
Hacettepe Journal of
Mathematics & Statistics

Hacet. J. Math. Stat.
Published online: 09.05.2025

DOI : 10.15672/hujms.1451185

Research Article

Symplectic embeddings into cylinders for certain
symplectic manifolds

Nil İpek Şirikçi

Department of Economics, Middle East Technical University, 06800 Ankara, Türkiye

Abstract
We present a proof of a result on displaceability of subsets of symplectic manifolds sat-
isfying certain conditions one of which is that the subset is precompact in a connected
neighborhood that symplectically embeds into R2n. The proof utilizes an inequality be-
tween the displacement energy and the cylindrical capacity for subsets of R2n to obtain an
inequality for subsets of the symplectic manifold. We also state a corollary which utilizes
other results on nondisplaceable Lagrangians.
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1. Introduction
A foundational theorem in symplectic topology is Gromov’s nonsqueezing theorem

which states that a ball cannot be squeezed by a symplectomorphism into a cylinder
with smaller radius [11,12]. This is stated as the following:

Define the symplectic cylinder (Z2n(r), ω0) as

Z2n(r) := B2(r) × R2n−2

where
B2n(r) = {z ∈ R2n : |z| ≤ r}.

Here ω0 denotes the standard symplectic form on R2n and in the following we will always
assume that R2n is equipped with the standard symplectic form.

Theorem 1.1 (Gromov, [3,12]). If there exists a symplectic embedding of (B2n(r), ω0) ↪→
(Z2n(R), ω0), then r ≤ R.
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This result was generalized to symplectic embeddings into M × B2 for an arbitrary
manifold M by Lalonde and McDuff [8,9]. Many results have been obtained on symplectic
embedding problems for various manifolds some of which are stated in [6, 10, 12, 16] and
in [4, 5, 7, 13,14,17].

In this work, we consider the case when a connected symplectic manifold has a subset
L with a symplectic embedding of a connected neighborhood of L in which L is precom-
pact into (R2n, ω0) such that a displacement energy condition is satisfied. We obtain an
inequality between the displacement energy of L in M and the cylindrical capacity of the
image of L under the symplectic embedding. We also obtain that L is displaceable in M
under these assumptions. This is stated as Theorem 1.4. We also state Lemmas 1.2 and
1.3 about Hofer’s norm. The proof of Theorem 1.4 uses Lemma 1.3:

Lemma 1.2. Let ψ be a symplectic embedding of a neighborhood U into R2n. Then
any compactly supported Hamiltonian H on R2n with support in ψ(U) has Hofer’s norm
satisfying ρ(1, φH) ≤ ρ(1, φH◦ψ).

Proof. For the definition of Hofer distance, see p. 466 of [12]. The Hofer distance between
identity and φH is called Hofer’s norm in [15].

We have

ρ(1, φH) = inf
φG=φH

∫ 1

0
∥Gt∥dt = inf

φG=φH

(
max
R2n

Gt − min
R2n

Gt
)
dt

where G : [0, 1] × R2n → R is a compactly supported smooth Hamiltonian that generates
the Hamiltonian symplectomorphism φG as the time-1 map and the infimum is taken over
all compactly supported Hamiltonians G such that φG = φH .

For an embedding ψ of a neighborhood U ⊂ M into R2n and for H a compactly
supported Hamiltonian on R2n with support in ψ(U), we have

ρ(1, φH◦ψ) = inf
φG◦ψ=φH◦ψ
supp(G)⊂ψ(U)

∫ 1

0
∥(G◦ψ)t∥dt = inf

φG◦ψ=φH◦ψ
supp(G)⊂ψ(U)

∫ 1

0

(
max
U

(G◦ψ)t−min
U

(G◦ψ)t
)
dt

where
max
U

(G ◦ ψ)t = max
ψ(U)

Gt

and
min
U

(G ◦ ψ)t = min
ψ(U)

Gt.

Hence we have ρ(1, φH) ≤ ρ(1, φH◦ψ). □
Lemma 1.3. Hofer’s norm is invariant under symplectomorphism.

