize bir enerji yönetimi sağlamaktadır. Elektriğin doğru 

miktarda (güçte) akışı sağlandıktan sonra ortaya çıkabilecek israfın da önüne geçilebilmektedir. Makine ve derin öğrenme 

algoritmalarının hızlı ve gelişmiş tepkileri sayesinde hem kullanıcılar hem de üreticiler daha planlı ve sürdürülebilir bir 

enerji yönetimine sahip olmaktadırlar. Bu çalışmada konutlara ait 4 yıllık elektrik enerji verileri Convolutional Neural 

Network, Long Short-Term Memory, Random Forest ve K-Nearest Neighbors Regression gibi yöntemlerle analiz 

edilmiştir. Bu analizler neticesinde tüketilecek enerjinin tahmini yapılmıştır. Çalışmadaki öğrenme algoritmalarının 

etkinliğini değişen eğitim ve test veri oranlarına göre değerlendirmek için veri seti üç farklı bölme yöntemi kullanılarak 

bölümlendi: %90 eğitim - %10 test, %80 eğitim - %20  test ve %67 eğitim - %33 test bölümü. Ek olarak, daha ileri 

değerlendirme için 10 katlı çapraz doğrulama yaklaşımı kullanıldı. Karşılaştırmalı analiz, LSTM modelinin günlük 

tahminler için en düşük MSE değeri olan 0,0054 ile en iyi performans gösteren model olarak ortaya çıktığını ortaya çıkardı. 
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The acceleration of industrialisation has resulted in a corresponding increase in the demand for energy supplies, driven by 

the growing use of new generation electronic equipment in residential settings. The advent of renewable energy, or green 

energy, has prompted a shift away from traditional methods of energy production, such as the use of natural gas and fossil 

fuels. However, this transition has given rise to a number of challenges. It is of great importance to monitor data in order 

to integrate the obtained electricity into the system and to monitor it. The acquisition of energy data on a large scale is 

made possible by the implementation of dynamic relay communication within micro and macro scale smart grids, which 

have been specifically designed for this purpose. Deep learning algorithms and machine learning methods are employed 

for the processing and analysis of data obtained in the context of the Internet of Things (IoT). The implementation of these 

methods enables smart grids to operate with reduced loss and enhanced efficiency. The estimation of energy consumption 

at the smallest scale facilitates the implementation of optimised energy management strategies. By ensuring the flow of 

electricity in the optimal amount (power), the potential for waste can be mitigated. The rapid and sophisticated responses 

of machine and deep learning algorithms facilitate more structured and sustainable energy management for both users and 

producers. In this study, four years' worth of electrical energy data from residential sources was analysed using techniques 

such as Convolutional Neural Network, Long Short-Term Memory, Random Forest and K-Nearest Neighbours Regression. 

The resulting analyses enabled the estimation of energy consumption. To assess the efficacy of learning algorithms in the 

study across varying training and test data ratios, the dataset was partitioned using three distinct division methods: hold-

out (90% training - 10% testing), hold-out (80% training - 20% testing), and a 67% training - 33% testing split. 

Additionally, a 10-fold cross-validation approach was employed for further evaluation. Comparative analysis revealed that 

the LSTM model emerged as the top-performing model, boasting the lowest MSE value of 0.0054 for daily forecasts. 
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INTRODUCTION 

In the current landscape, residential and commercial buildings account for approximately 30% to 

40% of total energy demand [1,2], with projections indicating a further rise in this proportion. This 

escalation in energy demand underscores the growing significance of renewable energy production. The 

effective integration of renewable energy into the grid requires the development of efficient energy 

transfer mechanisms, which has led to a significant increase in research activity focused on smart 

electricity grids and the ability to meet societal demands. 

Smart grids, characterized by enhanced communication channels between producers and 

consumers [3,4], enable real-time monitoring, prediction, scheduling, and adaptive production based on 

local energy consumption patterns. These networks promise substantial environmental and economic 

benefits, including optimized electricity transmission with minimized energy losses due to shorter 

transmission lines, expedited outage resolution, heightened security against sabotage, seamless 

integration of renewable energy sources, and reduced costs associated with fault detection and repair 

[5]. 

The incorporation of artificial intelligence (AI) in electrical network management facilitates 

efficient planning and real-time control of dynamically evolving power supplies. Consequently, recent 

research efforts have increasingly delved into this domain [6], with a notable emphasis on leveraging 

deep learning and machine learning techniques for energy consumption estimation. Such endeavors hold 

the promise of enabling future electricity networks to forecast energy consumption accurately, allowing 

users to implement energy-saving measures at the building level. Traditionally, energy consumption 

forecasting encompasses three temporal categories: short-term forecasts (ranging from one day to one 

week), medium-term forecasts (spanning from one week to one year), and long-term forecasts 

(extending beyond one year). 

