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Bode’s ideal loop models have been utilized in control system designs to obtain 
performance robustness for the Direct Current (DC) gain variations. However, effects of 
crossover frequency and fractional order on control optimality of Bode's ideal loop 
reference models have not been sufficiently discussed, and it may raise a question of 
whether a control system design based on Bode’s ideal loop reference model is optimal. 
In this regard, this study revisits Bode’s ideal loops to investigate Integral Square Error 
(ISE) optimality of Bode’s ideal loops. For this purpose, the ISE optimality of Bode’s ideal 
loop is theoretically investigated by using Parseval’s theorem, and an ISE optimality 
condition is suggested in terms of crossover frequency and fractional order. Then, a 
generic controller family, which achieves an exact matching with the characteristics of 
the ISE optimal Bode’s ideal loop, was implemented for inverse fractional-order control 
of a class of minimum phase fractional order plant models. The authors present a 
numerical experiment on an ISE optimal Bode’s ideal loop inverse (OBILI) controller, and 
the ISE optimality and performance robustness of the designed control system were 
investigated for closed-loop control of a heat furnace system model via Monte Carlo 
simulations. 

  

BODE İDEAL DÖNGÜLERİNE YENİDEN BAKIŞ: BODE İDEAL DÖNGÜLERİNİN 
İNTEGRAL KARESEL HATA OPTİMALLİĞİ VE BODE İDEAL DÖNGÜ TERS 

KONTROLÖR TASARIMI 
 

Anahtar Kelimeler Öz 
Optimallik, 
Dayanıklılık, 
Belirsiz Sistemler, 
Kontrol Tasarımı, 
Kesirli Dereceli Kontrol, 
Bode’nin İdeal Döngüsü. 
 

Bode ideal döngü modelleri, Doğru Akım (DA) kazanç değişimleri için performans 
dayanıklılığı elde etmek amacıyla kontrol sistemi tasarımlarında kullanılmıştır. Bununla 
birlikte, geçiş frekansı ve kesir derecenin Bode ideal döngü referans modellerinin kontrol 
optimalliği üzerindeki etkileri yeterince tartışılmamıştır ve bu, Bode ideal döngü referans 
modeline dayanan bir kontrol sistemi tasarımının optimal olup olmadığı sorusunu 
gündeme getirebilir. Bu bağlamda, bu çalışma, Bode ideal döngülerinin İntegral Karesel 
Hata (ISE) optimalliğini araştırmak için Bode ideal döngülerini yeniden ele almaktadır. 
Bu amaçla Bode ideal döngünün ISE optimalliği Parseval teoremi kullanılarak teorik 
olarak araştırılmış ve geçiş frekansı ve kesir derece açısından bir ISE optimallik koşulu 
önerilmiştir. Daha sonra, ISE optimal Bode ideal döngünün karakteristikleri ile tam bir 
eşleşme sağlayan bir genelleştirilmiş kontrolör ailesi, minimum faz kesir dereceli sistem 
modellerinin bir sınıfının ters kesir dereceli kontrolü için uygulanmıştır. Yazarlar, ISE 
optimal Bode ideal döngü ters (OBILI) kontrolörü üzerinde nümerik bir deney sunmuştur 
ve tasarlanan kontrol sisteminin ISE optimalliği ve performans dayanıklılığı, Monte Carlo 
simülasyonuyla bir ısı fırını sisteminin kapalı döngü kontrolü için araştırılmıştır. 
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Highlights 

• This study revisits Bode’s ideal loop and considers control performance limitations. 
• Integral Square Error (ISE) optimality of Bode’s Ideal Loop is discussed. 
• An ISE optimal Bode’s Ideal Loop inverse controller design scheme is illustrated. 
• This generic controller allows optimal and robust closed loop system designs. 

Purpose and Scope  

The manuscript revisits the Bode’s ideal loop reference model in aspects of ISE optimality and performance 
robustness and introduces an optimal Bode’s ideal loop reference model based fractional order control system 
design for control robustness against parametric perturbation of the system model. It addresses elements of 
robust control according to the model based control design approaches. It introduces an easy-to-design ISE 
optimal Bode’s ideal loop inverse (OBILI) controller for the control of a class of fractional order plant models. 
 
