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Abstract− The study introduces different categories of Lipschitz operators linked with
weakly p-compact and unconditionally p-compact sets. It explores some properties of these
operator classes derived from linear operators associated with these sets and examines their
interconnections. Additionally, it denotes that these classes are extensions of the related
linear operators. Moreover, the study evaluates the concept of majorization by scrutinizing
both newly obtained and pre-existing results and draws some conclusions based on these
findings. The primary method used to obtain the results in the study is the linearization
of Lipschitz operators through the Lipschitz-free space constructed over a pointed metric
space.
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1. Introduction

Various authors have recently engaged in the exploration of Lipschitz versions of diverse bounded
linear operators. In 2014, Jiménez-Vargas et al. [1] introduced the concepts of Lipschitz finite-rank,
Lipschitz compact, Lipschitz weakly compact and Lipschitz approximable operators. They also ob-
tained some outcomes for these concepts. In 1955, Grothendieck [2] effectively demonstrated that
compactness could be examined geometrically by obtaining the necessary and sufficient criteria for a
set to be compact in a Banach space. In 2002, motivated by Grothendieck’s compactness principle,
Sinha and Karn [3] defined the notion of p-compactness (respectively, weakly p-compactness) of a
set and also defined the concepts of the p-compact (respectively, weakly p-compact) linear operator
and p-approximation property in Banach spaces, which arises naturally from this notion. Later, as
modifications of these concepts, Kim [4] introduced the concepts of unconditionally p-compact set and
unconditionally p-compact linear operator. Many mathematicians studied the linear operators and
approximation properties associated with all these sets [4–8]. Various studies have been conducted
in recent years to investigate the properties of p-compact sets and p-compact linear operators. These
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studies encompass both nonlinear and linear situations. Inspired by Jiménez-Vargas et al. [1], Achour
et al. [9] defined and studied the concept of Lipschitz operators, which are p-compact as a nonlinear
extension of p-compact linear operators and considered some features in the linear case for the Lips-
chitz case. At the same time, they introduced the concepts of Lipschitz free p-compact operator and
Lipschitz locally p-compact operator and compared these concepts with each other and showed their
different properties. To our knowledge, Lipschitz weakly p-compact and unconditionally p-compact
operators have not yet been studied in the literature. In this study, considering the works on weakly
p-compact and unconditionally p-compact sets of Kim [4–7] and inspired by the works of Jiménez-
Vargas et al. [1] and Achour et al. [9], we consider some classes of Lipschitz operators associated with
weakly p-compact and unconditionally p-compact sets. After we provide some notations and basic
concepts, we introduce Lipschitz weakly (respectively, unconditionally) p-compact operator and Lips-
chitz free weakly (respectively, unconditionally) p-compact operator, respectively, and obtain some of
their properties. We evaluate the obtained and current results with the concept of majorization and
provide some results.

2. Preliminaries

A metric space with a designated base point denoted as 0 is referred to as a pointed metric space.
Throughout the study, unless specifically mentioned otherwise, the symbols X and Y represent pointed
metric spaces, while E and F represent Banach spaces. BE represents the closed unit ball of a Banach
space E. The symbol K represents the field space of complex or real numbers. The notation L(E, F )
(respectively, B(E, F )) represents the vector space of all the linear operators (respectively, bounded
linear operators) from E to F . The dual space of E is E∗ := B(E,K). The notation Lip0(X, Y )
indicates the set of all the Lipschitz operators g : X → Y where g(0) = 0. The function

Lip(g) = sup{∥g(x) − g(y)∥/d(x, y) : x ̸= y, x, y ∈ X}

defines a norm on Lip0(X, E), and Lip0(X, E) is a Banach space with the norm [1]. The Banach
space Lip0(X,K) is Lipschitz dual of X and is denoted by X♯. For a Banach space E, it is clear that
E∗ ⊂ E♯. For thorough information on Lipschitz operators and their properties, see [10]. For x ∈ X,
the function δx : X♯ → K is defined as δx(g) = g(x) such that g ∈ X♯ [1]. Lipschitz-free Banach space
of X is defined as the closed linear span of the set {δx : x ∈ X} and denoted by F(X) [1]. The map
δX : X → F(X) is described by δX(x)(g) = g(x), for all x ∈ X and g ∈ X♯ [1].

We recall certain properties of the Lipschitz-free Banach space in the next lemma.