Energy estimation of buildings is a difficult problem because it depends on many different factors 

(climatic conditions, devices used by the consumer, frequency of use, etc.) [7]. Therefore, taking 

everything into account when estimating energy will produce more efficient results. Estimating energy 

consumption; It will make it easier to calculate the amount of energy that needs to be produced and the 

amount of energy that needs to be stored. In addition, it will enable quick decisions in energy 

management as it will allow predicting where, when and how much cost will be required. In this way, 

time-saving methods will be implemented more easily. Future programming will be healthier and more 

reliable. 

In the 2016 study led by Elena Mocanu and her colleagues, the focus was on estimating energy 

consumption in buildings using deep learning methodologies. Specifically, newly developed stochastic 

models, namely CRBM (Conditional Restricted Boltzmann Machine) and FCRBM (Fully Conditional 

Restricted Boltzmann Machine), were employed for this purpose. The researchers utilized the 

"Individual Household Electric Power Consumption Data Set" obtained by Hebrail and Berard, which 

is publicly available in the UCI Machine Learning Repository [8]. This dataset comprises individual 

residential customer data recorded at 1-minute intervals over a span of four years. 

The study encompassed the application of predictions under seven distinct scenarios, each 

employing various machine learning techniques. Specifically, Artificial Neural Networks (ANN), 

Support Vector Machines (SVM), Recurrent Neural Networks (RNN), CRBM, and FCRBM methods 

were employed across these scenarios. The scenarios investigated are delineated as in Table 1: 
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Table 1  

Different scenarios for deep learning (DL) application 

Scenario Energy Consumption Solution Duration for DL 

1 15 minutes 1 minute 

2 1 hour 1 minute 

3 1 day 1 minute 

4 1 day 15 minutes 

5 1 week 15 minutes 

6 1 week 1 hour 

7 1 year 1 week 

In summary, the Fully Conditional Restricted Boltzmann Machine (FCRBM) demonstrated 

superior performance compared to state-of-the-art prediction methods such as Artificial Neural 

Networks (ANN), Support Vector Machines (SVM), Recurrent Neural Networks (RNN), and the 

Conditional Restricted Boltzmann Machine (CRBM). As the prediction horizon expands, both FCRBM 

and CRBM exhibit heightened efficacy, with error rates approximately half that of the ANN method. 

These methodologies yield comparable results and demonstrate potential for real-time applications in 

home and building automation systems. Notably, rather than estimating total active power directly, a 

more efficient approach involves estimating and aggregating sub-measurements to arrive at total active 

power. 

In a separate study by Tae-Young Kim et al., minute, hourly, daily, and weekly predictions were 

conducted using Linear Regression, Long Short-Term Memory (LSTM), and Convolutional Neural 

Network-Long Short-Term Memory (CNN-LSTM) algorithms [9]. The "Individual Household Electric 

Power Consumption Data Set" by Hebrail and Berard served as the dataset [10]. Results indicate that 

the CNN-LSTM algorithm outperformed other algorithms, achieving mean squared error (MSE) values 

of 0.3738 per minute, 0.3549 per hour, 0.1037 per day, and 0.0952 per week. 

In the research conducted by Xiaoou Monica Zhang and colleagues, the Support Vector 

Regression (SVM) modeling approach served as the predictive algorithm. This methodology was 

applied to conduct hourly and daily predictions for 15 distinct households' electricity usage data 

spanning the years 2014 to 2016 [11]. Feature selection and data visualization techniques were employed 

through exploratory data analysis. The ensuing analyses revealed the feasibility and reliability of 

predicting residential energy consumption by leveraging weather conditions, calendar parameters, and 

time-of-use pricing. Notably, the SVM model exhibited satisfactory accuracy in both daily and hourly 

forecasts for specific residential applications. 

Yasemin Kocadayi and her team endeavored to estimate the annual energy consumption of the 

TR81 region (comprising Zonguldak, Karabuk, and Bartin) utilizing artificial neural networks (ANNs). 

Input data for the ANN model included building surface areas, population figures, as well as import and 

export data [12]. The model's performance was evaluated based on metrics such as mean square error, 

mean absolute error, and correlation coefficient. Through the ANN model, energy consumption 

projections for the TR81 region spanning 2016 to 2020 were obtained. The findings underscored the 

ANN model's proficiency in accurately predicting electrical energy consumption within the region, 

demonstrating a high level of precision. 

