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Introduction 

Cracks are a common issue observed on various man-

made structures such as pavements, bridges, nuclear power 

plant walls, and tunnel ceilings. Cracking occurs when a 

structural element separates into distinct pieces, 

representing a mechanism to relieve stress when concrete is 

subjected to forces beyond its tensile capacity [1]. It's a 

symptom of deterioration processes that weaken concrete or 

subject it to excessive stresses, causing it to lose its integrity 

[2]. When cracking happens, the tensile stresses 

perpendicular to the crack are eliminated [3]. Due to 

concrete's heterogeneous material structure and brittle 

behavior, it's widely accepted that cracks will eventually 

appear during the structure's lifespan. Building codes 

explicitly acknowledge this, ensuring that structures can 

endure loads over their intended service life despite crack 

formation. Concrete cracks can lead to severe 

consequences, such as reduced strength and stiffness, 

diminished aesthetics, shorter durability, and compromised 

waterproofing [4]. The loss of stiffness due to cracks results 

in additional deformations and displacements in structural 

elements. 

Timely detection and repair of cracks are crucial for 

maintaining infrastructure health and preventing further 

damage. Developing a fast, reliable, and cost-effective 

algorithm to identify surface defects is a top priority for 

robust infrastructure management systems [5, 6, 7]. The 

rising demand for computer-aided intelligent infrastructure 

monitoring/inspection systems, such as pavement surface 

inspection [8], underground pipeline inspection [9], bridge 

crack monitoring [10], and railway track assessment [11], 

has led to a growing interest in automatic crack detection in 

recent years. Deep learning algorithms, a subset of artificial 

intelligence, have been prominently featured in this trend 

and have demonstrated successful applications across 

various fields. 

In recent years, deep learning has seen widespread 

applications in various fields such as industry, healthcare, 

natural language processing, and autonomous vehicles, 

especially within engineering disciplines [12, 13, 14, 15]. In 

this context, numerous studies have explored the use of 

deep learning techniques in crack detection. Loverdos and 

Sarhosis [16], curated a comprehensive dataset consisting 

of images of stacked brick walls with diverse colors, 

textures, and sizes. They discovered that employing image-

based techniques and machine learning for brick 

segmentation produced superior results com
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pared to conventional image processing methods. In a 

study conducted by Ali R. et al. [17] focusing on crack 

detection in structures, applications of CNN outperformed 

traditional image processing techniques and other machine 

learning methods in crack classification and segmentation. 

Xu Z. et al. [18] introduced a locally developed transformer 

network (LETNet) method capable of effectively detecting 

road surface cracks, achieving high accuracy in crack 

detection. They highlighted LETNet's exceptional 

performance in identifying various surface cracks under 

diverse road and weather conditions. Additionally, 

Chaiyasarn, K. et al. [19] reported remarkable results in 

crack predictions using CNN, achieving high accuracy 

(99.88%), precision (82.2%), recall (90.2%), and F1 score 

(86.01%). 

Yu, Y. et al. [20], an approach utilizing advanced pre-

trained CNN was proposed to predict cracks on concrete 

structures, leveraging a dataset comprising 41,780 images. 

While the method proved to be effective and robust in 

detecting concrete cracks, the authors acknowledged its 

limitation in characterizing the size and type of small 

cracks. On a parallel note, Ma, D. et al. [21] introduced a 

technique for asphalt road crack detection based on a CNN 

with multiple feature layers. The model extracted multi-

scale features to enhance accuracy in road crack 

recognition. Following hyperparameter tuning, the model 

achieved an impressive accuracy of 98.217% and a crack 

detection rate of 96.6 frames per second (FPS). Müller, A. 

et al. [22], a machine learning-based approach was 

developed to automatically detect the onset of fractures 

using a dataset of over 30,000 images derived from material 

characterization experiments. The researchers mentioned 

that their classifier model could identify both the initiation 

and propagation of cracks. While their study concentrated 

on analyzing ductile fracture images, they noted that the 

methodology they proposed could readily be adapted for 

brittle fracture problems as well. Moreover, Fang et al. [23] 

introduced a fatigue crack growth prediction method that 

employed machine learning model correction to mitigate 

errors arising from uncertain factors in crack growth. 

