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Abstract
Our motivation for this study is to define two new and particular sequences. The most essential feature
of these sequences is that they are spinor sequences. In this study, these new spinor sequences obtained
using spinor representations of Pell and Pell-Lucas quaternions are expressed. Moreover, some formulas
such that Binet formulas, Cassini formulas and generating functions of these spinor sequences, which
are called as Pell and Pell-Lucas spinor sequences, are given. Then, some relationships between Pell and
Pell-Lucas spinor sequences are obtained. Therefore, an easier and more interesting representations of
Pell and Pell-Lucas quaternions, which are a generalization of Pell and Pell-Lucas number sequences, are
obtained. We believe that these new spinor sequences will be useful and advantageable in many branches
of science, such as geometry, algebra and physics.
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1. Introduction and Preliminaries
The number sequences are a subject that is frequently used in mathematics and attracts the attention of readers.

The first number sequences that come to mind are the Fibonacci number sequences expressed by Fibonacci (1170-
1250), which are frequently encountered in nature [1–3]. The Lucas number sequence, which is obtained by writing
the next term as the sum of the previous two terms but with different initial conditions, is another example of a
number sequence. In addition, there are many number sequences in the literature, such as the Fibonacci number
sequence, whose characteristic equation is different. Moreover, considering different characteristic equations and
initial values, different number sequences can be obtained, such as Pell, Pell-Lucas, Modified Pell, Jacobsthal
and Jacobsthal-Lucas number sequences etc. [4–6]. Moreover, another studies of this subject are [7, 8, 10, 11, 27].
Horadam discussed Pell numbers and their properties [5]. Patel and Shrivastava obtained some of these with their
proofs using Binet forms of some Pell and Pell-Lucas identities [12]. These properties are used to derive generator
functions, polynomials, divisibility properties, matrices, determinants of Pell and Pell-Lucas sequences, and many
other applications. Koshy mentioned that Pell numbers and Pell-Lucas numbers are special values of Pell and
Pell-Lucas polynomials, respectively [13]. Halıcı and Daşdemir studied some relationships between Pell, Pell-Lucas,
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156 T. Erişir, G. Mumcu & M. A. Güngör

and Modified Pell sequences [14]. Szynal and Wloch studied Pell, Pell-Lucas numbers, quaternions, octonions and
recurrence relations [15]. Catarino discussed k-Pell quaternions and octanions and offered some features, including
the Binet formula and a generating function [16]. Moreover, Çimen and İpek gave a new quaternion sequence such
that Pell and Pell-Lucas quaternion sequence [17].

Spinors can be defined in a simple way as vectors of a space whose transformations are related to spins in
physical space. The person who first introduced spinors in a geometric sense was Cartan [18]. Cartan’s study [18] is
an admirable study in spinor geometry because in this study, spinor representations of the some basic geometric
definitions are expressed by Cartan in an easy and understandable way. Another inspiring study on the spinors in
geometry was done by Vivarelli [19]. In Vivarelli’s study [19], the relationships between quaternions and spinors
and spinor representations of 3D rotations were obtained. In the study of Torres del Castillo and Barrales, the
spinor representations of the Frenet frame and curvatures of any curve in Euclidean 3-space were given [20]. The
spinor representation of the Darboux frame in Euclidean 3-space was obtained [21]. Moreover, in [22], the spinor
representation of the Bishop frame in Euclidean 3-space was expressed. On the other hand, the spinor equations for
some special curves such as Bertrand, involute-evolute, successor, and Mannheim curves and for Lie groups were
obtained [23–27]. Then, for any Minkowski space, hyperbolic spinor equations were given [28–31]. In addition to
that, Fibonacci and Lucas spinors were expressed in [32].

Now, the spinors, real quaternions, relationships between them spinors, and Pell, Pell-Lucas quaternions are
given.

Assume that any isotropic vector is v = (v1, v2, v3) ∈ C3 where v12+v22+v32 = 0 and the complex vector space
with 3-dimensional is C3. We can express the set of isotropic vectors in C3 with the aid of a two-dimensional surface
in C2. Suppose that this two-dimensional surface has coordinates $1 and $2. So, we can write v1 = $1

2 −$2
2,

v2 = i($1
2 + $2

2), v3 = −2$1$2 and $1 = ±
√

v1−iv2
2 , $2 = ±

√
−v1−iv2

2 . Two-dimensional complex vector
mentioned above is called as spinor by Cartan such that

$ = ($1, $2) =

[
$1

$2

]
in spinor space S [18].