Derya Yılmaz and her team investigated project risks with a specific focus on heating and 

electricity demands in buildings. They introduced an innovative model for predicting performance gaps 

using machine learning classification techniques. The study gathered data on performance gaps and 

project risks through a web-based survey conducted across 77 buildings. Four machine learning 

algorithms—Naive Bayes, k-NN, SVM and RF—were evaluated to determine the most effective model. 

The results revealed that Naive Bayes demonstrated superior accuracy in predicting the direction 
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of heating performance gaps (72.50%), negative heating performance gaps (71.81%), positive electricity 

performance gaps (77.08%), and negative electricity performance gaps (83.85%). Furthermore, both k-

NN and SVM exhibited higher accuracy in predicting the direction of electricity performance gaps 

(79.00%) and positive heating performance gaps (76.04%) [13]. 

A study performed by Flavian Emmanuel Sapnken et al. utilizes a dataset from 7,559 buildings 

and employs nine Machine Learning (ML) models to estimate their energy consumption. Results 

indicate that the deep neural network (DNN) emerges as the most effective ML model, achieving MAE, 

MSD, and RMSE of 0.93, 1.12, and 1.06, respectively, in less than 7 seconds, despite the large dataset 

size. Its 𝑅2 value is also the highest at 0.96, indicating that the DNN approach can explain 96% of the 

energy consumption in buildings, with only 4% remaining unexplained, likely due to limitations in 

independent variables. Moreover, this outcome remains consistent across building clusters and various 

climate zones. Their model proposes a model that professionals can utilize during the design phase of 

construction projects. This model enables consideration of all critical aspects for designing energy-

efficient buildings. It serves as a decision-making tool to control and optimize projects, allowing for 

anticipation of energy consumption even before construction begins [14]. 

P. Balakumar et. al. suggest implementing a Demand Side Management (DSM) program within 

a smart grid to decrease the utility grid's Peak to Average Ratio (PAR) and lower end-users' electricity 

tariffs. It advocates for the use of renewable energy combined with an Energy Storage System (ESS) in 

the DSM controller to improve both economic and environmental aspects for end-users. To develop the 

DSM program, the article proposes a framework based on Recurrent Neural Network (RNN), 

specifically Long Short-Term Memory (LSTM), for forecasting Science Block (SCB) energy 

consumption every minute and 5 minutes for Energy Production Control (EPC) and Renewable Energy 

Generation (REG). The performance of this deep learning model is evaluated using metrics such as 

Mean Squared Error (MSE), Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and R-

squared. The suggested LSTM framework demonstrates superior performance compared to other listed 

rival techniques in short-term Energy Production Control (EPC) for Science Block (SEIB) and 

Renewable Energy Generation (REG). For both short-term REG and EPC forecasting, the LSTM model 

achieves an accuracy with an 𝑅2 value nearly close to one. With their proposed deep learning-based real-

time DSM controller, the electricity tariff of SEIB is reduced by 4.4% on January 1st, 2022, and by 

14.86% on January 2nd, 2022. Similarly, the utility grid's Peak to Average Ratio (PAR) is minimized to 

5.10% and 11.79%, respectively [15]. 

This study examined the estimation of energy consumption in a house where smart systems are 

used, comparing it with DL and ML methods. The findings may vary depending on the type of house, 

for example if it is a smart building or in an urban area. Therefore, in this study, commercial enterprises 

were excluded, as their consumption could not be evaluated. Within the scope of this study it is not to 

estimate the demand factor or consumption, but rather to identify the most efficient method using 

existing consumption data. 

MATERIALS AND METHODS 

With the advent of technological advancements, researchers are fervently engaged in enhancing 

efficiency across various domains [16-18]. Among these endeavors, numerous studies are dedicated to 

advancing the energy sector. Notably, smart grids represent a pivotal facet of these efforts, offering 

streamlined energy distribution, management capabilities, and integration of renewable energy sources 

into production processes [19-21]. Across such endeavors, the efficacy of predictive methodologies has 

seen significant enhancement through the development of novel algorithms [22,23]. 

The principal objective of this study is twofold: firstly, to glean insights into future energy 
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consumption patterns through the estimation of energy usage employing deep learning and machine 

learning techniques; and secondly, to devise a model that not only aids in curbing energy consumption 

but also facilitates prudent household expenditure planning. 

Data Set 

The dataset utilized in this study originates from the Individual Household Electric Power 

Consumption dataset retrieved from the UCI Machine Learning Repository database. This dataset 

comprises records of electrical power consumption, measured in kilowatt-hours, recorded every minute 

within a household located in France, spanning from December 2006 to November 2010 (47 months). 

