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Department of Mathematics, Faculty of Science and Arts, Amasya University, 05000, Amasya, Turkey.

Received: 13-03-2024 • Accepted: 15-04-2024

Abstract. This paper presents a comprehensive investigation into the numerical solutions of two-dimensional
incompressible dilatant flow in an enclosed cavity region. The continuity and momentum equations are solved using
pseudo time derivative approach considering appropriate initial and boundary conditions. As a result, the equations
governing flow motion are decomposed using the finite difference method and subsequently solved numerically.
Numerical solutions are calculated up to a Reynolds number (Re) of 5000, using an extensive mesh. Based on
the obtained results, it is evident that the method used proves to be both effective and highly accurate. Finally, we
discuss the need for further research.
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1. Introduction

A non-Newtonian fluid is characterized by a nonlinear flow curve, where the relationship between shear stress
and shear rate doesn’t pass through the origin. In other words, its apparent viscosity, defined as shear stress divided
by shear rate, varies with flow conditions such as geometry and shear rate, making it dependent on multiple factors,
including temperature and pressure. The primary distinguishing feature of non-Newtonian fluids is their nonlinearity
in how shear stress relates to shear rate. Due to changes in dynamic viscosity with shear stress, understanding and
modeling the behavior of non-Newtonian fluids become notably complex. For this reason, the numerical solution of
non-Newtonian fluids behavior demands special consideration [3, 4, 9, 14, 17, 21].

A specific type of non-Newtonian fluids is the dilatant fluid, also known as a shear-thickening fluid. In dilatant
fluids, the apparent viscosity increases as the shear rate rises. A common example of this behavior is the mixture of
cornstarch and water, often referred to as “oobleck”. When subjected to sufficient force, oobleck hardens, enabling
individuals to run across large pools filled with this intriguing mixture. A more relatable example can be found in wet
sand. When you walk across it slowly, you’ll notice yourself sinking gradually, but if you apply enough force, like
running, the beach will solidify beneath your feet.

Extensive research has been conducted to explore the various applications of dilatant and non-Newtonian fluids. For
such studies, Burggraf [2] investigated the Prandtl-Batchelor theorem in the context of a square cavity. Employing a
relaxation, solutions were computed for Reynolds number (Re) up to 400. The results indicated the emergence of an
inviscid core vortex for higher Re values, while secondary vortex was observed near the bottom corners of the cavity for
all Re values. Sivakumar et al. [19] delved into the flow characteristics of power-law fluids passing an elliptic cylinder,

Email address: serpil.sahin@amasya.edu.tr (S. Şahin)
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scrutinizing both pseudoplastic and dilatant behavior. Ghia et al. [10] introduced a flow modeling approach utilizing
the multigrid method, subsequently applying it to study shear-driven flow within a square cavity. Their investigation
unveiled a variety of flow features, particularly for Reynolds number (Re) up to 104. Xu et al. [22] conducted flow
analysis for Reynolds number (Re) ranging from 10 to 1000, while Khorasanizade and Sousa [13] extended their
analysis to the range of Re from 400 to 3200, employing the newly developed Smoothed Particle Hydrodynamics
(SPH) method.

Mahmood et al. [15] and Shuguang [18] employed the Carreau model to describe the power-law fluid behavior
and conducted simulations within a square cavity. Mahmood et al. used the finite element method, while Shuguang
employed the finite deference method. Their findings highlighted that the influence of the power-law index becomes in-
creasingly significant at higher Reynolds number. Wright and Gaskell [20] applied the block implicit multigrid method
(BIMM) to sharp and monotonic algorithm for realistic transport (SMART) and quadratic upstream interpolation for
convective kinematics (QUICK) discretization schemes, presenting cavity flow results obtained on a 1024 × 1024 grid
mesh for Reynolds number (Re) up to 1000. Nishida and Satofuka [16] introduced a novel higher order method for
simulating driven cavity flow. They employed a modified differential quadrature (MDQ) method for discretizing the
spatial derivatives of the Navier-Stokes equations, yielding high-order accurate solutions for Reynolds number (Re)
up to 3200. Goyon [11] solved the stream function and vorticity equations using Incremental Unknowns, presenting
steady solutions for Reynolds number (Re) up to 7500 with a maximum grid size of 256 × 256.