Hamidia, M. [24], an extensive database comprising 264 

surface crack models corresponding to 61 non-ductile 

reinforced concrete moment frame (RCMF) was created. 

These specimens were tested under various shear 

displacement rates. The researcher proposed a machine 

learning-based procedure to automate the characterization 

of the damage state of non-ductile reinforced concrete 

moment frames. This characterization was based on visual 

indices of crack patterns observed on concrete surfaces. 

Interestingly, the study revealed that predictions relying on 

models utilizing compressive strength information did not 

significantly enhance accuracy. This suggests that the 

surface crack models of RCMF provide adequate 

information to estimate the maximum shear displacement 

ratio experienced by moment frames during seismic 

vibrations. In essence, the research indicated that the crack 

pattern model could be effectively utilized to predict the 

maximum shear displacement ratio sustained by damaged 

non-ductile RCMF during seismic events. 

Aravind N. et al. [25] concentrated on crack detection 

by employing image processing and fault pattern 

recognition techniques in conjunction with appropriate 

machine learning algorithms. They specifically targeted 

cracks in reinforced concrete beams subjected to bending 

loads and utilized six different classifiers for detection. The 

study highlighted that the support vector machine (SVM) 

classifier provided the most accurate results in predicting 

cracks. Han X. et al. [26] introduced a hybrid technique 

incorporating CNN and digital image processing to detect 

cracks in photographs. They proposed that by implementing 

transfer learning, the required volume of data and costs 

could be minimized without compromising accuracy. 

Meanwhile, Laxman, K. C. et al. [27] devised a 

comprehensive framework utilizing deep learning models 

for crack detection on concrete surfaces. Additionally, they 

focused on estimating crack depth using images captured 

from portable devices. Zhang et al. [28] introduced a crack 

detection model using Binary Level Sets (BLS), which 

effectively identifies crack images while being lightweight. 

Similarly, Martinez-Ríos et. al. [29] proposed utilizing 

Generalized Morse Wavelets (GMWs) in Continuous 

Wavelet Transform (CWT) to detect transverse cracks on 

sidewalks, employing spectrograms to fine-tune pre-trained 

CNN like GoogLeNet, SqueezeNet, and ResNet18. Among 

these, SqueezeNet demonstrated the highest average 

validation sensitivity. Meanwhile, Xu et al. [30] developed 

a real-time method for crack detection, segmentation, and 

parameter measurement, ensuring both accuracy and 

efficiency. Additionally, Yuan et al. [31] focused on 

machine learning models to predict self-healing concrete's 

ultimate crack width, successfully correlating input 

parameters like raw materials and pre-healing crack width 

with post-healing crack width, demonstrating accurate 

predictions of crack healing capacity. Iraniparast et al. [32] 

employed Deep Convolutional Neural Networks (DCNN) 

and transfer learning techniques to detect cracks in images 

of concrete structures. They incorporated multi-resolution 

image analysis through wavelet transformation for crack 

segmentation. Their DCNN classifier models demonstrated 

strong performance, with F1-scores ranging from 94.5% to 

99.6%. Similarly, Katsigiannis et al. [33] introduced a deep 

learning method for crack detection in brick wall facades, 

using transfer learning with limited annotated data. They 

created a dataset of 700 brick wall facade images, using 500 

for training, 100 for validation, and 100 for testing. Their 

approach proved highly effective, achieving accuracy and 

F1 scores of up to 100% during end-to-end training of the 

neural network. 

