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Abstract 

The Multi-Relaxation-Time Lattice Boltzmann Method (MRT LBM) is used to numerically simulate the steady viscous incompressible flow 
in a lid-driven cavity. The simulations are performed for a range of Reynolds numbers between 100 and 1000. The simulation results 
include the flow streamlines which clearly show the location of the primary main vortex and the two side vortices, the horizontal and 
vertical velocity component profiles at different sections inside the cavity and the location of the vortices centers. The numerical results 
are compared against published results and show a perfect agreement. The simulation results are given for a range of Reynolds numbers 
not reported in the published literature. The presented results can be used for benchmarking other numerical methods in the reported 
range of the Reynolds number. The MRT LBM is used because it has the advantages of being an explicit method, can deal easily with 
complex boundaries and is highly parallelizable.  
Keywords: Multi-Relaxation-Time Lattice Boltzmann Method, Lid-driven Cavity flow, Vortex, Velocity Profiles. 

Multi-Relaxation-Time Lattice Boltzmann Metodu kullanılarak 100 ila 1000 
arasındaki Reynolds sayılarında kapakla yönlendirilen oyuk akışının 

simülasyonu 

Öz 

Çok Gevşetme Zamanı Örgü Boltzmann Metodu (MRT LBM), bir kapak tahrikli boşlukta sabit viskoz sıkışmaz akışın sayısal olarak simule 
edilmesi için kullanılır. Simülasyonlar, 100 ile 1000 arasında bir dizi Reynold sayısına göre gerçekleştirilir. Simülasyon sonuçları, birincil 
ana vorteksin ve iki yan vorteksin yerini açıkça gösteren akış akış çizgileri, içindeki diğer bölümlerin farklı bölümlerinde yatay ve dikey 
hız bileşen profillerini içerir. boşluk ve vorteks merkezlerinin yeri. Sayısal sonuçlar, yayınlanan sonuçlara göre mukayese edilir ve 
mükemmel bir anlaşma gösterir. Simülasyon sonuçları, yayınlanmış literatürde bildirilmeyen bir dizi Reynold sayısı için verilmiştir. 
Sunulan sonuçlar Reynolds sayısının bildirilen aralığında diğer sayısal yöntemlerin kıyaslanması için kullanılabilir. MRT LBM, açık bir 
yöntem olmanın avantajlarına sahip olduğu, karmaşık sınırları kolaylıkla ele alabileceği ve paralelleştirilebildiği için kullanılır. 
Anahtar Kelimeler: Çok Gevşetme Zamanı Örgü Boltzmann Yöntemi, Kapı tahrikli Boşluk akışı, girdap, hız profilleri. 

1. Introduction 

Computational fluid dynamics (CFD) techniques have 

changed and varied dramatically in the past few years[1]. The 

reason for this is the diversity in the applications of the CFD [2-

6]. For each emerging new computational fluid dynamics 

method, a set of benchmark cases has to be used to test the new 

method accuracy. The lid-driven cavity flow is the most widely 

used case for benchmarking numerical methods [7-10]. It 

involves high velocity gradients and strain rates in addition to 

circulation. Circulating flow is encountered in many 

applications and its modeling is more challenging than the 

unidirectional flow [11, 12]. For this reason, new numerical 

methods have to be tested for their accuracy using the lid-

driven cavity flow case before being used for other applications 

especially ones involving circulation. 

The simulation results for the lid-driven cavity flow are 

always reported in literature for low or high Reynolds numbers 

[9, 13-15]. The moderate Reynolds number range 100 to 1000 

is rarely investigated with most of the results reported for Re 

=100, 400 & 1000 only.  

Although continuum based CFD approaches like finite 

difference, finite volume and finite element relay on the solution 

of continuum governing equations (i.e. macro scale), other 

emerging techniques are looking at the same problems from a 

different scale. These can range from the micro-scale based 

methods like molecular dynamics to macro-scale ones like finite 

volume.  

The Lattice Boltzmann Method (LBM) has emerged as a new 

numerical technique dealing with the problems at the meso-

scale [16]. This allowed the LBM to retain the advantages of the 

methods dealing with the two scales (i.e. macro and micro) 

while avoiding their shortcomings. The LBM has been widely 

used for many applications including fluid flow[13, 16], heat 

and mass transfer [17], multi-phase [18], multi-component 

[19], non-Newtonian fluids [20, 21], fluid-structure interaction 

[22] and flow in porous media [20, 23] problems. The LBM has 

many variants according to the target application. The Two-
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Relaxation-Time (TRT) LBM and Multi-Relaxation-Time (MRT) 

LBM were introduced to overcome the pitfalls of the standard 

Single-Relaxation-Time (SRT) LBM [24-27]. 