Design/methodology/approach  

 

Bode’s ideal loops have been utilized in control system designs as a reference model in order to obtain a 
performance robustness for the gain variations of the control systems. However, control optimality of Bode's 
ideal loop reference models has not been sufficiently discussed in previous works. An investigation on whether 
Bode’s ideal loop reference model is optimal in terms of the closed loop control error can be useful for controller 
design domain. This study firstly investigates the control optimality of Bode’s ideal loops in terms of the Integral 
Square Error (ISE) and suggests a generic controller family that allows an exact matching of the control system 
characteristics with the characteristics of the ISE optimal Bode’s ideal loop.  
 
Findings  

We firstly introduce an ISE optimal Bode’s ideal loop inverse (OBILI) controller for the control of a class of 
fractional order plant models. The ISE optimality of the fractional order control system can inherently be 
achieved in the controller design task. This reference model based design approach significantly facilitates the 
optimal fractional order control system design with robustness assets of Bode’s ideal loops. 
 
Originality  

We revisit the Bode’s Ideal Loops and deeply discuss the robust control performance limitations of feedback 
control loops. Thus, we contributed to the brief discussion of Åström paper on the performance limitations of 
control loops in terms of control robustness and optimality. A design example of the proposed OBILI controller 
is illustrated for the optimal and robust closed loop control of a heat furnace system model. Rigorous robustness 
analysis is carried out by means of Monte Carlo simulations for parametric system uncertainties. Thus, the robust 
control performance improvements associated with the Bode’s ideal loop based design is shown by using 
statistical performance assessments. 
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1. Introduction 
 
Robust control performance is essential for practical control system applications. Parametric variations, external 
disturbance, and measurement noise can deteriorate the real-world performance of the controllers that are 
designed theoretically optimal according to a nominal mathematical model of the controlled systems. Even if a 
control system is designed optimally, several factors (e.g., limitations of mathematical modeling, non-ideality in 
the realization of system elements, uncertainty in operation conditions, and system faults) can lead to 
deterioration of theoretically ensured control optimality in real-world control applications. To maintain practical 
control optimality in real-world control systems, a robust performance design paradigm plays an important role. 
Therefore, robust control has turned into a prominent topic of control engineering(Faisal et al., 2021; Zhou et al., 
1998). The fractional order control works have aimed to resolve issues associated with the robustness of control 
system performance. Thus, the consideration of Bode’s ideal loop in control(Åström, 2000; R. Barbosa et al., 2004; 
R. S. Barbosa et al., 2004; Bode, 1945; Bower & Schultheiss, 1961; Horowitz, 1963) and a closely related property 
of the phase response flatness, so-called iso-damping property(Y. Chen et al., 2005; Y. Q. Chen et al., 2006; J.-H. Cho 
& Hwang, 2007; Feliu-Batlle & Castillo-García, 2014) emerged as a central concern in optimal fractional order 
control system design problems(Li & Chen, 2008; Luo & Chen, 2009; Saha et al., 2010). The frequency domain loop 
shaping design methodologies have been utilized in the realization of the iso-damping property in fractional order 
control systems by providing flatness of phase response characteristics of open loop transfer function at the 
vicinity of the crossover frequency(Luo & Chen, 2009; Saha et al., 2010; Vinagre et al., 2003). To achieve the phase 
flatness objective, the following constraint has been popularly employed in optimal fractional order controller 
design problems(Luo & Chen, 2009): 
 

(
𝑑∠𝐿(𝑗𝜔)

𝑑𝜔
)

𝜔=𝜔𝑐

≅ 0, (1) 

 
where the function 𝐿(𝑗𝜔) stands for the frequency response of the open loop transfer function of a closed-loop 
fractional order proportional integral derivative (FOPID) control system. This classical negative feedback control 
loop involves a controller function 𝐶(𝑗𝜔) and the controlled system function 𝐺(𝑗𝜔), where the open loop transfer 
function is simply expressed in the form of  𝐿(𝑗𝜔) = 𝐶(𝑗𝜔)𝐺(𝑗𝜔). As in Eqn. 1, the phase response of the 𝐿(𝑗𝜔) is 
denoted by ∠𝐿(𝑗𝜔). The crossover frequency 𝜔𝑐  is calculated according to the angular frequency 𝜔  that satisfies 
the condition of  |𝐶(𝑗𝜔𝑐)𝐺(𝑗𝜔𝑐)| = 1. 
 