Suppose that any real quaternion is q = q0 + iq1 + jq2 + kq3 where q0, q1, q2, q3 ∈ R. {1, i, j,k} is called the
quaternion basis such that

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j

[33]. We can write q = Sq + Vq where q0 = Sq and Vq = iq1 + jq2 + kq3 is called scalar and vector parts of q,
respectively [33]. Assume that two any real quaternions p = Sp + Vp, q = Sq + Vq. So, the quaternion product of
these quaternions is

p× q = SpSq − 〈Vp,Vq〉+ SpVq + SqVp + Vp∧Vq,

where 〈, 〉 is inner product and ∧ is vector product in R3 [33]. We know that the product of two real quaternions is
non-commutative. In addition to that, the quaternion conjugate and the norm of q are given as q∗ = Sq − Vq and
N(q) =

√
q12 + q22 + q32 + q42. Let the norm of q be N(q) = 1, then q is defined as unit quaternion [33].

Vivarelli expressed a relationship between spinors and quaternions such that

f : H→ S

q → f(q0 + iq1 + jq2 + kq3) ∼=
[
q3 + iq0
q1 + iq2

]
≡ $ (1.1)

where q = q0 + iq1 + jq2 + kq3 is any real quaternion [19]. Then, Vivarelli gave a spinor representation of q × p such
that

q × p→ −i$̂ρ. (1.2)

where the spinor ρ corresponds to the real quaternion p with the aid of the transformation f in the equation (1.1)
and the complex, unitary, square matrix $̂ can be written as

$̂ =

[
q3 + iq0 q1 − iq2
q1 + iq2 −q3 + iq0

]
(1.3)
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[19]. In addition, the spinor matrix $L = −i$̂, namely

$L =

[
q0 − iq3 −q2 − iq1
q2 − iq1 q0 + iq3

]
(1.4)

was called the left Hamilton spinor matrix or fundamental spinor matrix of q [19, 34].

Now, the some equalities about Pell and Pell-Lucas quaternions given in [17] can be expressed. But before that
we would like to touch upon an important issue here. There are many studies in the literature about Pell and Pell
Lucas number sequences and Pell and Pell-Lucas quaternion sequences. In these studies, while the initial conditions
of Pell number sequences are taken as 0 and 1, there is an information confusion regarding the initial conditions
of Pell-Lucas number sequences. That is, in some studies, the initial conditions of Pell-Lucas number sequences
are taken as 1, 1, while in some studies, the initial conditions are taken as 2, 2. Additionally, in some studies, the
expression "Modified Pell number sequence" was used in studies with initial conditions of 1, 1. Actually, there is no
problem so far. The real problem is that if the initial conditions are taken differently, some formulas such as Binet,
Cassini and sum formulas turn out to be different. Also, the relationships between Pell and Pell-Lucas are different.
For example, if you take the initial condition of Pell-Lucas number sequence as 1, 1, you shouldn’t use formulas in
another study where the initial condition is 2, 2. Otherwise, an information confusion is created in the literature. In
this study, the initial conditions of Pell-Lucas number sequence are taken as Q0 = 2, Q1 = 2 and the formulas are
used accordingly. Now, we expressed Pell and Pell-Lucas quaternions.

For n ≥ 2 the nth Pell quaternion and Pell-Lucas quaternion is defined that

QPn = Pn + iPn+1 + jPn+2 + kPn+3

and
QPLn = Qn + iQn+1 + jQn+2 + kQn+3

where the nth Pell number and Pell-Lucas number Pn = 2Pn−1+Pn−2 and P0 = 0, P1 = 1 and Qn = 2Qn−1+Qn−2
and Q0 = 2, Q1 = 2 [17]. Moroever, i, j,k coincide with basis vectors given for real quaternions. Therefore, the
recurrence relation of Pell and Pell-Lucas quaternions for n ≥ 2 are

QPn = 2QPn−1 +QPn−2

with initial conditions QP0 = i + 2j + 5k, QP1 = 1 + 2i + 5j + 12k and

QPLn = 2QPLn−1 +QPLn−2

with initial conditions QPL0 = 2 + 2i + 6j + 14k, QPL1 = 2 + 6i + 14j + 34k [17].

Now, we write the some relationship between Pell and Pell-Lucas quaternions with the aid of [5, 12, 14–16, 35, 36].
Therefore, we can write these relationships that

i) QPn−1 +QPn+1 = QPLn,
ii)QPLn +QPLn+1 = 4QPn+1,
iii) QPLn+1 +QPLn−1 = 8QPn.

