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Abstract

We introduce a new geometric constant C%,;(¢,7, X) in Banach spaces, which is called
the skew generalized von Neumann-Jordan constant. First, the upper and lower bounds
of the new constant are given for any Banach space. Then we calculate the constant
values for some particular spaces. On this basis, we discuss the relation between the
constant C¥; ;(¢,n, X) and the convexity modules dx (¢), the James constant J(X). Finally,
some sufficient conditions for the uniform normal structure associated with the constant
CR;(¢,n, X) are established.
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1. Introduction

Throughout this article, let X be a real Banach space. Bx, Sx, and ex(Bx) are denoted
as the unit ball, the unit sphere of X, and the set of extreme points of By, respectively.

Geometric constants play an important role in the theory of Banach spaces and have
been fully developed. For more papers on geometric constants, refer to ([2-4], [12,13]).
By using geometric constants as a tool to study the geometric properties of Banach spaces
in a more detailed way, we can better quantitatively analyze and characterize the geo-
metric properties. By determining the values of the constants in various abstract Banach
spaces, we can get a series of properties in the corresponding spaces, and the values of the
corresponding geometric constants in some concrete spaces also help us to better study
the geometric features of Banach spaces. In recent years, many scholars have generalized
some classical constants such as the von Neumann-Jordan constant and the James con-
stant. Now, let’s review these two constants.

Let X be a Banach space, the von-Neumann constant [19] is defined as

Jz +yl* + [l — y|?
cx,y € X, (z,y) #(0,0) ¢,
2[|=[1? + 2|yl

Cny(X) = sup {

*Corresponding Author.

Email addresses: nigichuan111@163.com (Q. Ni), liug67@aqgnu.edu.cn (Q. Liu), zhouyin0330@163.com
(Y. Zhou)

Received: 11.03.2024; Accepted: 07.05.2024


https://orcid.org/0009-0001-8931-369X
https://orcid.org/0000-0003-4322-308X
https://orcid.org/0009-0003-4866-8704

2 Qichuan Ni, Qi Liu, Yin Zhou

and the James constant J(X) [7] is defined as
J(X) = sup {min{[|lz + y||, |z —yll} : 7,y € Sx}.

Cui, Huang, Hudzik and Kaczmarek [5] introduced a new geometric constant C](\I;?,(X )
called the generalized von Neumann-Jordan constant, defined by

o+ ylP + [l — y|P
4 :x,yex,my)#(o,m},
{ 21 (27 + [9]l?)

Oy (X) =

where 1 < p < 0o. These scholars have shown that 1 < C’](\I;L)](X ) < 2 for any Banach space
X and for any 1 < p < co. Meanwhile, the following inequality holds

-1
J(X) <275 {c®x),
where 1 < p < oo.

Zuo and Cui [18] introduced the function Jx ,(t), defined by

1
tullP — P\ 7
JX,p(t)ZSUP{<”$+ yl —;—]w yll )p :1‘,3165)(}7

on the interval [0,00), where 1 < p < oco. It considers a generalization of J(X) in the
power of p. By the convexity of the function f(x) = 2P, the following inequality holds:

2 + tyll” + [l — ty[]” (Hﬂ? +tyll + [le -ty )p
2 - 2 ’
Further, Yang et al. [17] generalized the constant Cy;(X) in the unit sphere:

Iz +yll% + llz -yl
op

éﬁﬁ(X)—Sup{ x,y € X, lz)x = Hny—l}-

They discussed the relationship between CN'](\I,")](X ) and C](\I,"),(X ), and the value of the con-

stant C'](\‘T;()](X ) is estimated.
In new research, Liu et al. [9] introduced a constant with a skew relationship, defined
by for {,n >0

LYJ(C? m, X) = sup {
Another similar constant
/YJ(Cvn7X) = Sup{

was also introduced by Liu et al. [10].
Through continuous research on the above constants, we will propose a new constant

C]P([J(Q m, X)