Previously, the robust control performance limitations of feedback control loops were progressively discussed on 
the basis of a transfer function formalism of negative feedback control loops by Horowitz’s book(Horowitz, 1963) 
and Åström in a tutorial paper (Åström, 2000). Åström stated that the properties of the open loop transfer function 
𝐿(𝑗𝜔) impose some limitations in terms of control robustness. Since the real processes mainly have control 
responses in the low frequency part of the frequency spectrum, their closed-loop control systems are designed to 
work in the low frequency region, and therefore all features linked with the control performance can be 
characterized according to the spectral properties within the low frequency region. Specifically, Åström 
emphasized that major properties associated with the control performance were characterized around the 
crossover frequencies of the control system (Åström, 2000). In the loop shaping design of control systems, the 
phase and gain crossover frequencies are mainly considered: The phase crossover frequency (𝜔𝑝𝑐) of a system is 

the frequency at which the phase of the system first reaches −𝜋 rad (−180°) and the gain crossover frequency (𝜔𝑐) 
is defined as the frequency where the amplitude of the open loop transfer function becomes a value of 1 (Bolton, 
2004). As a major control property, the stability of the control system is guaranteed with positive phase and gain 
margins that can be calculated according to the phase and amplitude response characteristics of the open loop 
transfer function at the crossover frequencies (Bolton, 2004; Doyle et al., 1990; Wang et al., 2009). 
 
Another useful control property related with the crossover frequency has emerged as the flatness of phase 
response characteristic of open loop transfer functions around the gain crossover frequency and this design 
property was considered as iso-damping property and utilized for system robustness in the loop shaping designs 
(Y. Chen et al., 2005; Feliu-Batlle & Castillo-García, 2014). However, its origin has traced back to Bode’s works on 
feedback amplifiers, where it was discussed as the ideal cut-off characteristic to design robust amplifier circuits 
for DC gain variations (Åström, 2000; Bode, 1945; Doyle et al., 1990). In its historical progress, Bower and 
Schultheiss (Bower & Schultheiss, 1961), Horowitz (Horowitz, 1963), and (Alagoz et al., 2013) considered this 
property from a control point of view. Then, Åström presented a comprehensive investigation of Bode’s ideal loop 
transfer function to discuss the robustness limitations of classical negative feedback control loops (Åström, 2000). 
Then, the terms of Bode’s ideal loop transfer function have been phrased for control systems, and the phase 
response flatness of the open loop transfer function at crossover frequency has been investigated in more detail 
for control system design (Åström, 2000). Afterward, Bode’s ideal loop was considered as a reference model in 
order to tune controller parameters to improve the time response of closed-loop control systems (Alagoz et al., 
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2013; Doğruer et al., 2017; Saidi et al., 2015; Zhang et al., 2020). Recently, Bode’s ideal loop transfer function has 
been preferred as a reference transfer function model to achieve phase flatness and performance robustness in 
loop shaping design (Fergani, 2022; Li et al., 2020; Sahoo & Mishra, 2021; Zheng et al., 2020; Zhuo-Yun et al., 2020). 
 
This study aims to revisit discussions on the control performance robustness of Bode’s ideal loop and extend these 
discussions to address the control optimality of Bode’s ideal loop reference models. In this manner, parameters of 
the Bode’s ideal loop are studied to figure out an optimal reference model. Thus, a control system design based on 
Bode’s ideal loop reference model can inherently achieve the ISE optimality. For this purpose, ISE performance of 
the closed-loop control error is considered in the frequency domain as the total spectral energy of the control error 
by using Parseval’s theorem, and then the total spectral energy of the control error is numerically minimized to 
determine the optimal crossover frequency and the fractional order parameters of the Bode’s ideal loop reference 
models. 
 
To demonstrate the benefits of the optimal Bode’s ideal loop reference model for the optimal and robust controller 
design, we present an ISE optimal Bode’s ideal loop inverse (OBILI) controller design example for the control of a 
class of minimum phase fractional order plant models. A numerical experiment is conducted to investigate optimal 
and robust control of a fractional order heat furnace system model. Monte Carlo simulations are conducted to 
show performance improvements of the ISE-OBILI controller in the on to performance of an optimal FOPID 
controller design. 
 