When evaluating the studies in the literature, it is 

evident that deep learning methods are widely utilized for 

crack detection across various types of structures. These 

studies encompass a wide spectrum of buildings, ranging 

from brick walls to concrete structures, employing 

techniques such as CNN, transfer learning, and other 

machine learning methods. Particularly, experiments 

conducted on diverse datasets consistently demonstrate that 

deep learning-based approaches yield superior results 

compared to traditional image processing techniques. These 

studies underscore the effectiveness of deep learning in 
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crack detection, emphasizing its significant potential in the 

fields of civil engineering and structural maintenance in the 

future. 

 This study primarily focuses on crack detection using 

deep learning techniques. With the advancement of 

Artificial Intelligence (AI), deep learning has achieved 

significant success and is regarded as the most promising 

approach for crack detection. The main contributions of this 

study emphasize how crucial it is to detect cracks during the 

maintenance of concrete structures. Early crack detection is 

critical for ensuring the longevity and safety of these 

structures, allowing proactive measures to prevent potential 

damage. Additionally, this study demonstrates that the use 

of deep learning-based techniques instead of traditional 

visual inspection methods represents a significant 

transformation in the field of civil engineering. These 

techniques can be applied in various fields due to their 

autonomous diagnostic capability and will contribute to 

rapid advancements in civil engineering as well. 

Furthermore, this article presents the effectiveness of a 

crack detection approach developed using deep learning 

methods such as vision transformers and CNN. This method 

achieves high accuracy rates in autonomously diagnosing 

cracks in different types of structures, including bridges, 

roads, and walls. The dataset and experimental studies 

demonstrate the scalability of this approach and showcase 

the transformative impact of deep learning in civil 

engineering practice. Therefore, this study represents a 

significant advancement in the field of crack detection. 

Material and Methods 

Deep Learning  

Deep learning is a type of machine learning that 

involves neural networks with at least three layers. These 

networks attempt to mimic the functioning of the human 

brain and have the ability to learn from large amounts of 

data. Additional hidden layers can enhance the accuracy of 

prediction. Deep learning technology empowers various 

artificial intelligence applications, such as digital assistants, 

fraud detection systems, and autonomous vehicles. 

Machine learning and deep learning models come in 

different types of learning, including supervised, 

unsupervised, and reinforcement learning [34,35]. 

Supervised learning works with labeled data, unsupervised 

learning detects patterns in unlabeled data and classifies 

them based on distinctive features, while reinforcement 

learning is used to improve a model's actions based on 

feedback. 

Training deep learning models may take longer 

compared to other machine learning methods, but testing 

trials can be quicker. However, in cases where data is 

limited or better interpretability is required, traditional 

machine learning methods might be preferred and 

advantageous [36]. Deep learning is more effective in 

situations involving large datasets, complex problems, or 

feature extraction requirements. It finds applications in 

various fields, including civil engineering, and has become 

an effective tool for solving complex engineering problems. 

These applications include predicting structural responses, 

structural reliability and health monitoring, structural 

damage detection, estimating material properties, and 

providing decision support for intelligent transportation 

systems. 

Convolutional Neural Networks (CNNs) 

 CNNs are a deep learning architecture widely used, 

especially in computer vision tasks. They were first 

proposed in the "Neocognitron" paper, based on Hubel and 

Wiesel's model of the visual system, and later optimized 

using backpropagation by Yann Lecun and colleagues [37]. 

CNN consist of three main types of layers: convolutional 

layers, which extract features using a sliding kernel; non-

linear layers, applying activation functions to model non-

linear relationships; and pooling layers, altering small 

regions of feature maps with statistical information. CNN 

layers have locally connected nodes and weight-sharing 

mechanisms through sliding kernels, significantly reducing 

parameters. Popular CNN architectures include VGGNet, 

ResNet, GoogLeNet, MobileNet, and DenseNet [38, 39]. 