2. The constant C% (¢, n, X)

ISz + ny|l* + llnz — Cyll*
T T oS @) £ 00}

¢z +nyll* + |Inz — ¢yl
2(¢2+17?)

tx,y € SX}

We introduce a new constant based on the constant Ly j((,n, X). From now on, we
will consider only Banach spaces of dimension at least 2. We begin by introducing the
following key definition: for {,n > 0

p — p
Cy (¢, X) = sup { 21!3(2;?'7'7?;””;1; +?|yy|Hp) a,y € X, (2,y) # (0, 0)}

- { 1€z + ntyl|” + [In= — Ctyll”
~ P (@ ) + ()]

:m,yESX,OStSI},

where 1 < p < 0.
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Remark 2.1. Notice that if ¢ = n, then C} (¢, n, X) = CJ(\I,))J(X).

Next, we will give a lemma to compute the lower and upper bounds of the constant
C]%J(Cv m, X)
Lemma 2.2. Let z,y > 0,1 < p < 00, then (z + y)P < 2P~ (2P + yP).

Proposition 2.3. Let X be a Banach space, then
< CR(Cn, X) <2

r-2 =
Proof. According to convexity of function f(z) = || - ||P, we have
[z +nyll?  lInz — ¢yl H o M ¢ (=) P
(C+m)? (C+n)p C+n" C+n C+n
¢

< — |lz|P + y|[P + P Y|P
Ll €+ Iyl + C+ — |l C+77” |

= l]” + [lyl[*-

This means that
¢z + nyllP + llnz —Cyll” . (C+n)”
2072(CP + ) (||| + [[yl[P) — 2P=2 (CP + nP)

Combined with Lemma 2.2, we have % < 2, which implies that C% (¢, n, X) < 2.

On the other hand, we assume that x # 0,y = 0,

then
16z 4+ nyl|” + [lnz — CylI” 1
20-2(¢P + ) (||z||P + |lylP) 22
Hence 1
C]%J(CJ%X) Z 217—2'

Remark 2.4. If p =1, then 2 < Cn;(¢,n, X) < 2, we can get Cn (¢, n, X) = 2.

From the above Remark 2.4, we find that when p = 1, the constant C% (¢, n, X) = 2.
Therefore, we will only consider the case where p > 1. Then, to investigate the values of
the constant C%; (¢, n, X) in some specific Banach spaces, the following two examples are
presented.

Example 2.5. Let X be R? endowed with the /o, norm defined by
(@1, 22)[lo0 = max{|z:], [z2]}.
Let z = (1,1),y = (1,—1). Thus, we obtain
lz+yll =2, [lz -yl =2
Let ( =n =1, then C%,(1,1,X) = 2.
Example 2.6. Let p > 1, >n > (t, (C—n)(n+¢)P~t — (P < 0, X be the space R? with
the norm defined by

_ H(xlaaa)”la T1X2 S 07
el = { el Sy

Then o Cto)?
+ (n + Cto
C’pN X) =
761 X) 2p72(Cp+77pt8+77p+Cptg)v

where ty € (0,1) is the only solution of the equation

b g (n —C:Ctyl '
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Proof. Thanks to Minkowski inequality, for any x,y € Sx, we can express this in terms
of extreme points in the following form
r=azx;+ (1 —a)ry and y = By + (1 — B)y2,

where x1, z2,y1 and yo are extreme points of the corresponding line segment, «, 8 € [0, 1].
We have

[¢z + nty|l” + [[nz — Cty|”

= |la(Co1 +mty) + (1 — @) (Coz + nty) |” + [l (nz1 — Cty) + (1 — a) (n22 — Cty)|”

< al[¢zr +ntyl” + (1 = @) [[Cz2 +ntyll” + a|[nz1 — Cty||” + (1 — @) [[nz2 — Cty|l”

= al|B (Czr +ntyr) + (1 = B) (Co1 + nty2)||” + e[| (nz1 — Ctyr) + (L = B) (nz1 — Ctya) [P

+ (1 =) 1B (Cxa + ptyr) + (1 = B) (Cz2 + nty2) ||

+ (1 —a) |8 (nr2 — Ctyr) + (1 — B) (nz2 — Cty2)|”

< aBlll¢x1 +nty||” + lInz1 — Ctn||P] + a(l = B) [[[Cz1 + ntya|” + Inz1 — Ctys|”]

+ (1= a)B[lI¢x2 + ntyn|® + lInze — Ctya [|”]

+ (1= a)(1 = B)[ICz2 + ntyo|® + [Inz2 — Ctyo|P).