The dataset, a time series, encompasses a total of 2,075,259 measurements, capturing various time-

dependent power-related variables. Notably, the dataset primarily focuses on the total active power 

measurement values, denoted as "Global_active_power," representing kilowatts consumed by 

households, amidst seven distinct variables [10]. 

To facilitate compatibility with machine learning and deep learning algorithms, the dataset 

necessitated preprocessing and conversion into a suitable format. Notably, the household electrical 

power consumption dataset exhibited some missing values within the measurements, such as observed 

on April 28, 2007. Addressing this issue, missing values were imputed by replacing them with the 

average power consumption values recorded during corresponding minutes across other years. 

Subsequently, the processed dataset was saved as a new entity, ready for analysis. 

In the final stage of data preprocessing, the observations recorded every minute were transformed 

into daily electrical power consumption quantities measured in kilowatt-hours (kWh). This conversion 

was implemented to facilitate the estimation of daily energy consumption, thereby condensing minute-

by-minute observations into daily totals. Consequently, the dataset encompasses a total of 1442 daily 

observation values. The actual daily electrical power consumptions following the data preprocessing 

phase are visually depicted in Figure 1, illustrating the variations in kWh consumption over time. 

Furthermore, the characteristics of the active power data subsequent to the conversion of the dataset into 

daily values are detailed in Table 2, providing insights into the statistical properties and distributional 

aspects of the transformed dataset. 

 
Figure 1 

Actual daily electrical power consumption graph after data preview phase 
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Table 2  

Properties of the data set 

Data Set Length 1442 

Average 1567.839069 

Std 597.306856 

Minimum 250.298000 

25% 1176.195000 

50% 1543.253000 

75% 1894.467500 

Maximum 4773.386000 

 

When conducting time series analysis, the first step involves assessing whether the series exhibits 

stationarity. Stationarity is characterized by consistent mean and variance of observations over time, 

indicating that the series does not undergo significant changes across time periods. A stationary time 

series typically lacks discernible trends or seasonality, making it more amenable to modeling. Statistical 

modeling techniques often presuppose stationarity for effective application. 

In contrast, non-stationary time series display temporal variations such as trends, seasonal effects, 

or other structural dependencies on the time index. In such cases, summary statistics like mean and 

variance may fluctuate over time, complicating the modeling process by introducing shifts in the 

underlying data dynamics. Traditional time series analysis and forecasting methodologies aim to 

stabilize non-stationary data by identifying and mitigating trends and seasonal effects. 

Several approaches exist to assess stationarity in a time series dataset. These include: 

Graphical Examination: Time series plots can be visually inspected for evident trends or seasonal 

patterns. 

Summary Statistics: Statistical metrics computed over different seasons or random segments of 

the data can be compared to identify any pronounced differences, which may indicate non-stationarity. 

Statistical tests serve as a valuable tool for assessing whether time series data meet the criteria for 

stationarity. While these tests rely on certain data assumptions, they offer a swift means of confirming 

stationarity or non-stationarity. In this study, the Augmented Dickey-Fuller (ADF) test was employed 

to scrutinize the stationarity of the time series [24]. The ADF test belongs to a class of statistical tests 

known as unit root tests and is among the most widely utilized methods in this domain. This test 

leverages an autoregressive model and employs an information criterion to optimize across various lag 

values. 

The null hypothesis (H0) posited by the ADF test suggests that the time series contains a unit root 

and is thus non-stationary. Conversely, the alternative hypothesis (H1) refutes the null hypothesis, 

indicating that the time series lacks a unit root and is stationary. The outcome of the ADF test is typically 

interpreted through the computed p-value. A p-value below a specified threshold (e.g., 5% or 1%) 

signifies rejection of the null hypothesis, signaling stationarity. Conversely, a p-value surpassing the 

threshold indicates failure to reject the null hypothesis, implying non-stationarity. 

In the context of the Augmented Dickey-Fuller (ADF) test: 

• When the p-value is greater than 0.05, the null hypothesis (H0) is not rejected. This indicates 

that the data contains a unit root and is non-stationary. 

• Conversely, when the p-value is less than or equal to 0.05, the null hypothesis (H0) is rejected. 
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This suggests that the data lacks a unit root and is stationary. 