Lemma 2.1. [1, 11,12] Let E be a Banach space and X and Y be two pointed metric spaces.

i. The function δX : X → F(X) described as δX(x)(g) = g(x), for all x ∈ X and g ∈ X♯, is a nonlinear
isometry.

ii. The map QX : X♯ → F(X)∗ given by QX(g)(υ) = υ(g), for all g ∈ X♯, υ ∈ F(X), is an isometric
isomorphism.

iii. The set BF(X) is convex closed and balanced span of the set {(δx − δy)/d(x, y) : x ̸= y, x, y ∈ X}.

iv. The Lipschitz adjoint of g ∈ Lip0(X, E) is g♯ : E♯ → X♯ defined by g♯(h) = h ◦ g, for all h ∈ E♯.
Moreover, g♯ ∈ B(E♯, X♯) and ∥g♯∥ = Lip(g).

v. For every operator g ∈ Lip0(X, E), a unique operator Tg ∈ B(F(X), E) exists so that g = Tg ◦ δX ,
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in other words, the following diagram commutes and ∥Tg∥ = Lip(g):

X F(X)

E

g

δX

Tg

vi. For every operator g ∈ Lip0(X, Y ), a unique operator ĝ ∈ B(F(X), F(Y )) exists so that ĝ ◦ δX =
δY ◦ g, in other words, the following diagram commutes and ∥ĝ∥ = Lip(g):

X Y

F(X) F(Y )

g

δX δY

ĝ

The restriction E∗ of g♯ in Lemma 2.1 iv is called Lipschitz transpose of g and denoted by gt. It is
clear that QX ◦ gt = T ∗

g and ĝ∗ ◦ QY = QX ◦ g♯, where T ∗
g and ĝ∗ are adjoint operators of Tg and ĝ,

respectively [9].

Unless otherwise stated, throughout the study, p ≥ 1 and 1/p + 1/p∗ = 1. The Banach space denoted
as lp(E) is defined as the space of all the p-summable sequences in the space E. Here, the norm is
given by the formula [3]:

∥(xn)n∥p =
( ∞∑

n=1
∥xn∥p

)1/p

Besides, lwp (E) is a Banach space representing all weakly p-summable sequences in E. The norm of
an element (xn)n in this space is defined as [3]:

∥(xn)n∥w
p = sup{∥(x∗(xn))n∥p : x∗ ∈ BE∗}

The space
lup (E) := {(xn)n ∈ lwp (E) : ∥(0, ..., 0, xn, xn+1, ...)∥w

p → 0 as n → ∞}

is referred to as the space of all the sequences in E that are unconditionally p-summable. The space
is a closed subspace of lwp (E) [4]. If a sequence (xn)n ∈ lp(E) satisfying

C ⊂ p–co({xn}) = {
∞∑

n=1
αnxn : (αn)n ∈ Blp∗ }

exists, then the subset C of E is relatively p-compact [3]. If there is (xn)n ∈ lwp (X) (respectively,
(xn)n ∈ lup (X)) satisfying C ⊂ p–co({xn}), then C is called relatively weakly p-compact (respectively,
relatively unconditionally p-compact) [3] (respectively, [4]). We note that the sets that are relatively
p-compact are also relatively unconditionally p-compact. Further, the relatively unconditionally p-
compact sets are relatively compact and relatively weakly p-compact [4,13]. An operator T ∈ L(E, F )
is said to be p-compact (respectively, weakly p-compact, unconditionally p-compact) if T (BE) is
relatively p-compact set (respectively, relatively weakly p-compact set, relatively unconditionally p-
compact set) in F [3,4]. The space of all the p-compact linear operators (respectively, weakly p-compact
linear operators, unconditionally p-compact linear operators) from E to F is denoted by the symbol
Kp(E, F ) (respectively, Wp(E, F ), Kup(E, F )). If S ∈ Kp(E, F ), then

∥S∥Kp
:= inf{∥(xn)n∥p : S(BE) ⊂ p–co({xn}), (xn)n ∈ lp(F )}

is a norm function. Moreover, (Kp, ∥.∥Kp) is a Banach operator ideal [14]. If S ∈ Wp(E, F ), then

∥S∥Wp := inf{∥(xn)n∥w
p : S(BE) ⊂ p–co({xn}), (xn)n ∈ lwp (F )}
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is a norm function and also (Wp, ∥.∥Wp) is a Banach operator ideal [7]. If S ∈ Kup(E, F ), then

∥S∥Kup := inf{∥(xn)n∥w
p : S(BE) ⊂ p–co({xn}), (xn)n ∈ lup (F )}

is a norm function, and (Kup, ∥.∥Kup) is a Banach operator ideal [4]. The operator S ∈ L(E, F )
is quasi unconditionally p-nuclear (respectively, quasi weakly p-nuclear) if there is (x∗

n)n ∈ lup (E∗)
(respectively, (x∗

n)n ∈ lwp (E∗)) such that ∥Sx∥ ≤ ∥(x∗
n(x))n∥p, for all x ∈ E [4, 6]. The space of all

the quasi unconditionally p-nuclear operators (respectively, quasi weakly p-nuclear operators) from E

to F is represented by N Q
up(E, F ) (respectively, N Q

wp(E, F )). For S ∈ N Q
up(E, F ) (respectively, S ∈

N Q
wp(E, F )), let ∥S∥N Q

up
:= inf ∥(x∗

n)n∥w
p , where infimum is taken over all the sequences satisfying the

condition quasi unconditionally p-nuclear (respectively, quasi weakly p-nuclear). Then, (N Q
up, ∥.∥N Q

up
)