Thus,

¢z + ntyl|” + |Inz — Cty||P < max{||Cz1 + ntyr | + [[nz1 — Ctn |7,

[z + ntyel” + lInz1 — Ctya|l”,
[z + ntyr[|” + lInz2 — Cton ||
G2 + ntya|l” + |Inze — Ctya|”}.

Then we only need to consider the values of the constant CX ;(¢,n,X) at the extreme
points. Here are all the extreme points:

ext (Bx) = {(1,0),(1,1),(0,1),(-1,0),(—-1,-1),(0,—1)}.

Since it is possible to replace z with —z and y with —y, it is only necessary to consider
when the extreme points are

{(1,0),(0,1), (1, 1)}.
Obviously, for these sets of z,y points, we can easily obtain ||z + nty||P + ||nx — (ty||P <
CP + (n + Ct)? for every t € [0, 1]. Therefore,

P+ (n+ Gty
C%J(Ca m, X) S sup {2])—2((10 + nptp + np + Cptp) } )

te(0,1]
Let f(t) = %, then
() = P+ PN ) ll M1 ( ¢t )P*] .
(CP 4 nptP + nP 4 (PtP) ¢ n+¢t
Let s(t) =1— %#’4 - (%)p_l, s(t) is decreasing from 1 to 1 — g - (ﬁ)p_l on [0, 1].

Therefore, there is an only ¢y € (0, 1) such that s (¢9) = 0. Then, we have

P+ (n+Cto)?
cR X) < :
N6 X) S G T w4 )
On the other hand, let xy = (0,1),y0 = (¢0,0), we have

P + (¢ + nto)”
P >
NAGmX) 2 oGy oy + o)
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Hence,
¢P + (n + Cto)”
Cp X) = ’
N (¢ X) 20=2((P + npth 4+ np + (Pth)
—1
where ty € (0,1) is the only solution of 1 — %tp_l = (ﬁ)p . O

Remark 2.7. If p=2,( =7 =1, then C%,(1,1,X) = Cns(X). Now, we show that the
value of the constant C% (1,1, X) is the same as the von Neumann-Jordan constant in
this norm space.

For p=2,( =n =1, we have t? +¢t — 1 = 0, then t = # Hence, we can get

C2,(1,1,X) = 325,

Corollary 2.8. In this norm space, we have

3 4

CZ;(2,1,X) =~ 155 and C} ,(1,2, X) =~ 1.60.

=

tr = (& )%, t ~ 0.42, hence

Proof. (1) For p = %,C = 2,n = 1, we have 1 — oot

3
C%,(2,1,X) ~ 1.55.

4
(2) For p = 5,( = 1,7 = 2, we have 1 — 23 = (Q%Ft)%, t ~ 0.05, hence Cf;(1,2,X) =
1.60. O

N[ =

3. The relations with 0x(¢) and J(X)

In this section, we will compare the connection between the constant C%; (¢, 7, X) and
the modulus of convexity dx(¢), the James constant J(X). The James constant J(X)
has been introduced in the introduction. Now, we recall the definition of the convexity
modules dx (¢).

Definition 3.1. Clarkson [8] introduced the concept of convexity modules, defined by

5X(5):inf{1 ||:U—2|-y|| cx,y € Sx, ||z —y| :5}, 0<e<2

Next, restricting € € (1,2] , we derive the property that the convexity module is greater
than 0 if the constant CX, (¢, 7, X) satisfies certain conditions. Further, we compare the
inequality between the constant C%;(¢,n, X) and convexity modules dx (¢).