The results of the Augmented Dickey-Fuller (ADF) test are presented in Table 3. The computed 

ADF test statistics yielded a value of -3.697385. In the context of the ADF test, a more negative statistic 

increases the likelihood of rejecting the null hypothesis. Notably, the calculated ADF value fell below 

the critical value corresponding to a significance level of 1%. This discrepancy implies that the null 

hypothesis will indeed be rejected with a significance level of less than 1%. Moreover, the computed p-

value was found to be less than or equal to 0.05. This observation leads to the rejection of the null 

hypothesis, indicating that the time series exhibits stationarity or lacks a time-dependent structure. In 

summary, both the ADF test statistic and the p-value converge to suggest the rejection of the null 

hypothesis, thus affirming the stationarity of the time series data. 

Table 3  

ADF test results 

ADF Statistics      -3.697385 

p-value 0.004150 

Critical Values 

1% -3.4357 

5% -2.8645 

10% -2.5686 

 

Application of MLA 

In machine and deep learning algorithms, it is worth noting that the percentages of training and 

testing data can vary for different applications [25,26]. In studies involving large data sets, it is often the 

case that set division is done at different percentages in order to get the most accurate results [27-29]. 

Therefore, in our study, we tested data division percentages at different rates in order to gain a better 

understanding of the impact of this on the results. 

To assess the efficacy of learning algorithms in the study across varying training and test data 

ratios, the dataset was partitioned using three distinct division methods: hold-out (90% training - 10% 

testing), hold-out (80% training - 20% testing), and a 67% training - 33% testing split. Additionally, a 

10-fold cross-validation approach was employed for further evaluation. The implementation of the 

proposed models was executed utilizing Keras version 2.2.4 with Tensorflow backend, leveraging the 

Python 3.6 programming language. The machine learning and deep learning algorithms employed in 

our investigation are extensively documented in scholarly literature. These methodologies find 

application across various disciplines and are notably prevalent in estimating household energy 

consumption, which constitutes the focal point of our research [30,31].The selected machine learning 

algorithms for time series prediction tasks included RF, KNN and LR. By employing a range of diverse 

partitioning strategies and meticulous algorithmic selections, the study sought to conduct a 

comprehensive evaluation of the efficacy and resilience of the learning models in accurately forecasting 

time series data. 

Random Forest Algorithm 

The Random Forest algorithm is comprised of multiple decision trees operating as an ensemble. 

In this approach, each individual tree generates a set of predictions, and the class with the highest number 

of votes among the trees is selected as the final prediction of the model [32]. 

RFfii =
∑ ∗𝑛𝑜𝑟𝑚𝑓𝑖𝑖𝑗𝑗∈𝑎𝑙𝑙 𝑡𝑟𝑒𝑠𝑠

T
  (1) 
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Rffii = Importance of feature calculated from all trees in RF algorithm 

𝑛𝑜𝑟𝑚𝑓𝑖𝑖𝑗 = Normalized coefficient for i in tree j 

T= Total number of decision trees 

The "n_estimators" parameter, which indicates how many decision trees will be drawn in the RF 

algorithm, is taken as 10. 

K-Nearest Neighbours Regression 

The k-NNR algorithm is often employed in applications prioritizing interpretability of output, 

computational efficiency, and predictive accuracy. When utilizing the k-NNR algorithm, the Euclidean 

distance metric (as represented in equation 2) is frequently employed as the distance measure. This 

metric is applicable to real-valued vectors and quantifies the straight-line distance between the query 

point and another observed point, as depicted by the following formula [33]. 

√∑ (𝑥𝑖 − 𝑦𝑖)2𝑘
𝑖=1   (2) 

The Manhattan distance, denoted by Equation 3, is an alternative distance measure commonly 

used in various applications. This metric calculates the absolute difference between two points 

(𝑥𝑖 ve 𝑦𝑖). Due to its visualization resembling movement along city blocks, it is also known as taxi 

distance or city block distance. This distance measure is often depicted using a grid, illustrating the path 

one must traverse via city streets to travel from one address to another. 

∑ |𝑥𝑖 − 𝑦𝑖|𝑘
𝑖=1   (3) 

(∑ (𝑥𝑖 − 𝑦𝑖)𝑞𝑘
𝑖=1 )

1/𝑞
  (4) 

The Minkowski distance, as expressed in Equation 4, serves as a versatile distance metric that 

encompasses both Euclidean and Manhattan distance measurements. The parameter p within the formula 

facilitates the creation of additional distance metrics. Specifically, when p equals two, the formula 

reduces to represent the Euclidean distance, while when p equals one, it represents the Manhattan 

distance. In the context of the k-Nearest Neighbors Regression (k-NNR) algorithm, the n_neighbors 

parameter, indicating the value of k, is set to 3. 

Linear Regression 

Linear Regression stands as one of the fundamental models in machine learning, employed to 

discern the relationship between one or more predictor variables and outcome variables. This technique 

is widely utilized for predictive analysis and modeling purposes, known by various names such as simple 

linear regression, multiple regression, multivariate regression, ordinary least squares regression, and 

simply regression. 