The goal of this paper is to investigate in more details the lid-

driven cavity flow in the Reynolds number range 100 to 1000 

and give theresults necessary for benchmarking other 

numerical methods for that range of the Reynolds numbers. 

The paper is organized as follows. A description of the lid-

driven cavity flow problem physical domain and boundary 

conditions is given followed by an explanation of the MRT LBM 

method. The numerical results for the simulation cases are then 

given followed by the conclusion.  

2. The lid-driven cavity flow 

The lid-driven cavity flow case is used as a benchmark for 

numerical methods. The modeled geometry shown in Fig. 1 

consists of a square cavity with the top surface moving to the 

right. The rest of the surfaces are stationary. The movement of 

the top surface causes a vortex to develop inside the cavity 

whose size, strength and location depend on the flow Reynolds 

number. At the two lower corners (left and right) two small 

vertices with a circulation in an opposite direction to that of the 

main vortex also develop. Their characteristics also depend on 

the flow Reynolds number. The location of the three vortices 

centers is used as a benchmark for the accuracy of the 

numerical method used to solve this flow problem. 

 
Figure (1): The lid-driven cavity geometry and boundary 

conditions. 

3. The Multi-Relaxation-Time LBM 

The standard LBM relies on solving the Boltzmann equation 

in a discretized form using a limited set of velocity directions. 

The discrete Boltzmann equation can be written as follows: 

𝑓𝑖(𝑥𝑖 + 𝑐Δ𝑡, 𝑡 + Δ𝑡) − 𝑓(𝑥𝑖 , 𝑡) = Ω(𝑓)  (1) 

𝑓𝑖  is the particle distribution function along direction 𝑖, 𝑐 is 

the lattice speed 𝑐 = Δ𝑥
Δ𝑡⁄  and Ω(𝑓) is the collision operator. 

For the used D2Q9 lattice configuration shown in Fig. 2, the 

directional velocities 𝑐𝑖   are given by: 

𝑐𝑖 = {

(0,0)                                𝑖 = 0
(±1,0)𝑐, (0,±1)𝑐           𝑖 = 1: 4
(±1,±1)𝑐                         𝑖 = 5: 8

             (2) 

 

 
Figure (2): The used D2Q9 lattice configuration 

For the SRT LBM Ω(𝑓) is replaced by the Bhatnagar–Gross–
Krook (BGK) collision operator [28]. Due to many limitation of 
the standard SRT LBM, the MRT LBM is used instead. In the MRT 
LBM the collision operator is expressed as follows: 

Ω(𝑓) = −𝑀−1. 𝑆. [𝑚 − 𝑚𝑒𝑞]   (3) 
𝑀 is a transformation matrix to transform the particle 

distribution function 𝑓 from the velocity space to the moment 
space 𝑚 = 𝑀. 𝑓. The equilibrium distribution function 𝑓𝑒𝑞  is 
also transformed to 𝑚𝑒𝑞 = 𝑀. 𝑓𝑒𝑞 . 

 

𝑀 =

[
 
 
 
 
 
 
 
 

1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2
4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1]

 
 
 
 
 
 
 
 

   (4) 

𝑆 is the diagonal relaxation matrix. 

𝑆 = 𝑑𝑖𝑎𝑔(0, 𝑠1, 𝑠2, 0, 𝑠4, 0, 𝑠6, 𝑠𝜈 , 𝑠𝜈)                                   (5) 

For the used D2Q9 lattice, the sonic speed is given by: 

𝑐𝑠 =
𝑐

√3
     (6) 

The kinematic viscosity 𝜈 is related to 𝑠𝜈 by the following 
relation: 

𝜈 = 𝑐𝑠
2 (

1

𝑠𝜈
−

1

2
)                                                                         (7) 

The equilibrium particle distribution function 𝑓𝑒𝑞  is given 
by: 

𝑓𝑖
𝑒𝑞

= 𝑤𝑖𝜌 [1 +
𝑐𝑖.𝑢

𝑐𝑠
2 +

(𝑐𝑖.𝑢)2

2𝑐𝑠
4 −

𝑢.𝑢

2𝑐𝑠
2]                                     (8) 

And the macroscopic density 𝜌  and velocity 𝑢 are given by: 
𝜌(𝑥, 𝑡) = ∑ 𝑓𝑖(𝑥, 𝑡)𝑖                                                                  (9) 