Vision Transformers (ViT) 

The Transformer is a deep learning model that uses self-

attention mechanisms to evaluate the importance of each 

part of the input data. This model has gained significant 

attention, particularly in the field of natural language 

processing, replacing traditional models. ViT was 

introduced in 2021 for image recognition tasks. It treats 

images as sequences of patches, which are then transformed 

into vectors and processed by a standard Transformer 

encoder. ViT is pretrained on large datasets and can be fine-

tuned for specific image classification tasks. This model has 

potential applications in various fields such as image 

recognition, object detection, and visual reasoning. 

However, the effectiveness of image processing models 

depends on factors such as the chosen optimization method, 

network depth, and specific hyperparameters of the dataset. 

Particularly, it has been observed that ViT has a more 

challenging optimization process compared to CNN. The 

Transformer generates a sequence of output tokens using 

the self-attention mechanism and maps these outputs to 

feature maps [40]. This approach allows the model to focus 

on crucial pixel-level information, reducing the number of 

tokens that need to be analyzed and significantly cutting 

down costs. 

Dataset 

 The importance of the dataset in achieving the desired 

success of deep learning architectures is unquestionable. 

While classical machine learning approaches focus on 

manual feature extraction and small datasets, the key 

difference between the two approaches is that deep learning 

architectures require large-scale datasets and automatic 

feature extraction. In this study, the dataset created by 

Dorafshan et al. [41] was used. The SDNET2018 dataset, as 

seen in Figure 1, contains over 56,000 annotated images of 

cracked and non-cracked concrete surfaces, bridge decks, 

walls, and pavements.  
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Figure 1. Some sample images from SDNET2018 dataset  

Table 1. SDNET 2018 image dataset description and statistics. 

 Number of images in the 

training set 

Number of images in 

validation set 

Number of images in the 

test set 

 

 Cracked Non-cracked Cracked Non-cracked Cracked Non-cracked Total 

Wall 2695 10001 578 2143 578 2143 18138 

Bridge Deck 1417 8115 304 1740 304 1740 13620 

Pavement 1824 15208 392 3259 392 3259 24334 

 

     This dataset is designed for training, validation, and 

comparison of autonomous crack detection algorithms 

working with image processing, deep CNN architectures, 

and other techniques. As the popularity of such techniques 

in structural health monitoring increases, there is a need for 

a dataset containing various annotated images that were not 

previously available to continually improve crack 

detection algorithms.         

     The SDNET2018 dataset [41] has been enriched with 

images containing different types of cracks ranging from 

0.06 mm in width to 25 mm. For instance, there are 3851 

images of cracked walls, with 14287 images of non-

cracked walls. Similarly, for bridge decks, there are 2025 

cracked images and 11595 non-cracked images. As for 

pavement surfaces, there are 2608 cracked images and 

21726 non-cracked images. The dataset has allocated 15% 

of cracked and non-cracked images for validation, 15% for 

testing, and 70% for training purposes. Statistical 

information about the SDNET2018 dataset is presented in 

Table 1. 

 

Proposed Method and Process 

 

In this section, the usage and validation of deep 

learning models in crack detection are explained. Deep 

learning models have shown effective results in various 

fields, along with their successes in crack detection in the 

literature. In this study, popular CNN-based algorithms 

such as ResNet [42], VGG [43], and MobileNet 

architectures [44] are used for crack detection. 

Additionally, recently emerging image transformer models 

in deep learning, such as MobileViT [45] and Multi-Scale 

Vision Transformers (MViT2) [46], are employed for 

crack detection. The effective training of deep learning 

models significantly impacts their generalization 

capabilities on test data. If effective training does not 

occur, deep learning models can yield unsuccessful results 

on test data, which can be interpreted as a result of 

overfitting or being trained in an uncontrolled manner. The 

proposed approach's architecture is illustrated in Figure 2. 
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Figure 2. Stages of the proposed crack detection approach 

 