Bruneau and Jouron [1] employed a full multigrid-full approximation storage (FMG-FAS) method to solve the
Navier-Stokes equations in primitive variables. They achieved steady solutions with a grid size of 256 × 256 for
Reynolds number (Re) up to 5000. Grigoriev and Dargush [12] introduced a sparse boundary element method (BEM)
for simulating steady non-uniformly heated viscous fluid flow. They enhanced the penalty function technique by em-
ploying hexagonal subregions and discretized the integral equation for each subregion. A non-uniform mesh consisting
of 5040 quadrilateral cells was utilized, enabling them to successfully model driven cavity flow up to Re = 5000. Demir
and Erturk [5] conducted a numerical investigation of the wall driven flow of a viscoelastic fluid within a rectangular
cavity. Erturk et al. [6] presented a proficient numerical approach for modeling driven cavity flow through the utiliza-
tion of the stream function and vorticity formulation. They applied a grid resolution of 601 × 601 and addressed the
Navier-Stokes equations for Reynolds numbers (Re) ranging up to 21000.

Building on the motivation from [6], this study is primarily centered on deriving numerical solutions for the steady,
incompressible dilatant flow occurring within an enclosed cavity region. The relationship between velocity and pres-
sure is articulated through the vorticity-stream function correlation, with particular emphasis placed on the treatment
of boundary conditions. Computational analyses are conducted across a spectrum of Reynolds numbers, scrutinizing
their impact on the flow structure. The characteristics and stability of cavity flow are thoroughly examined.

2. NumericalMethod

This section presents the numerical method used herein. The schematic diagram of the problem in a closed cavity
region is presented in Figure 1:
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Figure 1. Physical configuration of boundary conditions
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We employ the stream function (ψ) and vorticity (ω) formulation for representing the steady-state, incompressible
dilatant viscous fluid equations, as follows:
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where, Re = ρVL
η(0) is the Reynolds number, η(q) is the viscosity, q is the shear rate, and x and y are the Cartesian

coordinates. In this work, the Cross model is applied to characterize the viscosity function, expressed as:

η (q) = η (∞) +
η (0) − η (∞)
1 + (λq)1−n

. In the context of the Cross Model, η(∞) represents the infinite shear viscosity for situations involving very high
deformation rates, while η(0) characterizes the zero-shear rate viscosity for very low rates of shear. Under the pre-
sumption of specific values, such as n = 0.5 , λ = 1 , η(∞) = 1 and within the range 0 ≤ η(0) ≤ 1, this model yields
the description of shear-thickening, often referred to as dilatant behavior. Pseudo-time derivatives of the first order are
now incorporated into Equations (2.1) and (2.2) as follows:
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By applying a forward difference approximation to the time derivatives in Equations (2.3) and (2.4), we can rearrange
the equations as follows:(
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Upon reaching a steady state, we have
ψn+1 = ψn

and
ωn+1 = ωn.

By substituting this result into the right-hand side of Equations (2.5) and (2.6), we can express as:(
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The solution method for Equations (2.7) and (2.8) employs a two-level updating process. Initially, we solve the stream
function equation. We now introduce the variable f in Equation (2.8). It plays a crucial role in this approach, as
follows: (
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In Equation (2.10), f is the only unknown. It is first solved at each grid point. Subsequently, the stream function
variable (ψ) is moved to the new time step by means of Equation (2.9). Then the vorticity equation is solved the same
way.