(respectively, (N Q
wp, ∥.∥N Q

wp
)) is a Banach operator ideal [4,6]. Let G be a Banach space, S ∈ B(E, F ),

and T ∈ B(E, G). If there is a K > 0 satisfying ∥Tx∥ ≤ K∥Sx∥, for all x ∈ E, then it is said that
S majorizes T [15]. Assume that f ∈ Lip0(X, E) and g ∈ Lip(X, F ). If there is an M > 0 satisfying
∥g(x1) − g(x2)∥ ≤ M∥f(x1) − f(x2)∥, for all x1, x2 ∈ X, then it is said that f majorizes g [16].

Jiménez-Vargas et al. [1] defined the compactness (respectively, weakly compactness) of a Lipschitz
operator as follows:

Definition 2.2. [1] Let g ∈ Lip0(X, E). The operator g is called Lipschitz compact (respectively,
Lipschitz weakly compact) if

ImLip(g) := {g(x) − g(y)
d(x, y) : x ̸= y, x, y ∈ X} ⊂ E

is a relatively compact set (respectively, relatively weakly compact set).

Inspired by this definition, Achour et al. [9] defined the p-compactness of a Lipschitz operator as
follows.

Definition 2.3. [9] Let g ∈ Lip0(X, E). The operator g is called Lipschitz p−compact if the set
ImLip(g) is a relatively p-compact in E.

3. The Main Results

In this section, we introduce the various classes of Lipschitz operators associated with weakly p-
compact sets and unconditionally p-compact sets and investigate some of their properties, respectively.

3.1. Lipschitz Weakly p-Compact Operators and Some of Their Properties

Taking inspiration from the concepts of the Lipschitz compact operator defined by [1] and the Lipschitz
p-compact operator defined by [9], we define the concept of Lipschitz weakly p-compact operator.

Definition 3.1. Let g ∈ Lip0(X, E). Then, g is called a Lipschitz weakly p-compact operator if the
set ImLip(g) is a relatively weakly p-compact subset of E.

The set of all the Lipschitz weakly p-compact operators defined from X to E is represented by the
symbol LipWp

0 (X, E).

Remark 3.2. We note that ImLip(g) ⊂ g(BX) when X is a Banach space and g ∈ L(X, E). Thus,
g ∈ LipWp

0 (X, E) as g ∈ Wp(X, E). Therefore, Lipschitz operators, which are weakly p-compact, can
be thought of as a generalization of linear operators that are weakly p-compact.

Remark 3.3. By [14], it is well known that the set p–co({xn}) is absolutely convex and norm closed
if p > 1 and (xn)n ∈ lwp (E).
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Since the smallest absolutely convex set containing set A is abco(A), the following lemma is obtained
by Remark 3.3.

Lemma 3.4. Let E be a Banach space and p > 1. The set abco(A) is a weakly p-compact subset of
E if A is a relatively weakly p-compact subset of E.

The following result has been obtained as a modification of Proposition 2.1 in [1] (see also Theorem
3.4 in [9]) for weakly p-compact sets.

Theorem 3.5. Let g ∈ Lip0(X, E) and p > 1. Then, g ∈ LipWp

0 (X, E) if and only if Tg ∈
Wp(F(X), E).

The proof of the theorem is omitted as it can be obtained similarly to steps in Proposition 2.1 [1]
using Lemma 3.4.

Kim [6] proved Theorem 3.7 (c) that the adjoint of a linear operator that is weakly p-compact is
quasi-weakly p-nuclear. The following proposition is an extension of this result to the Lipschitz case.

Proposition 3.6. Let p > 1. If g ∈ LipWp

0 (X, E), then gt ∈ N Q
wp(E∗, X♯) and ∥gt∥N Q

wp
≤ ∥Tg∥Wp

.

Proof. Let g ∈ LipWp

0 (X, E). By Theorem 3.5, Tg is a linear operator that is weakly p-compact.
Thus, by the result Theorem 3.7 (c) in [6], T ∗

g ∈ N Q
wp(E∗, F(X)∗) and ∥T ∗

g ∥N Q
wp

≤ ∥Tg∥Wp
. Since

Q−1
X ◦ T ∗

g = gt, by the ideal property of quasi weakly p-nuclear operators, gt ∈ N Q
wp(E∗, X♯), and

also ∥T ∗
g ∥N Q

wp
≤ ∥QX∥∥gt∥N Q

wp
and ∥gt∥N Q

wp
≤ ∥Q−1

X ∥∥T ∗
g ∥N Q

wp
. By Lemma 2.1 ii, since QX is an

isometric isomorphism, it is obtained ∥gt∥N Q
wp

= ∥T ∗
g ∥N Q

wp
. Using ∥T ∗

g ∥N Q
wp

≤ ∥Tg∥Wp
, it is obtained

∥gt∥N Q
wp

≤ ∥Tg∥Wp
.