𝑢𝑗(𝑥, 𝑡) =
1

𝜌(𝑥,𝑡)
∑ 𝑐𝑖𝑗𝑓𝑖(𝑥, 𝑡)𝑖                                                  (10) 
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(a) Re = 100 (b) Re = 200 (c) Re = 300 

   
(d) Re = 400 (e) Re = 500 (f) Re = 600 

   
(g) Re = 700 (h) Re = 800 (i) Re = 900 

 

  

(j) Re = 1000   
Figure (3): The steady state streamlines for different Reynolds numbers 

 

4. Numerical results 

The MRT LBM is used in the simulation of steady viscous 
incompressible flow in a 2D lid-driven cavity at a range of 
Reynolds number between 100 and 1000. The flow Reynolds 
number is calculated based on the cavity width and the velocity 
of the top lid as a characteristic velocity. 

The no-slip boundary condition is used for the two side 
boundaries and the bottom of the cavity. For the top boundary, 
the normal velocity is set to zero while the tangential velocity is 
set based on the required Reynolds number. The initial flow 
field is set to zero velocity for all points inside the cavity. 

The streamlines for some of the cases are shown in Fig. 3. 
The figures show the variation in the size and location of the 
vortices with the Reynolds number. The main vortex tends to 

move to the center of the cavity with the increase in Reynolds 
number while the two side vortices increase in size as shown in 
Fig. 4. The streamlines at the top of the cavity also show a high 
gradient of the tangential velocity which is a characteristic of 
the lid-driven cavity flow.  
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Figure (4): The location of the center of the main vertex as a 

function of the Reynolds number. 
Horizontal velocity component profiles at x=50 for different 

Reynolds numbers are shown in Fig. 5. The figure confirms the 
high gradient of the tangential velocity component near the top 
lid region. 

 
Figure(5): Horizontal velocity component profiles at x=50 (in 

LBM units).  
At this vertical plan (x=50) the vertical velocity component 

is much smaller than the horizontal one which is evident from 
Fig. 6. 

 
Figure (6): Vertical velocity component profiles at x=50 (in 

LBM units). 

The vertical velocity component profiles at y=50 are shown in 
Fig. 7. 
 

 
Figure (7): Vertical velocity component profiles at y=50 (in 

LBM units). 
In contrast to the section at x=50. The horizontal velocity 

component at y=50 is smaller than the vertical ones since the 
streamlines are almost vertical at this section of the cavity as 
can be seen from Fig. 8. 
 

 
Figure (8): Horizontal velocity component profiles at y=50 (in 

LBM units). 
To test the accuracy of the simulation results, the location 

of the main vortex and the two side vortices are compared 
against published results. Table (1) shows this comparison for 
selected Reynolds numbers. 

As the table shows, the predicted vortices locations are in a 
perfect match with the published results using other numerical 
methods which confirm the validity of the results and its 
suitability to be used as verification for other numerical 
methods for fluid flow simulation. 
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Table (1): The location of the primary vortex and the two side 
vortices for Re=100,400& 1000 using the MRT LBM compared 
to published results (Ref. [14, 15,29-31]). 

Re 100 400 1000 
P X Y X Y X Y 

[29] 0.619 0.738 0.557 0.600 0.544 0.563 
[30] 0.617 0.734 0.555 0.606 0.531 0.563 
[15] 0.620 0.737 0.561 0.608 0.533 0.565 
[14] 0.617 0.742 0.557 0.607 0.529 0.564 
[31] 0.613 0.738 0.550 0.613 0.525 0.563 
MRT 0.621 0.742 0.559 0.606 0.533 0.565 

(a) Primary vortex (P) 
Re 100 400 1000 
R X Y X Y X Y 

[29] 0.938 0.056 0.888 0.119 0.863 0.106 
[30] 0.945 0.063 0.891 0.125 0.859 0.109 
[15] 0.945 0.063 0.890 0.126 0.867 0.114 
[14] 0.942 0.050 0.886 0.114 0.864 0.107 
[31] 0.938 0.063 0.888 0.125 0.863 0.113 
MRT 0.946 0.057 0.887 0.122 0.868 0.113 

(b) Lower right vortex (R) 
Re 100 400 1000 
L X Y X Y X Y 

[29] 0.038 0.031 0.050 0.050 0.075 0.081 
[30] 0.031 0.039 0.051 0.047 0.086 0.078 
[15] 0.039 0.035 0.055 0.051 0.090 0.078 
[14] 0.033 0.025 0.050 0.043 0.086 0.071 
[31] 0.038 0.038 0.050 0.050 0.088 0.075 
MRT 0.033 0.033 0.049 0.046 0.082 0.076 

(c) Lower left vortex (L) 
Finally, the location of the vortices centers (the primary and 

the two side ones) for all the simulated cases are given in table 
(2). This data can be used to accurately assess the accuracy of 
any numerical method for the range of Reynolds numbers 100 
to 1000. 