Theorem 3.2. Let ( >n, ¢ € (1,2], X be a Banach space. If

C+n)PA+ (=17

a6 X) < =55 G )

for 1 <p < oo, then dx () > 0.
Proof of Theorem 3.2. Suppose dx(¢) = 0, then there exist x,,y, € Sx such that
|zy, —yn|| = € for all n € N and Jim. |zr, +ynl| = 2. According to the following elementary
inequality:
1€zn + nynll = I¢(zn + yn) = (C = n)ynl

2 Cllzn +ynll = (€ =) llynll

=20 (C—n) =C+n
and

1720 = Cynll = (¢ + 1) (@n = yn) + Nyn — Can|

> (CH+Mlzn = ynll = nllynll = Cllzal
=(C+n)(e—1).
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We can deduce that
C+nPA+(E-1)7)  C+n)P+[C+n—-1F
207 1(¢P + ) 207 1(¢P + )
P — CyllP
< i ot I £l + iz —
oo 2P=2((P + P ([|a[|P + [ly|7)
S CK/'J(C? 7, X)
(CH (1 + (= 1)
201 (Pmp)
a contradiction. This completes the proof. 0

Theorem 3.3. Let ( >, ¢ € (1,2]. For any Banach space X, we have
C+n)le -1+ (¢ +n—200x(e))”
T (o X) = [(C+mE—-DF+( ()

207 1(CP +1P) ’
where 1 < p < oco.

Proof of Theorem 3.3. Suppose that there exists x,y € By such that ||z — y|| > e.

Then
¢ + nyll? + [Inz — Cyl|?

202(¢P £ ) ([l ][P + [lyl1?)
(Cllzn + ynll = (€ = llynl)? + [(C+n)(e = DI
20=2(¢P 4 ) ([l )P + llylP) '

CJ%J(CJ%X) Z

Y

Obviously equivalent to

el g 1o R ) 2 ) G e i)

Combined with the definition of convexity modules dx (g), we have

1, 7= (CR, (¢ nX) - 2271 (¢P + 7)) — [(C+m)(e = DIP)/P
2 " 2 ‘

[(C+m)(e = DIP + (¢ + 1 — 2¢0x ()"
201 (P + ) '

5)((5) Z

Then

O]Q/'J(C77]3X) 2
]

In addition, we find that the constant C% ;(¢,n, X) is somewhat related to the James
constant J(X).

Proposition 3.4. Let X be a Banach space and for any 1 < p < oo, then the following
inequality holds:
_ 1/p
2772 (P4 P) Ry (G, X)] T = max{ ¢} (X) = ¢ = .
Proof. For any x,y € Sx, we have
2(min{|Cz 4+ nyl|, [Inz — Cyll})” < 1<z +nyll” + [Inz — Gyl
<2772+ ") (el + llP)CR 5 (6 ms X)
= 2271+ P)CR 4 (¢, X,
SO
min{[¢z + nyll, [lnz — Cyll} < [2772(¢P + nP)CRe s (Coms X))V,
Then we can obtain
_ 1/p .
[2272(¢P + ) CR (¢, X)) = mindI G+ myl, [lne — Cyll}
> min{¢|lz + yl| = [¢ — nl,¢llz =yl = | —nl}.
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Thus,
[272(¢ 4 ?) OB y(com )] = Ca(x) — ¢l

Similarly, we can also obtain the following inequality

[2772(¢7 ) Oy (G 0] 77 2 I (X) = [¢ = .
]

Now, combined Proposition 3.4 with the fact that X is uniformly non-square if and only
if J(X) < 2 (see[6]), we have a simple corollary.

Corollary 3.5. Let X be a Banach space. The following conclusions are equivalent:

(i) X is uniformly non-square.

. P

(ii) CR (¢, X) < % holds for all ¢,n > 0.
(iii) C% (¢, m, X) < % holds for some ¢,n > 0.

4. The constant C% ;(¢,n, X) and uniform normal structure

In this section, we will show the sufficient conditions for Banach space X to have a
uniform normal structure [11] under the filter framework. Now, we recall the content
about the filter.