     Throughout the training process, deep learning models' 

accuracy and speed can be significantly enhanced through 

various techniques and parameters. Among the most 

effective methods are transfer learning and data 

augmentation. Furthermore, factors such as input image 

size, batch size, number of epochs, optimizer, learning rate, 

weight decay, decay rate, and warm-up augmentation play 

crucial roles in influencing the model's performance. In this 

study, essential data augmentation techniques such as 

scaling, smoothing, flipping, color jittering, and rotation 

were consistently applied across all models. Transfer 

learning was facilitated by utilizing weights from the 

ImageNet dataset, proving to be a valuable method for 

accelerating convergence and improving accuracy. The 

models were trained with optimized values for different 

parameters. For instance, the image resolution was set to 

224x224, and other key parameters were configured as 

follows: step size: 0.000001, base step size: 0.1, 

momentum: 0.9, optimizer: sgd, weight decay: 2.0e-05, 

warm-up periods: 5, and warm-up learning rate: 1.0e-05. 

 

Results and Discussion 
 

Experimental Design 

 

Typically, deep learning algorithms are trained using 

GPU (Graphics Processing Unit)-based graphics cards. 

These cards allow for faster processing of large datasets 

due to their parallel computing capabilities. Particularly, 

graphics cards using NVIDIA's CUDA architecture are 

widely preferred for training deep learning algorithms. The 

hardware components used in this study include the 

following: Linux-based Ubuntu 22.04 operating system, 

NVIDIA RTX 2080TI (11 GB GDDR6 and 4352 CUDA 

cores) graphics card, Intel Core i9 9900X (10 cores, 3.50 

GHz, 19.25 MB Intel® Smart Cache) processor, and 32 GB 

DDR4 RAM. PyTorch was used as the deep learning 

library, and Python was the preferred programming 

language. 

 

 

Evaluation Metrics 

 

Evaluation metrics serve as tools to assess models 

from various perspectives. In the realm of object 

classification, fundamental metrics such as accuracy, 

precision, recall, and F1 score are commonly employed. 

These metrics are universally used in evaluating deep 

learning models in the existing body of literature. Their 

calculation hinges on knowing the values of true positive, 

true negative, false positive, and false negative, which 

typically constitute a confusion matrix. True positive 

signifies parts genuinely belonging to the positive class and 

accurately predicted. Conversely, true negative represents 

instances where parts rightfully belong to the negative class 

and are precisely predicted. False positive arises when 

parts truly belong to the positive class but are incorrectly 

predicted, while false negative denotes situations where the 

model inaccurately predicts the class. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑧𝑖𝑡𝑖𝑓
          

                                                                 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑧𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
                 

                                                                               

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                    

 

These formulas provide the mathematical foundation 

for evaluating the performance of object classification 

algorithms or architectures. 

 

Experimental Results 

 

In this section, the statistical results and evaluations 

of the achievements of each deep learning model used in 

this study on the SDNET2018 dataset are discussed. The 

SDNET2018 dataset comprises three main classes: bridge 
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decks, walls, and pavements. Each class contains both 

cracked and uncracked images. Therefore, the evaluations 

are presented in three tables, providing a more detailed 

comparison. 

 

Experimental Results of Bridge Deck Classification 

 

This section presents the experimental results for 

bridge decks (Table 2). It demonstrates the performance of 

the most popular deep learning architectures, namely CNN 

architectures, and the increasingly popular image 

transformer models in recent years. This study compares 

the results for both architectures, providing a comparison 

between CNN and image transformers. It evaluates the 

models' ability to generalize and perform on the test data in 

crack detection. 