Table (2): The location of the primary vortex and the two 
side vortices using the MRT LBM 

Vortex Primary Right Left 
Re X Y X Y X Y 

100 0.621 0.742 0.946 0.057 0.033 0.033 
200 0.619 0.681 0.915 0.102 0.033 0.032 
300 0.577 0.628 0.896 0.118 0.042 0.040 
400 0.559 0.606 0.887 0.122 0.049 0.046 
500 0.549 0.594 0.882 0.122 0.057 0.052 
600 0.544 0.585 0.878 0.119 0.065 0.057 
700 0.540 0.578 0.875 0.118 0.071 0.062 
800 0.538 0.573 0.872 0.116 0.076 0.067 
900 0.535 0.568 0.870 0.115 0.079 0.072 

1000 0.533 0.565 0.868 0.113 0.082 0.076 

5. Conclusion 

Steady laminar viscous incompressible flow of a 

Newtonian fluid inside a lid-driven cavity is modeled using 

the Multi-Relaxation-Time Lattice Boltzmann Method. The 

simulations were carried out for the range of Reynolds 

numbers between 100 and 1000. The goal of these 

simulations is to provide a set of data for the lid-driven cavity 

flow for benchmarking purposes. The use of MRT LBM 

offers many advantages over other traditional numerical 

modeling techniques. These advantages include its explicit 

nature, the ability to deal with complex boundaries and its 

suitability for parallel computing. The validity and accuracy 

of the simulation results were confirmed by comparing the 

results to published results in literature. 

The simulation results include the steady-state 

streamlines, horizontal and vertical velocity component 

profiles at the mid-horizontal and mid-vertical plans of the 

cavity and the location of the vortices centers (the primary 

main vortex and the two lower side vortices). This set of 

results constitutes a detailed dataset that can be used for the 

testing of new numerical methods in the reported range of 

Reynolds number. 

6. References 

[1]. Witherden, F.D. and A. Jameson. Future Directions of 
Computational Fluid Dynamics. in 23rd AIAA 
Computational Fluid Dynamics Conference. 2017. 

[2]. Li, Y., et al., Coupled computational fluid 
dynamics/multibody dynamics method for wind 
turbine aero-servo-elastic simulation including 
drivetrain dynamics. Renewable Energy, 2017. 101: p. 
1037-1051. 

[3]. Rutkowski, D.R., et al., Surgical planning for living donor 
liver transplant using 4D flow MRI, computational fluid 
dynamics and in vitro experiments. Computer Methods in 
Biomechanics and Biomedical Engineering: Imaging & 
Visualization, 2017: p. 1-11. 

[4]. Fortunato, L., et al., In-situ assessment of biofilm 
formation in submerged membrane system using 
optical coherence tomography and computational fluid 
dynamics. Journal of Membrane Science, 2017. 521: p. 
84-94. 

[5]. Boulard, T., et al., Modelling of micrometeorology, 
canopy transpiration and photosynthesis in a closed 
greenhouse using computational fluid dynamics. 
Biosystems Engineering, 2017. 158: p. 110-133. 

[6]. Tao, Y., K. Inthavong, and J. Tu, Computational fluid 
dynamics study of human-induced wake and particle 
dispersion in indoor environment. Indoor and Built 
Environment, 2017. 26(2): p. 185-198. 

[7]. Mahmood, R., et al., Numerical Simulations of the Square 
Lid Driven Cavity Flow of Bingham Fluids Using 
Nonconforming Finite Elements Coupled with a Direct 
Solver. Advances in Mathematical Physics, 2017.  

[8]. Abu-Nada, E. and A.J. Chamkha, Mixed convection flow of 
a nanofluid in a lid-driven cavity with a wavy wall. 
International Communications in Heat and Mass 
Transfer, 2014. 57: p. 36-47. 

[9]. 9. Botella, O. and R. Peyret, Benchmark spectral results 
on the lid-driven cavity flow. Computers & Fluids, 1998. 
27(4): p. 421-433. 

[10]. Grillet, A.M., et al., Modeling of viscoelastic lid driven 
cavity flow using finite element simulations. Journal of 
Non-Newtonian Fluid Mechanics, 1999. 88(1): p. 99-
131. 

[11]. Benyahia, S., et al., Simulation of particles and gas flow 
behavior in the riser section of a circulating fluidized 
bed using the kinetic theory approach for the 
particulate phase. Powder Technology, 2000. 112(1): p. 
24-33. 