An ultrafilter U is defined on index set I. Let {w;},c; be a subset of the Hausdorff
topological space X and {x;},.; converges to x with respect to U, denoted by limy z; = .
Let {X;};,c; be a family of Banach spaces. The ultraproduct of {X;},.; is the quotient
space loo (I, X;)/Ny equipped with the quotient norm:

loo(1, X3) = {!(fﬂi)l! = sup [lzi]] < 00}7

and
Nu={ (@) € ool X s ] = 0}

For more research on filters in Banach spaces see [1,15]. Then, combining the ideas
in reference [16], we use a theorem to show that Banach space X has a uniform normal
structure.

Theorem 4.1. Let ( > n > (t, X be a Banach space and the inequality
P P
(VA + 22 + Ct)” + (/A + P28 + 2% — nt)
22p=2(P (P 4 nPtP + nP + (PLP)

holds for some t € (0,1]. Then X has uniform normal structure.

C%J(Cvna X) <

Proof of Theorem 4.1. It’s easy to see that X is uniformly non-square, hence X is
super-reflexive (see [18]). Therefore, this is enough to prove that X has a normal structure.
Applying lemma 2 in [14], there exist &, %2, %3 € S and fi,fo, f3 € S . satisfying the
following three properties:
(i) |# — ;|| = 1 and f; (&;) = 0 for all i # j.
(ii) fi (#;) =1 for i = 1,2,3.
(iif) |25 — (T2 + Z1)[| = |72 + |

(VacrE+ac—nt)
Next, let g(t) = 5

Case 1: If |1 + Z2|| < g(t). Let & = %1 — &9 and § = (Elgag)b)- Then z,y € By, we have

and consider three possible cases.




8 Qichuan Ni, Qi Liu, Yin Zhou

o+l = | (¢4 )3 - (- ) @

o(0) o(0)

oy z o - |z,
> <<+g<t>) (7)) — \c—g(t) Fi(@2)
o

and

InE — Ctyll = H <n - gg(z)) T — (77 + g%) o

Ct ~ (t N
= <77 + g(t)) f2(Z2) — ‘77 - @ f2(Z1)
-
g(t)

Case 2: If ||Z1 + 22| > ¢(t) and ||Z3+ T2 — 21| < g(t). Let £ = 22 — 23 and § =
(Z3+T2—F1)

FOREE Then z,y € By, we have

g2+ ntill = | (¢ + 25 ) 22 = (¢ = ) da =
nt

> (C ;Z)> o) - ‘C - gT(li) falis) — @ﬁ(jl)
mor ng;
" In& — Ctyll = H<77+C(t)> T3+ (77—94(;) 532—;(;571
> < C()) f3(#3) — ' — 92) f3(@2) — ;;f?,(fl)
— 0+ 2.

Case 3: If ||£E1 +.%2|| > g(t) and ||f[73 + Zo *jln > g(t). Let £ = 23 — 1 and § = Zo.
Then Z,y € By, we have
€2 +ntg| = (I<(Zs — 21) + nts||
= [|¢(@3 + T2 — 21) + (nt — () Z2|
> ((g(t) —1) +nt,

and B B B B B
InZ — ¢ty = [In(23 — T1) — Ctaa||

= [n(Z3 — (T2 + &1)) + (n — () 22|
>n(g(t) — 1)+ Ct.

Then, according to the definition of C% ;(¢,n, X) and CX ,(¢,n, X) = C’pNJ(C,n,X), we
obtain

+ 5P+l + S5 1P - P . P
o (eom X) > max | Al It gl iclg(t) — 1) 4 n) | + Infa() — D) +¢0)]
2p—2 (Cp + nPtP + P _|_ ¢rtr)’ 2p=2 ((P + nPtP 4 nP 4 (PtP)
p p
(VAT + ¢nt) + (/A + 7P + 2% — Pt
- 220=2(P ((P + nPIP + 1P + (PtP) ’
This is a contradiction. The proof is complete. ]
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