2. Analyses on Bode’s Ideal Loops 
 
2.1. Preliminary Knowledge: Effects of Bodes Ideal Loop Parameters on System Stability and Robustness 
 
The open loop transfer function of Bode’s ideal loop is defined as 
 

𝐿(𝑠) = (
𝜔𝑐

𝑠
)

𝛼

, (2) 

 
where the parameter 𝜔𝑐  denotes crossover frequency and the parameter α stands for the fractional order of Bode’s 
ideal loop (Åström, 2000; Bode, 1945). It is indeed a fractional order system model. The closed-loop transfer 
function of this system model is widely expressed in the form of 
 

𝑇(𝑠) =
𝐿(𝑠)

1+𝐿(𝑠)
=

𝜔𝑐
𝛼

𝑠𝛼+𝜔𝑐
𝛼. (3) 

 
Interest in Bode’s ideal loops has grown in the field of fractional order control topic for the last two decades 
because Bode’s ideal loop has been considered as a reference model for the robust performance control system 
design tasks. To understand the underlying reasons of why the fractional order control community has preferred 
Bode’s ideal loop for a reference response of the robust control systems, one should consider the frequency 
response of Bode’s ideal loops in Figure 1. 
 
Figure 1 depicts the Bode diagram of Bode’s ideal loop that is composed by drawing phase and magnitude 
responses of the open loop transfer function. The figure illustrates the effects of the parameters 𝜔𝑐   and  𝛼  on the 
frequency responses in log-log scales. The magnitude response of Bode’s ideal loop is written by 
 

20log10|𝐿(𝑗𝜔)| = 20𝛼 log10 (
𝜔𝑐

𝜔
) = −20𝛼 log10(𝜔) + 20𝛼 log10(𝜔𝑐). (4) 

 
The phase response of Bode’s ideal loop is written by 
 

∠𝐿(𝑗𝜔) = −
𝜋

2
𝛼 . (5) 

 
Some important remarks associated with phase and amplitude responses of Bode’s ideal loops for system 
engineering can be summarized: 
 
(i) The magnitude response is a linear curve in the log-log graph and the slope of the magnitude curve is −20𝛼 
dB/dec in this graph. The slope of the magnitude curve is adjustable only by the fractional order 𝛼. (According to 

Figure 1, the slope of magnitude curve can be expressed geometrically as −
20𝛼 log10(𝜔𝑐)

log10(𝜔𝑐)
= −20𝛼 dB/dec). This 

demonstrates the independence of the magnitude slope from the crossover frequency 𝜔𝑐 . Therefore, a change in 
the crossover frequency, which implies the change in the DC gain of Bode’s ideal loop, does not affect the slope of 
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the magnitude curve and the associated properties. Besides, by considering Eqn. 5, it is evident that the phase 
response of Bode’s ideal loop is also independent of the crossover frequency 𝜔𝑐 . These are the mathematical 
origins of the performance robustness of Bode’s ideal loops for the crossover frequency variations. Therefore, with 
consideration of Eqn. 2, a change in the open loop gain of Bode’s ideal loop is possible by altering only the crossover 
frequency 𝜔𝑐 , and this alteration does not affect the phase response and accordingly the phase margin that is 𝜑𝑚 =
−(𝜋/2)𝛼 + 𝜋 (Bode, 1945). This effect validates the claims that have been suggesting that phase margin is 
independent of the open loop gain variation of Bode’s ideal loop. Consequently, one concludes that the Bode’s ideal 
loop is robust stable for any change in the crossover frequency. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Bode diagram drawing of the Bode’s ideal loop in logarithmic scales and illustrations of some important 

characteristic points related to control system performance 

 
(ii) When the phase margin 𝜑𝑚 = −(𝜋/2)𝛼 + 𝜋  is considered, it is evident that Bode’s ideal loop is always stable 
because of presenting a positive phase margin in the fractional order range of 0 ≤ 𝛼 < 2. Therefore, the range  0 ≤
𝛼 < 2 guarantees the robust stability of Bode’s ideal loops (Bode, 1945). 
 