Moreover, the Binet formula for Pell and Pell-Lucas quaternions are given that

QPn =
γnγ − µnµ
γ − µ

and
QPLn = γnγ + µnµ

where the quaternions γ and µ are γ = 1 + iγ + jγ2 + kγ3 and µ = 1 + iµ+ jµ2 + kµ3, γ = 1 +
√
2, µ = 1−

√
2 are

roots of the characteristic equation x2 − 2x− 1 = 0.
On the other hand, we give the generating functions of Pell and Pell-Lucas quaternions such that

GP (t) =
QP0 + (QP1 − 2QP0) t

1− 2t− t2
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and
GPL(t) =

QPL0 + (QPL1 − 2QPL0) t

1− 2t− t2
,

respectively. In addition to that, Cassini formula for Pell and Pell-Lucas quaternions can be given that

QPn−1QPn+1 − (QPn)
2 = (−1)n

(
γµ γ − µγ µ

γ − µ

)
and

QPLn−1QPLn+1 − (QPLn)
2 = (−1)n−1(γ − µ)(γµ γ − µγ µ),

respectively.

2. Main Theorems and Results
We know that there is a spinor for every real quaternion by means of the transformation f in the equation (1.1).

Considering this information, a new transformation between Pell and Pell-Lucas quaternions and spinors can be
defined and the spinors corresponding to Pell and Pell-Lucas quaternions can be given. Therefore, these spinors
associated with Pell and Pell-Lucas quaternions are called as Pell and Pell-Lucas spinors. Then, some formulas such
that Binet, Cassini, sum formulas and generating functions for these quaternions spinors and theorems are given.

Definition 2.1. Let QPn = Pn + iPn+1 + jPn+2 + kPn+3 be nth Pell quaternion where Pn is nth Pell number and
the set of Pell quaternions be QP . Therefore, the following linear transformation is defined as

fP : QP → S

QPn 7→ fP (QPn) ∼= SPn =

[
Pn+3 + iPn
Pn+1 + iPn+2

] (2.1)

where i, j,k coincide with basis vectors in R3 and i2 = −1. So, a new sequence for the spinors related with Pell
quaternions is defined and this sequence is called as "Pell Spinor Sequence" defined as

{SPn}∞n∈N =

{[
5

1 + 2i

]
,

[
12 + i
2 + 5i

]
,

[
29 + 2i
5 + 12i

]
,

[
70 + 5i
12 + 29i

]
, ...

}

where SPn =

[
Pn+3 + iPn
Pn+1 + iPn+2

]
is nth Pell spinor and Pn is nth Pell number.

Similarly, we can give the following definition of Pell-Lucas spinor sequence.

Definition 2.2. Let QPLn = Qn+ iQn+1+ jQn+2+kQn+3 be nth Pell-Lucas quaternion where Qn is nth Pell-Lucas
number and the set of Pell-Lucas quaternions be QPL. Therefore, the following linear transformation is defined as

fPL : QPL → S

QPLn 7→ fPL(QPLn) ∼= SPLn =

[
Qn+3 + iQn
Qn+1 + iQn+2

]
.

Therefore, a new sequence for the spinors related with Pell-Lucas quaternions is called as "Pell-Lucas Spinor
Sequence" where

{SPLn}∞n∈N =

{[
14 + 2i
2 + 6i

]
,

[
34 + 2i
6 + 14i

]
,

[
82 + 6i
14 + 34i

]
,

[
198 + 14i
34 + 82i

]
, ...

}

where SPLn =

[
Qn+3 + iQn
Qn+1 + iQn+2

]
is nth Pell-Lucas spinor and Qn is nth Pell-Lucas number.

Definition 2.3. The conjugate of Pell quaternion QPn is QP ∗n , and Pell spinor corresponding to this conjugate is
defined as

SP ∗n =

[
−Pn+3 + iPn
−Pn+1 − iPn+2

]
.
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Similarly, Pell Lucas spinor corresponding to the conjugate of Pell-Lucas quaternion QPLn is defined as

SPL∗n =

[
−Qn+3 + iQn
−Qn+1 − iQn+2

]
.

Definition 2.4. Pell spinor representation of the norm of Pell quaternion QPn is

SPn
t
SPn.