The formulation of linear regression is represented by the equation: 

𝑦 = 𝑎𝑥 + 𝑏 

where: y denotes the dependent variable, x represents the independent variable(s), b signifies the slope 

of the line, and a denotes the intersection point of the line with the y-axis. 

The objective of this model is to establish a linear relationship that optimally describes the 

association between the independent and dependent variables by fitting a straight line to the data points. 
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Application of Deep Learning Algorithms 

Traditionally, linear methods have been favored in time series forecasting due to their well-

established principles and effectiveness in handling simple forecasting tasks. However, deep learning 

methods offer a compelling alternative by enabling the automatic learning of complex mappings from 

inputs to outputs, accommodating multiple inputs and outputs simultaneously. CNNs are a specialized 

type of neural network architecture tailored for processing image data. They are highly effective for 

tasks like image recognition, classification, and object detection. Leveraging their capacity to 

autonomously extract intricate features from raw input data, CNNs can be effectively applied to time 

series forecasting problems. On the other hand, Recurrent Neural Networks (RNNs), such as the Long 

Short-Term Memory (LSTM) network, possess the capability to directly learn across multiple parallel 

sequences of input data. This characteristic makes them particularly well-suited for time series 

forecasting tasks. Given the effectiveness demonstrated by CNNs and LSTM methods in addressing 

time series forecasting challenges, these methodologies were selected for inclusion in the study. 

Convolutional Neural Networks 

The foundational principles of the Convolutional Neural Network (CNN) algorithm were initially 

introduced by Kunihiko Fukushima in 1980 [34]. Since its inception, continuous development has led 

to its current state, where the CNN algorithm has emerged as one of the most prevalent techniques within 

the realm of deep learning. Notably, CNNs are primarily utilized for the analysis of visual images and 

are also referred to as invariant space artificial neural networks [35]. Their applications span diverse 

domains including image and video recognition, recommendation systems, image classification, medical 

image analysis, natural language processing, and data prediction. 

In the proposed CNN model, a series of layers were employed, each serving specific functions 

within the architecture. These layers include a 1D convolution layer, a dropout layer, a 1D maximum 

pooling layer, a flatten layer, a fully connected layer (hidden layer), and a final fully connected layer for 

output. Figure 2 illustrates the arrangement of these layers along with their respective parameter values. 

 

Figure 2 

The layers of CNN model 
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Long-Short Term Memory 

LSTM networks are a type of Recurrent Neural Network (RNN) architecture designed to 

effectively handle sequential data and address the vanishing gradient problem typically found in 

traditional RNNs. LSTMs are widely used in deep learning for tasks involving time-series data, natural 

language processing, and other sequence prediction problems [36]. The motivation behind the 

development of the LSTM algorithm stems from the inherent long-term memory recall challenges 

observed in traditional RNN algorithms. In contrast to the single layer in RNN models, LSTM models 

incorporate four distinct layers, each representing feedback connections. These layers encompass 

various gates, including the input gate, forget gate, and output gate [37]. 

LSTM algorithms are particularly well-suited for tasks involving classification, processing, and 

prediction based on time series data. In the proposed Bidirectional LSTM (BLSTM) model, an LSTM 

layer and a fully connected layer are employed for the output. Figure 3 provides a visual representation 

of the model's layers, along with their respective parameter values. 

 

Figure 3 

The layers of LSTM Model. 

Evaluation Criterias 

Root Mean Squared Error 

RMSE serves as a metric to quantify the error rate between two datasets, specifically comparing 

predicted values to observed values. As depicted in Equation 5, RMSE calculates the square root of the 

average of the squared differences between predicted and observed values. A smaller RMSE value 

indicates a closer correspondence between the predicted and observed values, reflecting higher accuracy 

in the predictive model. 

√
1

𝑛
∑ (𝑓𝑖 − 𝑜𝑖)2𝑛

𝑖=1    (5) 

f = expected values, o = observed values, n = number of samples 

Mean Squared Error 

MSE quantifies the proximity of a regression line to a set of data points. It serves as a risk function, 

representing the expected value of the square of the error loss. Calculated by averaging the squared 

errors from the data regarding a function, MSE is expressed as the mean of these squared errors. Unlike 

RMSE, which involves taking the square root of the average squared errors, the formula for MSE 

(equation 6) does not include the root operation, thereby providing a measure of the average squared 

discrepancy between predicted and observed values [38]. 