To validate these conclusions in frequency response plots, magnitude responses, phase responses and phase 
margins of Bode’s ideal loops are drawn for 𝜔𝑐 = 10, 1 ≤ 𝜔 ≤ 100 and different values of 𝛼 in the range of [0,2] 
with 0.1 increments in Figure 2. The figure clearly shows that Bode’s ideal loop is stable for  0 ≤ 𝛼 < 2 because of 
having a positive phase margin in this range. 
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Figure 2. Magnitude responses (a), phase responses (b) and phase margins (c) of the Bode’s ideal loops for various 𝛼 ∈ [0,2]  

at  𝜔𝑐 = 10 

To show the effects of the crossover frequency 𝜔𝑐 , Figure 3 shows magnitude responses and phase responses of 
Bode’s ideal loop for 𝛼 = 1 and various values of  𝜔𝑐  in the range [1,100] with 10 rad/sec increments. One can 
observe that there isn’t any geometrical dependence between the phase response curve and the magnitude 
response curve in the case of the constant fractional order. For this reason, any change in 𝜔𝑐 , namely the DC gain 
of the open loop Bode’s ideal loop, does not affect the phase response and the phase margin of the system according 
to Figure 3(b). This property may give a degree of freedom for tuning the parameter 𝜔𝑐  without concerning the 
stability of Bode’s ideal loop in controller design efforts. In addition, this property confirms the insensitivity of the 
phase response to the gain variation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Magnitude responses (a) and phase responses (b) of Bode’s ideal loops for 𝛼 = 1 and various values of 𝜔𝑐 in the 
range of [1,100] (These figures confirm that phase response is independent of 𝜔𝑐) 

 
2.2. Integral Squared Error Optimality of Bode’s Ideal Loop 
 
Bode’s ideal loops have been used as a reference model in control system tuning problems (Alagoz et al., 2013; 
Doğruer et al., 2017; Yumuk et al., 2019; Zhang et al., 2020) because of expectations of their robust control assets 
that have been elaborated in the previous section. Although it has been utilized in many works, the control 
optimality of Bode’s ideal loop reference models has not been adequately discussed. This section is particularly 
devoted to investigate the ISE performance optimality of Bode’s ideal loops. In this aspect, we consider the ISE 
control performance of closed-loop Bode’s ideal loop reference models and numerically solve the associated 
optimization problem in order to determine the optimal parameters of Bode’s ideal loop, which minimize the 
integral of the square error. The aim of this effort is to figure out a Bode’s ideal loop configuration (fractional order 
and crossover frequency values) that can simultaneously offer two features: (i) ISE optimality in time response, 
(ii) robustness for the gain variation (crossover frequency) of Bode’s ideal loop reference model. 
 
This effort can facilitate the solution of optimal controller design problems because ISE optimality will have been 
inherently provided by using the ISE optimal Bode’s ideal loop reference model. Thus, there will be no need for 
solving an additional ISE optimality problem for the controller tuning when the time and frequency responses of 
the designed control system entirely resemble the response of the ISE optimal Bode’s ideal loop reference model. 
 
Let us express the error function of the closed-loop Bode’s ideal loop by considering Eqn. 2 in the Laplace 

transform of 𝑒(𝑠) = 𝑅(𝑠) − 𝑇(𝑠)𝑅(𝑠), where the closed-loop transfer function is 𝑇(𝑠) =
𝐿(𝑠)

1+𝐿(𝑠)
, one can write 

 

𝑒(𝑠) =
1

1+𝐿(𝑠)
𝑅(𝑠) =

1

1+(
𝜔𝑐

𝑠
)

𝛼 𝑅(𝑠), (6) 

 
where 𝑅(𝑠) represents the input of the closed-loop transfer function of the Bode’s ideal loop. The ISE is commonly 
calculated by using the closed-loop control error signal 𝑒(𝑡) when a unit step input signal 𝑟(𝑡) = 𝑢(𝑡) is applied to 
the input of the control loop. (Laplace transform of unit step input 𝑟(𝑡) = u(t) is R(s) = ℒ{u(t)} = 1/s) In the case 
of simulation or experimental data, the finite time ISE (Åström, 2000)was then used in the form of 

)(a

10
-1

10
0

10
1

10
2

-40

-20

0

20

40

60

log
10

()

M
a
g
n
it
u
d
e
 R

e
s
p
o
n
s
e
 [

d
B

]