By [3], any sets that are relatively weakly p-compact are also relatively weakly q-compact as 1 ≤ p ≤
q < ∞, and by [14], any sets that are relatively weakly p-compact (with p > 1) are also relatively
weakly compact. Therefore, we directly obtain the following proposition.

Proposition 3.7. Let g ∈ Lip0(X, E) and 1 ≤ p ≤ q < ∞. Then, g is Lipschitz weakly q-compact
whenever g is Lipschitz weakly p-compact. In particular, if p > 1 and g is Lipschitz weakly p-compact,
then g is Lipschitz weakly compact.

The following proposition demonstrates that if the hypotheses of Proposition 3.13 in [9] are replaced p-
summability of the operator Tf with p-summability of the operator T ∗

f , and the Lipschitz compactness
of Lipschitz operator g with the Lipschitz weakly p-compactness, then the same result can be obtained.

Proposition 3.8. Let p > 1, f ∈ Lip0(X, E), and g ∈ Lip0(Z, E∗), where Z is a pointed metric space.
If g ∈ LipWp

0 (Z, E∗) and the operator T ∗
f is p-summing, then f t ◦ g : Z → X♯ is Lipschitz p-compact.

Proof. Assume that g is Lipschitz weakly p-compact. By Theorem 3.5, Tg is weakly p-compact.
Since T ∗

f is p-summing and Tg is weakly p-compact, by Proposition 5.4 [3], the operator T ∗
f ◦ Tg is

p-compact. Moreover, f t ◦ Tg = Q−1
X ◦ T ∗

f ◦ Tg and thus, by the ideal property of Kp, f t ◦ Tg is a
p-compact operator. By Lemma 2.1 v, since Tg ◦ δZ = g, the linerization of f t ◦ g is f t ◦ Tg. Thus, by
Theorem 3.4 [9], f t ◦ g is Lipschitz p-compact.

Kim [7] has obtained a result in Proposition 2.4, which characterizes the factorization of linear opera-
tors that are weakly p-compact. Through Kim’s result, we get the following result, which characterizes
the factorization of a Lipschitz operator that is weakly p-compact.

Theorem 3.9. Let p > 1 and f ∈ Lip0(X, E). Then, f ∈ LipWp

0 (X, E) if and only if there are
a quotient space G of lp∗ , g ∈ LipWp

0 (X, G), and S ∈ Wp(G, E) such that f = S ◦ g. Further,
Lip(f) ≤ ∥S∥Wp Lip(g).
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Proof. (⇐): Assume that f ∈ Lip0(X, E) has the factorization in theorem. Then, ImLip(f) =
S(ImLip(g)). Since g ∈ LipWp

0 (X, G), S(ImLip(g)) is relatively weakly p-compact. Thus, f ∈ LipWp

0 (X, E).

(⇒): Let f ∈ LipWp

0 (X, E). Thus, by Theorem 3.5, Tf ∈ Wp(F(X), E). By Kim’s result Proposition
2.4 [7], there are a quotient space G of lp∗ , S ∈ Wp(G, E) and R ∈ Wp(F(X), G) such that Tf = S ◦R.
By Lemma 2.1 v, we obtain f = S ◦R◦δX . Let g := R◦δX . It is clear that g ∈ Lip0(X, G). Hence, by
unique of the linearization of g in Lemma 2.1 v is Tg = R. Thus, the desired factorization is obtained.
Further, by [3], since ∥S∥ ≤ ∥S∥Wp , using the norm property in Lemma 2.1 v,

Lip(f) = ∥Tf ∥ ≤ ∥S∥∥R∥ = ∥S∥∥Tg∥ ≤ ∥S∥Wp Lip(g).

It is well known that Davis-Figiel-Johnson-Pe lczynski [17] obtained a significant theorem that states
that any linear operator that is weakly compact can be factored via a reflexive Banach space. Since
every set that is weakly p-compact is also weakly compact while p > 1 [14], combining Davis-Figiel-
Johnson-Pe lczynski theorem [17] and Theorem 3.9, we get the following proposition.

Proposition 3.10. Let p > 1 and f ∈ Lip0(X, E). Then, f ∈ LipWp

0 (X, E) if and only if there are a
quotient space G of lp∗ , a reflexive Banach space W , T ∈ B(G, W ), Q ∈ B(W, E), and g ∈ LipWp

0 (X, G)
such that f = Q ◦ T ◦ g. Further, Lip(f) ≤ ∥Q∥∥T∥ Lip(g).