1

𝑛
∑ (𝑓𝑖 − 𝑜𝑖)2𝑛

𝑖=1   (6) 

The implemented code encompasses the following steps: 

1. Perform the data reading operation: Read the dataset containing the relevant information for the 
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analysis. 

2. Prepare for cross-validation: Define the parameters and setup necessary for conducting cross-

validation. 

3. Normalize the data: Scale the input features to ensure uniformity and facilitate the modeling 

process. 

4. Separate the data into training and testing: Partition the dataset into training and testing subsets 

for model evaluation. 

5. Model building: Construct the machine learning or deep learning model using the training data. 

6. Make predictions: Utilize the trained model to predict outcomes for the testing data. 

7. Obtain cross-validation results: Evaluate the model's performance using cross-validation 

techniques to assess its generalization ability. 

8. Calculate MSE, RMSE, and Accuracy Rates: Compute performance metrics such as MSE, 

RMSE and Accuracy Rates to quantify the model's predictive accuracy and effectiveness. 

These steps collectively form a structured approach to data analysis and model building, ensuring 

thoroughness and reliability in the analytical process. 

RESULTS 

In this article, various algorithms were applied with optimized parameter values using different 

data splitting methods (90% training - 10% test, 80% training - 20% test, and 67% training - 33% test) 

and cross-validation techniques. Performance analysis results were then presented. Specifically, 

evaluations of the algorithms applied to the dataset, where training and test data were different splitting 

rate test method, were conducted based on performance criteria, focusing on daily and weekly data. The 

findings of these evaluations are summarized in Table 4. 

According to the results presented in Table 4, the LSTM model yielded the lowest MSE value of 

0.0055. Comparatively, the CNN algorithm achieved an MSE of 0.0056, the RF algorithm attained 

0.0066, the k-NNR algorithm resulted in 0.0073 MSE, and the LR algorithm produced an MSE of 

0.0058. 

Table 4 

The comparison of algorithms based on different splitting data rate 

Data Splitting Algorithm 
Daily Weekly 

MSE RMSE Accuracy rate MSE RMSE Accuracy rate 

90% training  

10% testing 

CNN 0.0056 0.0750 0.9944 0.01 0.10 0.9899 

LSTM 0.0054 0.0748 0.9946 0.01 0.1022 0.9896 

RF 0.0066 0.0816 0.9933 0.015 0.122 0.9849 

k-NNR 0.0073 0.0856 0.9927 0.0085 0.0919 0.9915 

LR 0.0058 0.0765 0.9941 0.0090 0.0949 0.9909 

80% training  

20% testing 

CNN 0.0057 0.0760 0.9943 0.0068 0.0828 0.9931 

LSTM 0.0056 0.0753 0.9944 0.0075 0.0866 0.9925 

RF 0.0072 0.0851 0.9927 0.0098 0.0988 0.9902 

k-NNR 0.0084 0.0921 0.9915 0.0067 0.0825 0.9932 

LR 0.0055 0.0745 0.9945 0.0073 0.084 0.9927 

67% training   

33% testing 

CNN 0.0061 0.0785 0.9939 0.0084 0.0919 0.9916 

LSTM 0.0059 0.0774 0.9941 0.0089 0.0944 0.9910 

RF 0.0075 0.0868 0.9924 0.010 0.10 0.9891 

k-NNR 0.0094 0.0973 0.9905 0.012 0.1122 0.9874 

LR 0.0062 0.0786 0.9938 0.0088 0.094 0.9911 

According to the results in Table 4, it was seen that the Linear Regression model was the model 

that gave the smallest MSE value with a value of 0.0055. When MSE values of other methods are 

examined; The CNN algorithm showed performance with 0.0057, LSTM algorithm 0.0056, RF 

algorithm 0.0072 and k-NNR algorithm 0.0084 MSE values, respectively. 
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The LSTM model demonstrated the lowest MSE value, registering at 0.0059. In comparison, the 

CNN algorithm exhibited an MSE of 0.0060, the RF algorithm yielded 0.0075, the k-NNR algorithm 

resulted in 0.0094 MSE, and the LR algorithm achieved an MSE of 0.0062. 

Additionally, Table 5 outlines the accuracy rates obtained from transactions conducted with 

Cross-Validation. These results provide further insights into the performance of the algorithms under 

evaluation. 

Table 5 

Comparison of Algorithms According to Transactions Performed with Cross-validation. 