 

Table 2. Experimental results of the bridge deck 

Model Name Accuracy Precision Recall F1-score 

ResNet50 0.9227 0.8924 0.7809 0.8329 

ResNet34 0.9178 0.9036 0.7508 0.8201 

VGG16 0.9183 0.8949 0.7593 0.8215 

MobileViT-S 0.9144 0.8595 0.7760 0.8156 

MobileViT-XS 0.9217 0.8974 0.7721 0.8300 

MobileViT-XXS 0.9203 0.8956 0.7672 0.8264 

MobileNetv3-Small 0.9080 0.8776 0.7274 0.7955 

MViTv2_Tiny 0.9281 0.9328 0.7732 0.8455 

MViTv2_Small 0.9256 0.9160 0.7744 0.8393 

 

Table 2 presents the experimental results for nine 

deep learning models related to bridge decks. Upon 

examining Table 2, it can be stated that all models exhibit 

high performance with an accuracy of over 90%. Only a 

few models surpass the 92% accuracy threshold, indicating 

their superior performance compared to other models. A 

detailed analysis of Table 2 showcases the performance of 

different deep learning models in the classification task. In 

light of the observed metrics, the MViTv2_Tiny model has 

the highest accuracy (0.9281) and precision (0.9328) 

scores, indicating its overall high ability for correct 

predictions and accurate positive predictions. However, 

this model has a lower sensitivity (0.7732) score compared 

to some other models, meaning the rate of true positives 

being predicted is slightly lower. On the other hand, the 

MobileNetv3-Small model stands out with lower accuracy 

(0.9080) and precision (0.8776) scores but might require 

more improvement in terms of sensitivity (0.7274). The 

confusion matrices for these models are shown in Figure 3 

and Figure 4. 

 

Figure 3. Confusion matrix of mvit2-tiny  

 

 

Figure 4. Confusion matrix for Mobilenetv3-small 

Experimental Results of Wall Crack Classification 

 

This section includes the experimental results related 

to wall crack detection in the wall class of the SDNNet2018 

dataset (Table 3). Similar to the bridge decks, the 

performance of both CNN and vision transformer models 

in crack detection has been addressed. Additionally, a 

detailed comparison of the performance and metrics of 

both deep learning architectures and their respective 

models has been conducted to provide a more 

comprehensive analysis of crack detection. 
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Table 3. Experimental results of the wall element 

Model Name Accuracy Precision Recall F1-score 

ResNet50 0.8905 0.8955 0.7637 0.8244 

ResNet34 0.9151 0.8847 0.8539 0.8690 

VGG16 0.9199 0.8922 0.8613 0.8765 

MobileViT-S 0.9208 0.9113 0.8665 0.8883 

MobileViT-XS 0.9239 0.9031 0.862 0.8821 

MobileViT-XXS 0.9236 0.8935 0.8731 0.8832 

MobileNetv3-Small 0.8956 0.8559 0.82 0.8376 

MViTv2_Tiny 0.9276 0.9035 0.8744 0.8887 

MViTv2_Small 0.9236 0.8922 0.875 0.8835 

 

Table 3 presents the experimental results for 9 deep 

learning models related to the wall class. Upon examining 

Table 3, it can be stated that all models except ResNet50 

and MobileNetv3-Small achieved high accuracy, 

surpassing 90%. Only a few models demonstrated accuracy 

above 92%, indicating their superior performance 

compared to others. When considering all metrics and 

making a comprehensive evaluation, the highest 

performance was observed in the MViTv2 architecture, 

particularly in the models MViTv2-Tiny and MViTv2-

Small, with MViTv2-Tiny achieving the highest overall 

accuracy. On the other hand, the lowest performance was 

attributed to the ResNet50 model. The confusion matrices 

for these models are shown in Figure 5 and Figure 6.  

 

Figure 5. Confusion matrix for MViTv2-Tiny 

 

 

Figure 6. Confusion matrix for ResNet50 

A detailed analysis of the table reveals that the 

MViTv2-Tiny model stands out with high accuracy 

(0.9276) and precision (0.9035), indicating its excellent 

classification ability. However, other models also 

exhibited strong performance. The VGG16 and 

MobileViT-S models are notable for their high precision 

and recall values, reflecting their success in minimizing 

false positive and false negative results.   Figure 5. 