The following proposition is a modification of the ideal property of Jiménez-Vargas et al., Proposition
2.3 [1], for Lipschitz operators that are weakly p-compact. The proof has been omitted as it can be
easily done following their methods and using Theorem 3.5.

Proposition 3.11. Let p > 1, S ∈ B(E, F ), and f ∈ Lip0(Y, X). If g ∈ LipWp

0 (X, E), then S ◦ g ◦ f ∈
LipWp

0 (Y, F ).

3.2. Lipschitz Unconditionally p-Compact Operators and Some of Their Properties

In this section, taking inspiration from the concepts of the Lipschitz compact operator defined by [1],
and the Lipschitz p-compact operator defined by [9], we define the concept of Lipschitz unconditionally
p-compact operator.

Definition 3.12. Let g ∈ Lip0(X, E). Then, g is called Lipschitz unconditionally p-compact operator
if the set ImLip(g) is a relatively unconditionally p-compact subset of E.

The set of all the Lipschitz unconditionally p-compact operators defined from X to E is represented
by the notation LipKup

0 (X, E).

Similar to Remark 3.2, Lipschitz unconditionally p-compact operators can be thought of as a general-
ization of linear operators that are unconditionally p-compact.

Considering relationships among relatively p-compact, weakly p-compact, and unconditionally p-
compact sets and compact sets, we get the following proposition.

Proposition 3.13. Let g ∈ Lip0(X, E). Then, g ∈ LipKup

0 (X, E) if g is Lipschitz p-compact. More-
over, if g ∈ LipKup

0 (X, E), then g ∈ LipWp

0 (X, E) and also g is Lipschitz compact.

Since (xn)n ∈ lwp (E) while (xn)n ∈ lup (E), a result similar to Lemma 3.4 is provided as follows.

Lemma 3.14. Let p > 1. The set abco(A) is an unconditionally p-compact set in E if A is a relatively
unconditionally p-compact subset of a Banach space E.

The following result has been obtained as a modification of Proposition 2.1 in [1] (see also Theorem
3.4 [9]) for unconditionally p-compact sets.
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Theorem 3.15. Let g ∈ Lip0(X, E) and p > 1. Then, g ∈ LipKup

0 (X, E) if and only if Tg ∈
Kup(F(X), E).

The proof of the theorem has been omitted since it can be done using Lemma 3.14 and following the
steps in Proposition 2.1 [1].

Kim [4, 5] demonstrated Theorem 2.4 and Theorem 5.6, respectively, that the unconditionally p-
compactness of a linear operator and the quasi unconditionally p-nuclearity of the adjoint of this
operator are equivalent. The following proposition is an extension of this result to the Lipschitz case.
This proposition also extends Proposition 3.12 [9] to unconditionally p-compact sets.

Proposition 3.16. Let f ∈ Lip0(X, E) and p > 1. Then, f ∈ LipKup

0 (X, E) if and only if f t ∈
N Q

up(E∗, X♯). Moreover, ∥f t∥N Q
up

= ∥Tf ∥Kup .

Proof. Let f ∈ Lip0(X, E) and p > 1. By Theorem 3.15, f ∈ LipKup

0 (X, E) if and only if Tf is an
unconditionally p-compact operator. By Kim’s Theorem 2.4 [4], T ∗

f ∈ N Q
up(E∗, F(X)∗) if and only

if Tf ∈ Kup(F(X), E). Thus, using Q−1
X ◦ T ∗

f = f t, the desired equivalence is achieved. Further, by
Theorem 5.6 [5], since ∥T ∗

f ∥N Q
up

= ∥Tf ∥Kup , ∥f t∥N Q
up

= ∥Tf ∥Kup is obtained.

We obtain the following proposition by combining Kim’s Theorem 2.4 [4] and Theorem 3.5 herein.

Proposition 3.17. Let f ∈ Lip0(X, E) and p > 1. Assume that the operator Tf maps weakly
p-summable sequences into unconditionally p-summable sequences and S ∈ LipWp

0 (Z, F(X)). Then,
St ◦ T ∗

f ∈ N Q
up(E∗, Z♯).

Proof. Since S ∈ LipWp

0 (Z, F(X)), by Theorem 3.5, TS ∈ Wp(F(Z), F(X)). Since the operator
Tf maps weakly p-summable sequences into unconditionally p-summable sequences, it is obtained
Tf ◦ TS ∈ Kup(F(Z), E). Thus, by Theorem 2.4 [4], (Tf ◦ TS)∗ ∈ N Q

up(E∗, F(Z)∗). Since T ∗
S = QZ ◦ St,

it is obtained QZ ◦ St ◦ T ∗
f ∈ N Q

up(E∗, F(Z)∗). If it is used that QZ is an isometric isomorphism and
N Q

up has the ideal property, then it is obtained St ◦ T ∗
f ∈ N Q

up(E∗, Z♯).