3. Result and Discussion

We apply symmetry to ψ and ω at points located outside the boundaries. Along the boundaries, vorticity values are
determined using a nine-point compact finite difference scheme.
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Our convergence criterion is different from that of Erturk et al. [6], although we use the same algorithm. Specifically,
our convergence criterion is based on the relative-error criteria, for all n,
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Table 1. Comparison of the properties of the primary vortex; the maximum value of the stream
function, the value of the vorticity and the location of the centre, for a Newtonian fluid at Re = 1000

Reference Grid ψ ω x y
401 × 401 0.118585 2.062761 0.5300 0.5650

Erturk et al. [6] 513 × 513 0.118722 2.064765 0.5313 0.5645
601 × 601 0.118781 2.065530 0.5300 0.5650

Wright and Gaskell [20] 1024 × 1024 0.118821 2.06337 0.5308 0.5659
Nishida and Satofuka [16] 129 × 129 0.119004 2.068546 0.5313 0.5625

Goyon [11] 129 × 129 0.1157 - 0.5312 0.5625
Bruneau and Jouran [1] 256 × 256 0.1163 - 0.5313 0.5586

Grigoriev and Dargush [12] - 0.11925 - 0.531 0.566
128 × 128 0.115952 2.02482 0.5313 0.5625

Present 256 × 256 0.118182 2.05677 0.5313 0.5664
401 × 401 0.118626 2.06322 0.5312 0.5661

In Table 1, the maximum value of the stream function, the value of the vorticity at the centre of the primary vortex
and the position of the centre of the primary vortex for a Newtonian fluid at Re = 1000, are tabulated and compared
with similar results found in the literature. Erturk et al. [6] solved the cavity flow on three different grid meshes
(401 × 401, 513 × 513, and 601 × 601) for Re = 1000 as one of the most important results in Table 1. Referring to
Table 1, it’s evident that our results at Re = 1000 exhibit strong agreement with the findings of Bruneau and Jouran [1],
Goyon [11], and Erturk et al. [6]. Based on these comparative findings, it can be deduced that, even at Re = 1000,
achieving accuracy requires higher-order approximations in conjunction with the use of fine grids.

We initiated the computations by solving the driven cavity flow for dilatant fluids, covering the range from Re =
1000 to Re = 3000. Figures 2-4 represent the results: In Figure 2, with the grid size of 128 × 128, obtaining a steady
solution for Re = 5000 might be challenging. Therefore, in Figure 3, we attempted to resolve the Re = 5000 case
using a larger grid size of 256 × 256, which led to a successful acquisition of a steady solution. It was then decided to
increase the number of grids, and we tried to solve the same Reynolds numbers with 401× 401 grids in Figure 4. Once
again, we were able to achieve a steady solution. The figures above have shown that the secondary vortices appear at
the corners as the Reynolds number increases.

Figure 2. Streamline contours for dilatant fluids at Re = 1000 and Re = 3000, respectively
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Figure 3. Streamline contours for dilatant fluids at Re = 1000 and Re = 5000, respectively

Figure 4. Streamline contours for dilatant fluids at Re = 1000 and Re = 5000, respectively

4. Conclusion

In this study, numerical solutions have been presented and documented for the steady 2D incompressible dilatant
flow in a closed cavity region for Reynolds numbers up to Re = 5000. The continuity and momentum equations have
been solved using pseudo time derivative approach considering appropriate initial and boundary conditions. Then, the
equations governing flow motion have been decomposed using the finite difference method and subsequently solved
numerically for dilatant fluids. Each equation within the numerical formulation demands solving two tridiagonal
systems. This characteristic enables the straightforward use of large grid meshes, and we have employed a fine grid
mesh with dimensions of 401×401. The method has demonstrated exceptional effectiveness, particularly in addressing
flow problems demanding high accuracy and using very fine grid meshes [7, 8]. The computations highlight the
necessity of employing a fine grid mesh to achieve a steady solution. Additionally, as the Reynolds number (Re)
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increases, secondary vortices emerge, particularly at the corners. Based on these comparative analyses, it is evident
that achieving accuracy, even at Re = 1000, requires higher-order approximations in conjunction with the utilization of
fine grids. In future studies, researchers can investigate whether it is possible to perform steady-state computations of
driven cavity flow beyond Re = 5000 with grid sizes larger than 401 × 401.
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