Similarly, Pell-Lucas spinor representation of the norm of Pell-Lucas quaternion QPLn is

SPLn
t
SPLn.

Now, the recurrence relations of Pell and Pell-Lucas spinor sequences with the following equations can be
obtained.

Theorem 2.1. The recurrence relation of Pell spinors for n > 2 is

SPn = 2SPn−1 + SPn−2

where nth, (n − 1)th and (n + 1)th Pell spinors are SPn, SPn−1 and SPn−2, respectively. The recurrence relation for
Pell-Lucas spinor for n > 2 is

SPLn = 2SPLn−1 + SPLn−2

where nth, (n− 1)th and (n+ 1)th Pell-Lucas spinors are SPLn, SPLn−1 and SPLn−2, respectively.

Proof. Firstly, we show the recurrence relation for Pell spinors. Therefore, if we calculate 2SPn−1 + SPn−2, then we
obtain

2SPn−1 + SPn−2 = 2

[
Pn+2 + iPn−1
Pn + iPn+1

]
+

[
Pn+1 + iPn−2
Pn−1 + iPn

]

=

[
2Pn+2 + Pn+1 + i(2Pn−1 + Pn−2)

2Pn + Pn−1 + i(2Pn+1 + Pn)

]
.

Since the recurrence relation for Pell number sequence is Pn = 2Pn−1 + Pn−2, we have

2SPn−1 + SPn−2 =

[
Pn+3 + iPn
Pn+1 + iPn+2

]
= SPn.

Similarly, we can easily obtain for Pell-Lucas spinor sequence such that

2SPLn−1 + SPLn−2 = 2

[
Qn+2 + iQn−1
Qn + iQn+1

]
+

[
Qn+1 + iQn−2
Qn−1 + iQn

]

=

[
2Qn+2 +Qn+1 + i(2Qn−1 +Qn−2)

2Qn +Qn−1 + i(2Qn+1 +Qn)

]
=

[
Qn+3 + iQn
Qn+1 + iQn+2

]
= SPLn

where the recurrence relation Qn = 2Qn−1 +Qn−2 of Pell Lucas number sequence is used (n > 2).

Now, the some relations between Pell and Pell-Lucas spinors can be given.

Theorem 2.2. Let nth Pell and Pell-Lucas spinors be SPn and SPLn, respectively. In this case, for n > 2 there are the
following relations between these spinors;

i) SPn−1 + SPn+1 = SPLn,

ii) SPLn + SPLn+1 = 4SPn+1,

iii) SPLn+1 + SPLn−1 = 8SPn,

iv) 2SPn + 2SPn−1 = SPLn.
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Proof. i) Let (n− 1)th and (n+1)th Pell spinors be SPn−1 and SPn+1, respectively. Then, we can write the equation

SPn−1 + SPn+1 =

[
Pn+2 + iPn−1
Pn + iPn+1

]
+

[
Pn+4 + iPn+1

Pn+2 + iPn+3

]

=

[
Pn+2 + Pn+4 + i(Pn−1 + Pn+1)
Pn + Pn+2 + i(Pn+1 + Pn+3)

]
.

On the other hand, we know that the relationship between Pell and Pell-Lucas numbers is Qn = Pn−1 + Pn+1 from
[35]. If we use this relationship we can write

SPn−1 + SPn+1 =

[
Qn+3 + iQn
Qn+1 + iQn+2

]
= SPLn.

This completes the proof.
ii) Assume that nth and (n+ 1)th Pell-Lucas spinors are SPLn and SPLn+1. Therefore, we have

SPLn + SPLn+1 =

[
Qn+3 + iQn
Qn+1 + iQn+2

]
+

[
Qn+4 + iQn+1

Qn+2 + iQn+3

]

=

[
Qn+3 +Qn+4 + i(Qn +Qn+1)
Qn+1 +Qn+2 + i(Qn+2 +Qn+3)

]
.