Combining Theorem 3.15 and some results in [4], we obtained the following theorem.

Theorem 3.18. Let X be a pointed metric space such that F(X)∗ is an injective Banach space, E

is an injective Banach space, and p > 1. If f ∈ LipKup∗
0 (X, E), then Tf is unconditionally p-nuclear

operator.

Proof. If Theorem 3.15 and Theorem 2.4 [4] are used in order, then T ∗
f ∈ N Q

up∗(E∗, F(X)∗) is
obtained. By injectivity of F(X)∗ and the result Lemma 2.6 [4], T ∗

f ∈ Nup∗(E∗, F(X)∗). From
the proof of Proposition 2.2 [4], Nup∗ ⊂ Kup. Thus, T ∗

f ∈ Kup(E∗, F(X)∗). By Theorem 2.3 [4],
Tf ∈ N Q

up(F(X), E). Since E is an injective Banach space, by Lemma 2.6 [4], Tf is an unconditionally
p-nuclear operator.

The following remark shows a pointed metric space X such that F(X)∗ is an injective Banach space.

Remark 3.19. By [18], it is well known that if X = R, then F(X) = F(R) = L1. Moreover, L∗
1 = L∞

and L∞ is an injective Banach space (see Proposition 4.3.8 (ii) [19]). Thus, F(X)∗ is an injective
Banach space.

Using Theorem 3.15 and the factorization result of linear operators that are unconditionally p-compact
in Theorem 2.2 [5], we obtain the following result concerning the factorization of Lipschitz uncondi-
tionally p-compact operators.

Proposition 3.20. Let f ∈ Lip0(X, E) and p > 1. Then, f ∈ LipKup

0 (X, E) if and only if a quotient
space G of lp∗ , an operator S ∈ Kup(G, E) and an operator g ∈ LipKup

0 (X, G) satisfying f = S ◦ g

exist. Further, Lip(f) ≤ ∥S∥Kup Lip(g).
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Proof. Since steps in Theorem obtain the proof 3.9 using Theorem 2.2 [5] and Theorem 3.15, it is
omitted. For the norm inequality, if steps in Theorem 3.9 are used with the definitions of ∥.∥Wp and
∥.∥Kup , then the following inequality is obtained:

Lip(f) = ∥Tf ∥ ≤ ∥S∥∥R∥ ≤ ∥S∥Wp Lip(g) ≤ ∥S∥Kup Lip(g).

Using Theorem 3.4 [9] and the factorization of linear operators that are p-compact in Theorem 2.3 [5],
we obtain the following factorization result for Lipschitz p-compact operators.

Theorem 3.21. Let f ∈ Lip0(X, E) and p > 1. Then, f ∈ LipKp

0 (X, E) if and only if a quotient
space G of lp∗ , an operator S ∈ Kp(G, E) and an operator g ∈ LipKup

0 (X, G) satisfying f = S ◦ g exist.
Further, Lip(f) ≤ ∥S∥Kp Lip(g).

The proof of the theorem has been omitted since it can be done using Theorem 3.4 [9] and Theorem
2.3 [5] and following the steps in Theorem 3.9.

We modify the ideal property of Jiménez-Vargas et al. [1] for Lipschitz operators that are uncondi-
tionally p-compact. The proof has been omitted as it can be done following their methods and using
Theorem 3.15.

Proposition 3.22. Let p > 1, S ∈ B(E, F ), and f ∈ Lip0(Y, X). If g ∈ LipKup

0 (X, E), then S ◦g ◦f ∈
LipKup

0 (Y, F ).

3.3. Lipschitz Free Weakly and Unconditionally p-Compact Operators

In this section, inspired by the concepts of Lipschitz free (weakly) compact operators defined by [12]
and Lipschitz free p-compact operators defined by [9], we define Lipschitz free weakly and uncondi-
tionally p-compact operators, investigate some of their properties, and provide relationships among
them.

Definition 3.23. Let p ≥ 1 and g ∈ Lip0(X, Y ). If the mapping δY ◦ g : X → F(Y ) is Lipschitz
weakly p-compact (respectively, Lipschitz unconditionally p-compact), then g is said to be Lipschitz
free weakly p-compact (respectively, Lipschitz free unconditionally p-compact).

We denote the set of all the Lipschitz free weakly p-compact (Lipschitz free unconditionally p-compact)
operators defined from X to Y with the notation FLipWp

0 (X, Y ) (respectively, FLipKup

0 (X, Y )).

Some characterizations have been obtained for Lipschitz-free (weakly) compact operators in Theorem
2.3 and Theorem 2.4 [12]. Similar characterizations have been obtained for the p-compactness case by
Theorem 4.2 [9]. In the following theorems, we get identical characterizations for unconditionally p-
compactness and weakly p-compactness cases. The proofs of these theorems will be made by following
their proof steps.