10
-1

10
0

10
1

10
2

-1.5

-1

-0.5

0

0.5

log
10

()

P
h
a
s
e
 R

e
s
p
o
n
s
e
  

[x
]

)(b



ALAGÖZ et. al. 10.21923/jesd.1452157 

 

208 
 

 

𝐸𝑇 = ∫ 𝑒(𝑡)2𝑑𝑡
𝑇

0
. (7) 

 
This formulation of the ISE is useful for performance analyses of the simulation or experimental data that was 
obtained for a finite observation period T. However, the selection of the observation period influences the results 
of finite time ISE calculations. An absolute ISE definition, which can be independent of the observation period, is 
written by 
 

𝐸∞ = ∫ 𝑒(𝑡)2𝑑𝑡
+∞

−∞
. (8) 

 
By using the Parseval’s theorem, 𝐸∞ can be expressed in the frequency domain as (Kealy & O’dwyer, 2003; 
Merrikh-Bayat, 2012) 
 

𝐸∞ = ∫ 𝑒(𝑡)2𝑑𝑡
+∞

−∞
=

1

2𝜋
∫ |𝑒(𝑗𝜔)|2𝑑𝜔

+∞

−∞
, (9) 

 
where e(jω) = e(s)|s=jω are used in Eqn. 9, then the absolute ISE of Bode’s ideal loop can be written as 

 

𝐸∞ =
1

2𝜋
∫ |

1

1+(
𝜔𝑐
𝑗𝜔

)
𝛼

1

𝑗𝜔
|2𝑑𝜔

+∞

−∞
. (10) 

 
Finally, the ISE optimal Bode’s ideal loop parameter can be found by solving the following optimization problem: 
 

min 𝐸∞(𝜔𝑐 , 𝛼) =
1

2𝜋
∫ |

1

1+(
𝜔𝑐
𝑗𝜔

)
𝛼

1

𝑗𝜔
|2𝑑𝜔

+∞

−∞
   (11) 

 
We solved this optimization problem by using Brute force search. The Brute force search method searches all 
evenly sampled solutions from a low dimensional search space. The Brute force search is a useful and proven 
search technique when there is a need for a discrete performance mapping within the search space. Thus, one can 
explore all optimal points within the sampled finite search spaces, and previously, it was effectively used in the 
fractional order control system stabilization tasks (Alagoz, 2018; Matušů et al., 2018). In the current application, 
for sampled values of  𝜔𝑐   and 𝛼 parameters in a finite search range, the absolute ISE of Bode’s ideal loop was 
numerically calculated by using the numerical integral function of the Matlab program. For the consistent 
numerical calculation of Eqn. 11, the numerical integral was performed for a sufficiently large range of the angular 
frequency ([−1010, 1010]) compared to the sampling ranges of 𝜔𝑐  and 𝛼 parameters. Thus, the accuracy of the 
numerical integration in Eqn. 11 can be maintained. (The Matlab code for the numerical calculation of Eqn. 11 is 
also provided in the Appendix section.) 
 
Figure 4 shows the distribution of 𝐸∞(𝜔𝑐 , 𝛼) in the ranges 𝜔𝑐 ∈ [1,10000] with 10 rad/sec increments and 𝛼 ∈
[0,2] with 0.1 increments. The figure depicts an ISE performance mapping of closed-loop Bode’s ideal loops. In the 
figure, the minimum ISE was obtained 5.10−4 and the optimal model parameters were found 𝜔𝑐

∗ = 1000 and  𝛼∗ =
1. The same computations were carried out by increasing the range of 𝜔𝑐  and results are listed in Table 1. Results 
reveal that the optimal value of the fractional order is 𝛼∗ = 1 and optimal values of crossover frequency go 
consistently to the highest 𝜔𝑐  frequencies that are the upper boundary of the search range of 𝜔𝑐 . According to 
these numerical results, one can easily infer that the optimal value of the crossover frequency goes to the infinite 
frequency, 𝜔𝑐

∗ → ∞, in the case that the Brute search range of 𝜔𝑐  expands to infinity. Consequently, the conditions 
𝛼∗ = 1  and  𝜔𝑐