In addition to that, we know that there is the relationship 4Pn+1 = Qn+Qn+1 between Pell and Pell-Lucas numbers
from [37]. So, we get

SPLn + SPLn+1 =

[
4Pn+4 + i4Pn+1

4Pn+2 + i4Pn+3

]
= 4SPn+1

iii) Suppose that (n− 1)th and (n+ 1)th Pell-Lucas spinors are SPLn−1 and SPLn+1, respectively. Then, we get

SPLn+1 + SPLn−1 =

[
Qn+4 + iQn+1

Qn+2 + iQn+3

]
+

[
Qn+2 + iQn−1
Qn + iQn+1

]

=

[
Qn+4 +Qn+2 + i(Qn+1 +Qn−1)
Qn+2 +Qn + i(Qn+3 +Qn+1)

]
=

[
8Pn+3 + i8Pn

8Pn+1 + i8Pn+2

]
= 8Pn

where 8Pn = Qn+1 +Qn−1.
iv) This proof is clear that SPLn = SPn−1 + SPn+1 from option i). Moreover, we know that SPn+1 = 2SPn +

SPn−1. Consequently,
SPLn = SPn−1 + 2SPn + SPn−1 = 2SPn + 2SPn−1.

This completes the proof.

Theorem 2.3. Assume that nth Pell and Pell-Lucas spinors are SPn and SPLn, respectively. Therefore, the Binet Formulas
for these spinors are the following equations. The Binet formula for Pell spinors is

SPn =
1

γ − µ

(
γnSγ − µnSµ

)
,

the Binet formula for Pell-Lucas spinors is
SPLn = γnSγ + µnSµ

where γ = 1 +
√
2, µ = 1 −

√
2 are the roots of characteristic equation x2 − 2x − 1 = 0 and Sγ =

[
γ3 + i
γ + iγ2

]
and Sµ =[

µ3 + i
µ+ iµ2

]
.
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Proof. First, we prove it for Pell spinors. We know that the Binet formula for Pell number sequence is

Pn =
γn − µn

γ − µ

where γ = 1 +
√
2, µ = 1−

√
2. Therefore, if we write the last equation in the nth Pell spinor we obtain

SPn =

[
Pn+3 + iPn
Pn+1 + iPn+2

]
=

1

γ − µ

[
γn+3 − µn+3 + i(γn − µn)

γn+1 − µn+1 + i(γn+2 − µn+2)

]

SPn =
1

γ − µ

( [
γn+3 + iγn

γn+1 + iγn+2

]
−
[
µn+3 + iµn

µn+1 + iµn+2

])

SPn =
1

γ − µ

(
γn
[
γ3 + i
γ + iγ2

]
− µn

[
µ3 + i
µ+ iµ2

])
or

SPn =
1

γ − µ

(
γnSγ − µnSµ

)
where Sγ =

[
γ3 + i
γ + iγ2

]
and Sµ =

[
µ3 + i
µ+ iµ2

]
.

Now, we give the Binet formula for Pell-Lucas spinors. We know that the Binet formula for Pell-Lucas number
sequence is Qn = γn + µn. In this case, we can obtain

SPLn =

[
Qn+3 + iQn
Qn+1 + iQn+2

]
=

[
γn+3 + µn+3 + i(γn + µn)

γn+1 + µn+1 + i(γn+2 + µn+2)

]

SPLn =

[
γn+3 + iγn

γn+1 + iγn+2

]
+

[
µn+3 + iµn

µn+1 + iµn+2

]
SPLn = γn

[
γ3 + i
γ + iγ2

]
+ µn

[
µ3 + i
µ+ iµ2

]
or

SPLn = γnSγ + µnSµ

where Sγ =

[
γ3 + i
γ + iγ2

]
and Sµ =

[
µ3 + i
µ+ iµ2

]
.

Theorem 2.4. Let nth Pell and Pell-Lucas spinors be SPn and SPLn, respectively. The sum formulas for Pell spinors are the
following options;

i)
n∑
t=0

SPt =
1

4

[
SPLn+1 − SPL0

]
,

ii)
n∑
t=0

SP2t =
1

2

[
SP2n+1 − SP−1

]
,

iii)
n∑
t=0

SP2t−1 =
1

2

[
SP2n − SP−2

]
.

Proof. i) We know that for Pell spinors the Binet formula is SPn = 1
γ−µ (γ

nSγ − µnSµ). Therefore, we can write

n∑
t=0

SPt =

n∑
t=0

1

γ − µ
(γtSγ − µtSµ)

=
1

γ − µ
(

n∑
t=0

γtSγ −
n∑
t=0

µtSµ).