Algorithm 

Daily Weekly 

MSE RMSE 
Accuracy 

rate 
MSE RMSE 

Accuracy 

rate 

RF 0.006011 0.07752 0.993998 0.013841 0.11764 0.986162 

k-NNR 0.03121 0.17665 0.96884 0.11812 0.34374 0.88198 

According to the comparisons made, the loss rate graph of the LSTM model, which is the best 

performing model applied to the data set for which training and test data were created with the 90% 

training-10% test splitting method, is shown in Figure 4. 

 

Figure 4 

LSTM model loss rate graph (90% training-10% testing) 

The figure depicting the comparison between predictions generated by the LSTM model and 

actual observations from the dataset, where training and test data were partitioned using the 90% 

training-10% test splitting approach, is presented in Figure 5. 

Figure 6 illustrates the graph comparing the actual values and predicted values of the k-NNR 

algorithm, utilizing the highly effective 80% training-20% test splitting method for estimating weekly 

consumption values. 

DISCUSSION AND CONCLUSIONS 

Given the surge in smart grid technologies and the widespread adoption of electricity generation 

methods, the measurement of energy usage and the formulation of savings plans have gained paramount 

significance. The literature abounds with numerous studies aimed at estimating consumption through 

various methodologies. This is owing to the profound potential of modeling and forecasting future 

electricity consumption, which can lead to substantial energy conservation efforts. 
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Figure 5 

Comparison of real data and LSTM prediction (Daily) values 

 

Figure 6 

Comparison of real data and k-NNR predicted (weekly) values 

The main goal of our work is to establish an infrastructure capable of forecasting future energy 

consumption by leveraging DL and ML techniques for estimating energy usage. Moreover, the 

envisaged model is poised to contribute significantly to curbing energy consumption and facilitating the 

planning of household expenditures. Furthermore, insights will be gleaned into the requisite production 

levels. The methodologies selected for our study are extensively employed in scholarly literature. 

Specifically, the LSTM method has demonstrated a noteworthy increase in accuracy percentage 

compared to existing literature in our research [39,40]. This achievement is readily apparent upon 

comparison with the literature, where other utilized methods have also exhibited substantial success 

[41]. The research yielded favorable outcomes in estimating electrical power consumption through the 

application of CNN, LSTM, RF, k-NNR, and Linear Regression methods. Comparative analysis 

revealed that the LSTM model emerged as the top-performing model, boasting the lowest MSE value 

of 0.0054 for daily forecasts. Conversely, for weekly predictions, the k-NNR algorithm exhibited 

superior performance with an MSE value of 0.0067. Notably, the study indicated a higher success rate 

in estimating daily energy consumption compared to weekly energy consumption. 

Furthermore, when subjected to Cross-Validation, the Linear Regression algorithm demonstrated 

perfect accuracy with an accuracy rate of 1.0, signifying an exact match with the dataset. The developed 

model is poised to estimate electrical power consumption with remarkable precision, closely 

approximating actual observation values. Consequently, the LSTM model, which demonstrated superior 

performance in estimating electrical power consumption, was deemed the most suitable choice. 

Moreover, the developed LSTM model showcased enhanced efficacy in smart grid management or 
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evaluation compared to other applied methods. Through the predictions generated by this approach, 

savings plans can be formulated effortlessly and with heightened reliability. 

When evaluating the performances of LSTM models across different division methods, notably, 

a superior success rate was attained with the LSTM model applied to the dataset partitioned with the 

90% training-10% test splitting method, surpassing other splitting techniques. Similarly, for CNN 

models, enhanced performance was evident when employing the 90% training-10% test splitting method 

compared to alternative methods. In the case of RF models, optimal success rates were achieved when 

utilizing the 90% training-10% test splitting method. Likewise, for k-NNR models, superior 

performance was observed with the 90% training-10% test splitting method. Conversely, when 

analyzing the performances of Linear Regression models across division methods, intriguingly, a higher 

success rate was attained with the Linear Regression model applied to the dataset partitioned with the 

80% training-20% test splitting method, diverging from the trends observed with other algorithms. It is 

noteworthy that Linear Regression did not exhibit a proportional increase in efficiency with the 

extension of the training series, distinguishing it from other algorithms. 

Upon examining the impact of training and test data splitting methods on the performance of the 

proposed models, a discernible trend emerges: as the size of the training set increases across the utilized 

splitting methods, the prediction performance of the models demonstrates a consistent improvement. 

This observation underscores the pivotal role of a larger training set in enhancing model training and 

subsequently yielding more accurate and reliable predictions. This finding underscores the importance 

of expanding the dataset for future studies, as it facilitates the development of more robust models and 

ensures greater consistency in predictions. Moreover, future endeavors may explore the potential of 

enhancing predictions through the utilization of different deep learning models, leveraging increased 

dataset sizes to further refine and optimize model performance. 
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