Confusion matrices of MViTv2-Tiny 

 

Experimental Results of Pavement Classification 

 

This section covers the experimental results related to 

the road surface (Table 4). It demonstrates the performance 

of deep learning architectures, including popular CNN 

architectures and models based on image transformation, 

which have become popular in recent years. This study 

compares and evaluates the generalization capabilities and 

performances of both deep learning architectures on the 

test data, focusing on crack detection. 

 

Table 4. Experimental results of pavement 

Model Name Accuracy Precision Recall F1-score 

ResNet50 0.9584 0.9272 0.8443 0.8838 

ResNet34 0.9551 0.8989 0.857 0.8775 

VGG16 0.9554 0.9235 0.8302 0.8744 

MobileViT-S 0.9606 0.9416 0.8433 0.8897 

MobileViT-XS 0.9619 0.9221 0.871 0.8958 

MobileViT-XXS 0.9622 0.9360 0.8576 0.8951 

MobileNetv3-Small 0.9543 0.9074 0.8409 0.8729 

MViTv2-Tiny 0.9641 0.9392 0.8654 0.9008 

MViTv2-Small 0.9636 0.9459 0.8562 0.8988 

      Table 4 presents the experimental results for the road 

surface with 9 deep learning models. When examining 

Table 4, it can be stated that all models achieve accuracy 
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above 95%, indicating high performance. Upon considering 

all metrics and making a general evaluation, the highest 

performance is achieved by the MViTv2 architecture, 

particularly the MViTv2-Tiny and MViTv2-Small models. 

Among these, the MViTv2-Tiny model stands out with the 

highest performance. On detailed inspection of Table 4, the 

MViTv2-Tiny model demonstrates the highest accuracy 

rate (96.41%), emphasizing its overall high performance. It 

also exhibits successful performance in terms of precision 

(93.92%) and F1 score (90.08%), highlighting its ability to 

make accurate positive predictions. On the other hand, 

ResNet50 and ResNet34 models have high accuracy rates 

(95.84% and 95.51%, respectively), but their precision 

(92.72% and 89.89%) and F1 scores (88.38% and 87.75%) 

are slightly lower compared to MViTv2-Tiny. These 

models seem to yield robust results in a large dataset. The 

MobileViT series models (MobileViT-S, MobileViT-XS, 

MobileViT-XXS) also have high accuracy rates, but their 

precision and F1 scores are more uneven when compared to 

some other models. Especially noteworthy are the precision 

of MobileViT-S (94.16%) and MobileViT-XXS (93.60%). 

The confusion matrices for these models are shown in 

Figure 7 and Figure 8. 

 

Figure 7. Confusion matrix for MViTv2-Tiny 

 

 

Figure 8. Confusion matrix for MobileNetv3-Small 

Conclusions 

 

Detecting cracks in structures is challenging due to 

lighting conditions, complex backgrounds, lighting effects, 

and low contrast between crack and non-crack areas. Deep 

learning has addressed these challenges by automatically 

extracting features from images and detecting cracks. This 

study introduces an innovative approach for autonomous 

crack diagnosis in various structures such as bridges, roads, 

and walls, using vision transformers and CNN. To enhance 

crack detection performance, the study combines deep 

CNN and ViT architectures by employing transfer 

learning, data augmentation, and hyperparameter 

optimization. Impressive results were obtained by applying 

this approach to the extensive SDNET2018 dataset, 

consisting of more than 56,000 images. In trial runs, this 

approach achieved remarkable accuracy rates, such as 

96.41% in pavement crack detection, 92.76% in wall crack 

detection, and 92.81% in bridge crack detection. These 

findings demonstrate the promise of deep learning in crack 

detection and its transformative impact on civil 

engineering applications. 

  

     Consequently, deep learning techniques have the 

potential to be applied in structural analysis and detection 

tasks like identifying concrete cracks. However, their 

effectiveness relies on several factors, including the 

availability of accurate data, suitable algorithms, and 

appropriate application conditions. 
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