(2.2)



162 T. Erişir, G. Mumcu & M. A. Güngör

On the other hand, we know that
∑n
t=0 γ

t = 1−γn+1

1−γ and
∑n
t=0 µ

t = 1−µn+1

1−µ . If we use these information in the last
equation then, we get

n∑
t=0

SPt =
1

4

(
(γn+1Sγ + µn+1Sµ)− (Sγ + Sµ)

)
where γ − µ = 2

√
2. Moreover, for Pell-Lucas spinors the Binet formula is SPLn = γnSγ + µnSµ. So, we can obtain

that
n∑
t=0

SPt =
1

4
(SPLn+1 − SPL0)

and this completes the proof.
ii) Similarly, if we use the Binet formula for Pell spinors then we easily get

n∑
t=0

SP2t =

n∑
t=0

1

γ − µ
(γ2tSγ − µ2tSµ)

=
1

γ − µ

(
n∑
t=0

γ2tSγ −
n∑
t=0

µ2tSµ

)
.

Moreover, we know that
∑n
t=0 γ

2t = 1−γ2n+2

1−γ2 and
∑n
t=0 µ

2t = 1−µ2n+2

1−µ2 . Therefore, we have

n∑
t=0

SP2t =
1

2(γ − µ)

(
1− µ2n+2

µ
Sµ −

1− γ2n+2

γ
Sγ

)

=
1

2(γ − µ)

(
µSγ − γSµ + γ2n+1Sγ − µ2n+1Sµ

)
where γµ = −1. Then, we obtain

n∑
t=0

SP2t =
1

2
(SP2n+1 + SP0 −

1

2
SPL0).

In addition to that, if we use SPL0 = 2SP0 + SP−1 from Theorem (2.2) , we easily get

n∑
t=0

SP2t =
1

2
(SP2n+1 − SP−1).

iii) We use the Binet formula for Pell spinors. So, we can write

n∑
t=0

SP2t−1 =

n∑
t=0

1

γ − µ
(γ2t−1Sγ − µ2t−1Sµ)

=
1

γ − µ

(
n∑
t=0

γ2t−1Sγ −
n∑
t=0

µ2t−1Sµ

)
.

Similar to the other options i) and ii) we can easily obtain that

n∑
t=0

SP2t−1 =
1

2(γ − µ)

(
γ2(1− µ2n+2)Sµ − µ2(1− γ2n+2)Sγ

)

=
1

2(γ − µ)

(
γ2nSγ − µ2nSµ + 2

√
2(Sγ + Sµ)− 3(Sγ − Sµ)

)
.

If we use Binet formulas for Pell and Pell-Lucas spinors then, we get

n∑
t=0

SP2t−1 =
1

2
(SP2n − 3SP0 + SPL0)
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and consequently
n∑
t=0

SP2t−1 =
1

2
(SP2n − SP−2)

where we know that SPL0 = 2SP0 + 2SP−1 and SP0 = 2SP−1 + SP−2. This proof is completed.

Now, considering [18, 34] we express the following definition.

Definition 2.5. Suppose that SPn and SPLn are nth Pell and Pell-Lucas spinors. The fundamental Pell and
Pell-Lucas spinor matrices are

(SPn)L =

[
Pn − iPn+3 −Pn+2 − iPn+1

Pn+2 − iPn+1 Pn + iPn+3

]
and

(SPLn)L =

[
Qn − iQn+3 −Qn+2 − iQn+1

Qn+2 − iQn+1 Qn + iQn+3

]
.

The fundamental Pell and Pell-Lucas spinor matrices are also called as left Hamilton Pell and Pell Lucas spinor
matrices, respectively.

Now, we express the Cassini Formula for Pell and Pell-Lucas spinors.

Theorem 2.5. The similar formula replacing Cassini formula for Pell spinors is

(SPn−1)LSPn+1 − (SPn)LSPn = (−1)n 1

γ − µ
(γ(Sµ)LSγ − µ(Sγ)LSµ)

and for Pell-Lucas spinors the similar formula is

(SPLn−1)LSPLn+1 − (SPLn)LSPLn(−1)n−1(γ − µ)(γ(Sµ)LSγ − µ(Sγ)LSµ)

where Sµ =

[
µ3 + i
µ+ iµ2

]
, (Sµ)L =

[
1− iµ3 −µ2 − iµ
µ2 − iµ 1 + iµ3

]
, Sγ =

[
γ3 + i
γ + iγ2

]
, (Sγ)L =

[
1− iγ3 −γ2 − iγ
γ2 − iγ 1 + iγ3

]
.

Proof. Pell spinor product corresponding to the product of Pell quaternionsQPn−1QPn+1−(QPn)2 is (SPn−1)LSPn+1−
(SPn)LSPn. In this case, if we use the Binet formula in Theorem (2.3) for Pell spinors SPn = 1

γ−µ (γ
nSγ − µnSµ),

then we get

(SPn)L =
1

γ − µ
(γnLSγ − µnLSµ).