Theorem 3.24. Let g ∈ Lip0(X, Y ) and p > 1. Then, the following are equivalent.

i. g ∈ FLipKup

0 (X, Y )

ii. ĝ ∈ Kup(F(X), F(Y ))

iii. g♯ ∈ N Q
up(Y ♯, X♯)

Proof. Let g ∈ Lip0(X, Y ). Then, δY ◦ g ∈ Lip0(X, F(Y )). By the uniqueness of linearizations in
Lemma 2.1, it is obtained ĝ = TδY ◦g. Using Theorem 3.15, we obtain that g ∈ FLipKup

0 (X, Y ) if and
only if TδY ◦g ∈ Kup(X, Y ). Thus, the equivalence of i and ii is obtained. The equivalence of ii and iii

follows from the equality (QX)−1 ◦ ĝ∗ ◦ QY = g♯ and the result Theorem 2.4 [4].
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Remark 3.25. Let p ≥ 1 and E and F be Banach spaces. By Theorem 3.7 [6], we know that
T ∗ ∈ N Q

wp(F ∗, E∗) while T ∈ Wp(E, F ). Since we do not know whether the converse is true, we obtain
the following theorem for the weakly p-compactness case of Theorem 3.24. Since the proof of theorem
can be analogous to Theorem 3.24 using Theorem 3.5, we provide the following theorem.

Theorem 3.26. Let g ∈ Lip0(X, Y ) and p > 1 . Then, the following are equivalent.

i. g ∈ FLipWp

0 (X, Y )

ii. ĝ ∈ Wp(F(X), F(Y ))

The notations FLipW
0 , FLipK

0 , and FLipKp

0 denote the sets of all the Lipschitz free operators that are
weakly compact, compact, and p-compact, respectively.

If the relations among relatively p-compact, unconditionally p-compact, weakly p-compact, compact,
and weakly compact sets are considered, the following proposition can be obtained.

Proposition 3.27. Let 1 < p ≤ q. Then, we have the following inclusions.:

i. FLipKp

0 ⊂ FLipKup

0 ⊂ FLipWp

0 ⊂ FLipW
0

ii. FLipKp

0 ⊂ FLipKup

0 ⊂ FLipK
0 ⊂ FLipW

0

iii. FLipKp

0 ⊂ FLipKup

0 ⊂ FLipWp

0 ⊂ FLipWq

0 ⊂ FLipW
0

The following proposition demonstrates the relationships among the classes of Lipschitz operators
defined about weakly p-compact and unconditionally p-compact sets. The proof of the proposition is
done by following the steps in Proposition 4.6 [9].

Proposition 3.28. Let p > 1. Then, FLipWp

0 ⊂ LipWp

0 and FLipKup

0 ⊂ LipKup

0 .

Proof. Let f ∈ FLipWp

0 (X, E). Thus, the set ImLip(δE ◦f) is relatively weakly p-compact. Moreover,
by the proof of Proposition 2.2 in [12], βE(ImLip(δE ◦ f) = ImLip(f)), where βE : F(E) → E is a
bounded linear operator, the barycentric map. Then, since the set ImLip(f) is relatively weakly
p-compact, f ∈ LipWp

0 (X, E) is obtained.

The following results with ideal properties provide modifications of Proposition 2.6 [12] and Theorem
4.8 [9] for unconditionally p-compact and weakly p-compact sets, respectively. The proof will be done
similarly to the proof of Proposition 2.6 [12].

Proposition 3.29. Let W and Z be pointed metric spaces and p > 1. Then, S◦f◦T ∈ FLipKup

0 (X, W )
(respectively, S ◦ f ◦ T ∈ FLipWp

0 (X, W )) if T ∈ Lip0(X, Y ), f ∈ FLipKup

0 (Y, Z) (respectively, f ∈
FLipWp

0 (Y, Z)), and S ∈ Lip0(Z, W ).

Proof. If we show ̂S ◦ f ◦ T ∈ Kup(F(X), F(W )), then, by Theorem 3.24, we obtain that S ◦ f ◦ T ∈
FLipKup

0 (X, W ). Since f ∈ FLipKup

0 (Y, Z), by Theorem 3.24, we get f̂ ∈ Kup(F(Y ), F(Z)). By the
ideal property of Kup, Ŝ ◦ f̂ ◦ T̂ ∈ Kup(F(X), F(W )). By Lemma 2.1 vi, it is obtained that ̂S ◦ f ◦ T =
Ŝ ◦ f̂ ◦ T̂ . Thus, ̂S ◦ f ◦ T ∈ Kup(F(X), F(W )), and by Theorem 3.24, S ◦ f ◦ T ∈ FLipKup

0 (X, W ).
For weakly p-compact sets, the proof is similar.