Theorem 1.4. Assume that (M,ω) is a connected symplectic manifold with a subset L
and that there is a symplectic embedding ψ of a connected neighborhood U of L in which
L is precompact into (R2n, ω0) such that the displacement energies satisfies eψ(U)(ψ(L)) =
eR2n(ψ(L)). Then the displacement energy of L in M is less than or equal to the cylindrical
capacity of ψ(L) and L is displaceable in M .

We also obtain the following statement which is a corollary of results by Gromov (for
parts a) and c) ), Frauenfelder and Schlenk (for part b)), and Buhovsky (for part d)) and
of Theorem 1.4:

Corollary 1.5. Assume that (M,ω) is a connected symplectic manifold and that any of
the following set of conditions hold:
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a) (M,ω) is without boundary, is convex at infinity and has a compact Lagrangian
submanifold L such that ω|π2(M,L) = 0 is satisfied.

b) (M,ω) is a weakly exact and convex, and L ⊂ M \∂M is a closed Lagrangian sub-
manifold such that the inclusion of L into M induces an injection π1(L) → π1(M)
and L admits a metric none of whose closed geodesics is contractible.

c) (M,ω) is geometrically bounded and has a closed Lagrangian submanifold L and
ω|π2(M,L) = 0 is satisfied.

d) L = RPn ↪→ M is a monotone Lagrangian embedding into tame (M,ω) and NL ≥ 3
where NL is the minimal Maslov number of L.

Then no connected neighborhood of L symplectically embeds into R2n in such a way that
eψ(U)(ψ(L)) = eR2n(ψ(L)).

2. Proofs
2.1. Proof of Theorem 1.4

Let L be a subset of a connected symplectic manifold (M,ω). By assumption, there is
a connected neighborhood U of L in which L is precompact and a symplectic embedding
ψ of (U, ω|U ) to (R2n, ω0) such that the condition on the displacement energy specified in
the theorem is satisfied.

Let eM (A) denote the displacement energy of a subset A of M defined in Section 12.3
of [12] as the following:

If A is compact,

eM (A) = inf{ρ(1, φ)|φ ∈ Ham(M,ω), φ(A) ∩A = ∅}

where ρ(1, φ) is Hofer’s distance between identity and φ and Ham(M,ω) is the set of
compactly supported Hamiltonian symplectomorphisms of (M,ω).

If A is not compact,

eM (A) = sup{eM (K)|K ⊂ A,K is compact}.
By definition, eM (L) ≤ eU (L).

Note that for any φH ∈ Ham(ψ(U), ω0|ψ(U)), we have φH◦ψ ∈ Ham(U, ω|U ). Also
φH(ψ(L)) ∩ ψ(L) = ∅ implies φH◦ψ(L) ∩ L = ∅. By Lemma 1.3, ρ(1, φH) = ρ(1, φH◦ψ).
Hence we have

eM (L) ≤ eU (L) = eψ(U)(ψ(L)).
By assumption, eψ(U)(ψ(L)) = eR2n(ψ(L)).
Since ψ(L) ⊂ R2n, by Theorem 12.3.4 of [12], we have

eR2n(ψ(L)) ≤ w̄G(ψ(L)),

where w̄G(A) is the cylindrical capacity of A and is defined for any subset A ⊂ R2n as

w̄G(A) = inf
{
πr2

∣∣∣ A embeds symplectically in Z2n(r) by a symplectomorphism of R2n
}
.

Then, by the above inequalities,

eM (L) ≤ w̄G(ψ(L)).

By assumption, U symplectically embeds into R2n. Since L is precompact, there exits r
such that ψ(L) symplectically embeds in Z2n(r) by a symplectomorphism of R2n. Hence
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the cylindrical capacity of ψ(L), w̄G(ψ(L)) is finite. This implies that eM (L) is finite.
Hence L is displaceable in M .

2.2. Proof of Corollary 1.5
By the following results, we conclude that L is nondisplaceable:

For a) : By Gromov’s theorem stated in p.297 of [11].
For b) : By Theorem 5 stated in [2].
For c) : The explanation in the paragraph following Theorem 5 in [2] states that the

conclusion follows by Gromov’s theorem.
For d) : By Theorem 3 stated in [1].

Then the statement follows from Theorem 1.4.
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