Therefore, we obtain

(SPn−1)LSPn+1 − (SPn)LSPn =
1

γ − µ
(γn−1(Sγ)L − µn−1(Sµ)L)

1

γ − µ
(γn+1Sγ − µn+1Sµ)

− 1

γ − µ
(γn(Sγ)L − µn(Sµ)L)

1

γ − µ
(γnSγ − µnSµ)

=
1

(γ − µ)2

(
(−γn−1µn+1 + γnµn)(Sγ)LSµ + (−γn+1µn−1 + γnµn)(Sµ)LSγ

)
=(−1)n−1 1

γ − µ
(µ(Sγ)LSµ − γ(Sµ)LSγ)

=(−1)n 1

γ − µ
(γ(Sµ)LSγ − µ(Sγ)LSµ)

where Sµ =

[
µ3 + i
µ+ iµ2

]
, (Sµ)L =

[
1− iµ3 −µ2 − iµ
µ2 − iµ 1 + iµ3

]
, Sγ =

[
γ3 + i
γ + iγ2

]
, (Sγ)L =

[
1− iγ3 −γ2 − iγ
γ2 − iγ 1 + iγ3

]
.

Similarly, for Pell-Lucas Spinors considering SPLn = γnSγ + µnSµ and (SPLn)L = γn(Sγ)L + µn(Sµ)L we have

(SPLn−1)LSPLn+1 − (SPLn)LSPLn =(γn−1(Sγ)L + µn−1(Sµ)L)(γ
n+1Sγ + µn+1Sµ)

− (γn(Sγ)L + µn(Sµ)L)(γ
nSγ + µnSµ)

=(γn−1µn+1 − γnµn)(Sγ)LSµ + (γn+1µn−1 − γnµn)(Sµ)LSγ
=(−1)n−1(γ − µ)(γ(Sµ)LSγ − µ(Sγ)LSµ)
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and consequently

(SPLn−1)LSPLn+1 − (SPLn)LSPLn = (−1)n−1(γ − µ)(γ(Sµ)LSγ − µ(Sγ)LSµ)

where Sµ =

[
µ3 + i
µ+ iµ2

]
, (Sµ)L =

[
1− iµ3 −µ2 − iµ
µ2 − iµ 1 + iµ3

]
, Sγ =

[
γ3 + i
γ + iγ2

]
, (Sγ)L =

[
1− iγ3 −γ2 − iγ
γ2 − iγ 1 + iγ3

]
.

Conclusion 2.1. The Cassini formulas for Pell and Pell-Lucas spinors can be obtained that

for Pell spinors (SPn−1)LSPn+1 − (SPn)LSPn = (−1)n−1
[
12 + 2i
4 + 10i

]
,

for Pell − Lucas spinors (SPLn−1)LSPLn+1 − (SPLn)LSPLn = 8(−1)n−1
[
12 + 2i
4 + 10i

]
.

Theorem 2.6. The generator function for Pell spinors is

GSP (t) =
1

1− 2t− t2

[
5 + 2t+ it
1 + i(2 + t)

]
and the generator function for Pell-Lucas spinors is

GSPL(t) =
1

1− 2t− t2

[
14 + 6t+ i(2− 2t)
2 + 2t+ i(6 + 2t)

]
Proof. We take nth Pell spinor is SPn. Therefore, for nth Pell spinor the generator function is calculated with the
aid of the equation GSP (t) =

∑∞
n=0 SPnt

n. In this case, using GSP (t), 2tGSP (t) and t2GSP (t) we obtain that

GSP (t) = SP0 + SP1t+ SP2t
2 + SP3t

3 + SP4t
4 + SP5t

5 + ...

−2tGSP (t) = −2SP0t− 2SP1t
2 − 2SP2t

3 − 2SP3t
4 − 2SP4t

5 − 2SP5t
6 + ...

−t2GSP (t) = −SP0t
2 − SP1t

3 − SP2t
4 − SP3t

5 − SP4t
6 − SP5t

7 + ...

and
GSP (t) =

1

(1− 2t− t2)
(SP0 + (SP1 − 2SP0)t)

where

SP0 + (SP1 − 2SP0) =

[
P3 + iP0

P1 + iP2

]
+

([
P4 + iP1

P2 + iP3

]
−
[
2P3 + 2iP0

2P1 + 2iP2

])
t

=

[
5

1 + 2i

]
+

([
12 + i
2 + 5i

]
−
[

10
2 + 4i

])
t =

[
5 + 2t+ it
1 + i(2 + t)

]
.