3.4. Some Results Obtained for Lipschitz Operators Using Majorizations

Inspired by the result Proposition 3.1.3 of Sahraoui [16], using the result Proposition 3 of Barnes [15],
the results obtained from this study, and current findings, we obtain the following proposition.

Proposition 3.30. Let f ∈ Lip0(X, E) and g ∈ Lip0(X, F ) so that Tf majorizes Tg and p > 1. Then,
we have the following:
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i. g is Lipschitz p-compact operator if f is Lipschitz p-compact operator.

ii. g ∈ LipWp

0 (X, F ) if f ∈ LipWp

0 (X, E)

iii. g ∈ LipKup

0 (X, F ) if f ∈ LipKup

0 (X, E)

Proof. If Tf majorizes Tg, then, by Proposition 3 [15], we know that there is an operator V ∈
B(Tf (F(X)), F ) such that Tg = V ◦ Tf .

i. If f is a Lipschitz p-compact operator, then, by Theorem 3.4 [9], Tf is a p-compact operator. By
the ideal property of Kp, Tg is a p-compact operator. By Theorem 3.4 [9], g is a Lipschitz operator
which is p-compact.

The proofs of ii and iii can be compared to i, using Theorem 3.5 and Theorem 3.15, respectively.

Proposition 3.31. Let f ∈ Lip0(X, E) and g ∈ Lip0(Y, E) so that f t majorizes gt and p > 1. Then,
we have the following:

i. g is a Lipschitz p-compact operator if f is a Lipschitz p-compact operator.

ii. g ∈ LipKup

0 (Y, E) if f ∈ LipKup

0 (X, E)

Proof. i. If f is Lipschitz p-compact, then, by Proposition 3.12 [9], f t : E∗ → X♯ is a linear
operator that is quasi p-nuclear. Since f t majorizes gt, by Proposition 3 [15], there is an operator
V ∈ B(f t(E∗), X♯) such that gt = V ◦ f t. Thus, by the ideal property of quasi p-nuclear operators [9],
gt : E∗ → X♯ is a linear operator that is quasi p-nuclear. By Proposition 3.12 [9], g is Lipschitz
p-compact operator.

ii. The proof can be compared to i using Proposition 3.16.

Proposition 3.32. Let f ∈ Lip0(X, E) and g ∈ Lip0(Y, E) such that ImLip(g) ⊂ ImLip(f) and p > 1.
If f t is quasi weakly p-nuclear, then gt is quasi weakly p-nuclear.

Proof. If ImLip(g) ⊂ ImLip(f), then, by Theorem 3.1.1 [16], f t majorizes gt. Thus, the proof can be
easily obtained by Proposition 3 [15] and the ideal property of quasi-weakly p-nuclear operators.

By Proposition 3.1.2 [16], we know that if f ∈ Lip0(X, E), g ∈ Lip0(X, F ), and Tf majorizes Tg, then
f majorizes g. Moreover, for f ∈ Lip0(X, E), g ∈ Lip0(X, F ) which Tf majorizes Tg, by Proposition
3.1.3 [16], we know that f is Lipschitz (weakly) compact, then g is Lipschitz (weakly) compact. The
following proposition demonstrates that the same result is obtained if the condition Tf majorizes Tg

(see Proposition 3.1.3 [16]) replaced by f majorizes g.

Proposition 3.33. Let f ∈ Lip0(X, E) and g ∈ Lip0(X, F ) so that f majorizes g. If f is Lipschitz
compact (respectively, Lipschitz weakly compact), then g is Lipschitz compact (respectively, Lipschitz
weakly compact).

Proof. If f majorizes g, then, by Theorem 3.1.1 [16], R(gt) ⊂ R(f t). Moreover, by Proposition 3.5 [1]
(respectively, Proposition 3.4 [1]), f is Lipschitz compact (respectively, Lipschitz weakly compact) if
and only if f t is compact (respectively, weakly compact). Since R(gt) ⊂ R(f t), by Proposition 8 [15],
gt is compact (respectively, weakly compact). Then, by Proposition 3.5 [1] (respectively, Proposition
3.4 [1]), g is Lipschitz compact (respectively, Lipschitz weakly compact).
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4. Conclusion

This study has extensively explored the various classes of Lipschitz operators linked to weakly p-
compact and unconditionally p-compact sets. By introducing these operator classes and scrutinizing
the properties of associated linear operators, various results have been obtained regarding the prop-
erties of these operators. Notably, the study has highlighted that some of these classes are gener-
alizations of related linear operators. Additionally, through evaluating majorization and comparing
newly acquired and existing results, the study has drawn meaningful conclusions. Overall, this study
contributes to understanding Lipschitz operators related to various sets.
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