[12]. Alex, J., et al., Analysis and design of suitable model 
structures for activated sludge tanks with circulating 
flow. Water science and technology, 1999. 39(4): p. 55-
60. 



Mohammed A. Boraey 
Mugla Journal of Science and Technology, Vol 3, No 2, 2017, Pages 110-115 

 

115 
 

[13]. Perumal, D.A. and A.K. Dass, Application of lattice 
Boltzmann method for incompressible viscous flows. 
Applied Mathematical Modelling, 2013. 37(6): p. 4075-
4092. 

[14]. Schreiber, R. and H.B. Keller, Driven cavity flows by 
efficient numerical techniques. Journal of Computational 
Physics, 1983. 49(2): p. 310-333. 

[15]. Hou, S., et al., Simulation of Cavity Flow by the Lattice 
Boltzmann Method. Journal of Computational Physics, 
1995. 118(2): p. 329-347. 

[16]. Chen, S. and G.D. Doolen, LATTICE BOLTZMANN 
METHOD FOR FLUID FLOWS. Annual Review of Fluid 
Mechanics, 1998. 30(1): p. 329-364. 

[17]. He, Y., et al., Lattice Boltzmann method and its 
applications in engineering thermophysics. Chinese 
Science Bulletin, 2009. 54(22): p. 4117. 

[18]. Li, Q., et al., Lattice Boltzmann methods for multiphase 
flow and phase-change heat transfer. Progress in Energy 
and Combustion Science, 2016. 52: p. 62-105. 

[19]. Bao, J. and L. Schaefer, Lattice Boltzmann equation 
model for multi-component multi-phase flow with high 
density ratios. Applied Mathematical Modelling, 2013. 
37(4): p. 1860-1871. 

[20]. Psihogios, J., et al., A Lattice Boltzmann study of non-
newtonian flow in digitally reconstructed porous 
domains. Transport in Porous Media, 2007. 70(2): p. 
279-292. 

[21]. Wang, C.-H. and J.-R. Ho, A lattice Boltzmann approach 
for the non-Newtonian effect in the blood flow. 
Computers & Mathematics with Applications, 2011. 
62(1): p. 75-86. 

[22]. Hao, J. and L. Zhu, A lattice Boltzmann based implicit 
immersed boundary method for fluid–structure 
interaction. Computers & Mathematics with 
Applications, 2010. 59(1): p. 185-193. 

[23]. Yang, J. and E.S. Boek, A comparison study of multi-
component Lattice Boltzmann models for flow in 
porous media applications. Computers & Mathematics 
with Applications, 2013. 65(6): p. 882-890. 

[24]. Fakhari, A., D. Bolster, and L.-S. Luo, A weighted 
multiple-relaxation-time lattice Boltzmann method for 
multiphase flows and its application to partial 
coalescence cascades. Journal of Computational Physics, 
2017. 341: p. 22-43. 

[25]. Zhuo, C. and P. Sagaut, Acoustic multipole sources for 
the regularized lattice Boltzmann method: Comparison 
with multiple-relaxation-time models in the inviscid 
limit. Physical Review E, 2017. 95(6): p. 063301. 

[26]. Hu, Y., et al., A multiple-relaxation-time lattice 
Boltzmann model for the flow and heat transfer in a 
hydrodynamically and thermally anisotropic porous 
medium. International Journal of Heat and Mass 
Transfer, 2017. 104: p. 544-558. 

[27]. Liu, Q., Y.-L. He, and Q. Li, Enthalpy-based multiple-
relaxation-time lattice Boltzmann method for solid-
liquid phase-change heat transfer in metal foams. 
Physical Review E, 2017. 96(2): p. 023303. 

[28]. Bhatnagar, P.L., E.P. Gross, and M. Krook, A model for 
collision processes in gases. I. Small amplitude 
processes in charged and neutral one-component 
systems. Physical review, 1954. 94(3): p. 511. 

[29]. Vanka, S.P., Block-implicit multigrid solution of Navier-
Stokes equations in primitive variables. Journal of 
Computational Physics, 1986. 65(1): p. 138-158. 

[30]. Ghia, U., K.N. Ghia, and C.T. Shin, High-Re solutions for 
incompressible flow using the Navier-Stokes equations 
and a multigrid method. Journal of Computational 
Physics, 1982. 48(3): p. 387-411. 

[31]. Gupta, M.M. and J.C. Kalita, A new paradigm for solving 
Navier–Stokes equations: streamfunction–velocity 
formulation. Journal of Computational Physics, 2005. 
207(1): p. 52-68. 

 