Consequently, we get

GSP (t) =
1

1− 2t− t2

[
5 + 2t+ it
1 + i(2 + t)

]
.

Now, we calculate the generator function for Pell-Lucas spinors. Therefore, if we consider the function GSPL(t) =∑∞
n=0 SPLnt

n, we have

GSPL(t) =
1

1− 2t− t2
(SPL0 + (SPL1 − 2SPL0)t)

using GSPL(t), 2tGSPL(t) and t2GSPL(t). Finally, we obtain

GSPL(t) =
1

1− 2t− t2

[
14 + 6t+ i(2− 2t)
2 + 2t+ i(6 + 2t)

]
.

This completes the proof.
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Theorem 2.7. Assume that −nth Pell and Pell-Lucas spinors are SP−n and SPL−n. In this case these spinors are calculated
as follows; for Pell spinors

SP−n = (−1)n
[
Pn−3 − iPn
Pn−1 − iPn−2

]
for Pell-Lucas spinors

SPL−n = (−1)n
[
−Qn−3 + iQn
−Qn−1 − iQn−2

]
.

Proof. We know that the Binet formula for nth Pell spinor is SPn = 1
γ−µ (γ

nSγ − µnSµ) where Sµ =

[
µ3 + i
µ+ iµ2

]
,

Sγ =

[
γ3 + i
γ + iγ2

]
. On the other hand, we can write the equation γµ = −1 =⇒ γ = (−1)µ−1. If we take n powers of

both sides then, we get γ−n = (−1)nµn. Similarly, we easily see that µ−n = (−1)nγn. In this case, considering the
Binet formula for −nth Pell spinor SP−n = 1

γ−µ (γ
−nSγ − µ−nSµ) we calculate as

SP−n =
1

γ − µ
((−1)nµnSγ − (−1)nγnSµ)

and
SP−n =

(−1)n

γ − µ
(µnSγ − γnSµ).

If we make this equation even more detailed, we get

SP−n =
(−1)n

γ − µ

[
µnγ3 − γnµ3 + i(µn − γn)
µnγ − γnµ+ i(µnγ2 − γnµ2)

]
(2.3)

where γ = 2− µ and µ = 2− γ. Additionally, if the characteristic equation x2 − 2x− 1 = 0 of Pell number sequence
is used, the equations γ2 = 5− 2µ, µ2 = 5− 2γ, γ3 = 12− 5µ and µ3 = 12− 5γ are obtained. Therefore, we obtain
the Eq (2.3) as

SP−n =
(−1)n

γ − µ

[
µn(12− 5µ)− γn(12− 5γ) + i(µn − γn)

µn(2− µ)− γn(2− γ) + i(µn(5− 2γ)− γn(5− 2γ))

]

= (−1)n
[

−12(γ
n−µn
γ−µ ) + 5(γ

n+1−µn+1

γ−µ )− i(γ
n−µn
γ−µ )

−2(γ
n−µn
γ−µ ) + (γ

n+1−µn+1

γ−µ ) + i(−5(γ
n−µn
γ−µ ) + 2(γ

n+1−µn+1

γ−µ ))

]

= (−1)n
[

−12Pn + 5Pn+1 − iPn
−2Pn + Pn+1 − i(−5Pn + 2Pn+1)

]
= (−1)n

[
Pn−3 − iPn
Pn−1 − iPn−2

]

=


If n is even number,

[
Pn−3 − iPn
Pn−1 − iPn−2

]

If n odd number,
[
Pn−3 − iPn
Pn−1 − iPn−2

] .

Now, we calculate for Pell-Lucas spinors. Considering Binet formula SPLn = γnSγ + µnSµ for Pell-Lucas spinor
sequence and we can write for −n

SPL−n = γ−nSγ + µ−nSµ.

If we use again the equations γ−n = (−1)nµn and µ−n = (−1)nγn then, we have

SPL−n = (−1)n(µnSγ + γnSµ)

and

SPL−n = (−1)n
[
µnγ3 + γnµ3 + i(µn + γn)
µnγ + γnµ+ i(µnγ2 + γnµ2)

]
.
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Finally, we get

SPL−n = (−1)n
[
−Qn−3 + iQn
−Qn−1 + iQn−2

]
.
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