∗ → ∞ are sufficient to ISE optimality of Bode’s ideal loops. By considering these findings, the open 
loop transfer function of the ISE optimal Bode’s ideal loop can expressed by using the condition 𝛼∗ = 1  and 𝜔𝑐

∗ →
∞ as 
 

𝐿∗(𝑠) = (
𝜔𝑐

𝑠
) |𝜔𝑐

∗→∞. (12) 

 
Then, a transfer function of the optimal ISE Bode’s ideal loop can be written by 
 

𝑇∗(𝑠) =
𝜔𝑐

∗

𝑠+𝜔𝑐
∗ =

1
1

𝜔𝑐
∗𝑠+1

|𝜔𝑐
∗→∞. (13) 
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Figure 4. Logarithmic scale distribution 𝐸∞(𝜔𝑐, 𝛼) in the ranges 𝜔𝑐 ∈ [1, 10000] with 10 rad/sec increment and 𝛼 ∈ [0, 2] 
with 0.1 increments ((a) top view and (b) side view) 

 
According to Eqn. 13, the optimal ISE Bode’s ideal loop is theoretically an infinite bandwidth, first order transfer 
function because of the requirement of 𝜔𝑐

∗ → ∞. This indeed implies a unit transfer function, 𝑇∗(𝑠) = 1, namely an 
ideal closed-loop transfer function. The unit transfer function represents an ideal lossless system with an infinite 
bandwidth and a zero-time constant. However, the unit transfer function is a conceptual model because the infinite 
crossover frequency is not possible in real-world or practical control systems. From a practical point of view, ISE 
performances of real systems are bounded with a finite crossover frequency specification. To improve ISE 
performances of real control system design methodologies, which are using optimal ISE Bode’s ideal loop functions 
(𝑇∗(𝑠) or 𝐿∗(𝑠)) as a reference model, one should consider maximization of the 𝜔𝑐 . As a consequence, an essential 
limitation for the optimality of Bode’s ideal loop comes from the finite 𝜔𝑐  specifications of the real-world control 
systems. This is a result that also confirms the view of Åström, which has been suggested the crossover frequency 
to be an essential limitation for real-world control performance (Åström, 2000). 
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Figure 5. Step responses of Bode’s ideal loop closed-loop transfer functions for (a) 𝛼 = 0.5, (b) 𝛼∗ = 1 and (c) 𝛼 = 1.5 
 
Figure 5 shows step responses of the closed-loop transfer functions of Bode’s ideal loop for various crossover 
frequencies and different fractional orders. (FOTF toolbox was used to perform the step response simulations 
(Xue, 2017). These step responses in the figure validate the results in Table 1. The ISE performance of Bode’s ideal 
loop is the best at 𝛼∗ = 1  because the control error |𝑒(𝑡)| = |1 − 𝑦(𝑡)| is the lowest for 𝛼∗ = 1 for the same values 
of the 𝜔𝑐 . In the figure, an increase in the crossover frequency can improve the ISE performance in general. 
However, the crossover frequency of real-world systems is finite and limited. When this limitation of real-world 
control systems is taken into account, Bode’s ideal loop with 𝛼∗ = 1 promises the best ISE control performance at 
a given crossover frequency of the system. It is a noteworthy point that Bode’s ideal loops offer robust stability in 
the case of crossover frequency variations as shown in the figure. 
 

Table 1. Minimum ISE search results for the various range of 𝜔𝑐 

Search range of𝝎𝒄 𝝎𝒄
∗ 𝛼∗ Minimum ISE 

𝜔𝑐  ∈[1,10] 10 1 510-2 

𝜔𝑐   ∈[1,100] 100 1 5.10-3 

𝜔𝑐   ∈[1,1000] 1000 1 5.10-4 

𝜔𝑐   ∈[1,2000] 2000 1 2.5.10-4 

𝜔𝑐   ∈[1,5000] 5000 1 9.99.10-5 

𝜔𝑐   ∈[1,10000] 10000 1 4.99.10-5 

 
3. Numerical Experiments 
 
3.1. An ISE Optimal Bode’s Ideal Loop Inverse Controller Design for Minimum Phase Plant Models 
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This section presents an inverse controller design example, which is based on the ISE Optimal Bode’s ideal loop 
reference model. To observe the contributions of Bode’s ideal loop reference model, the open loop transfer 
function of the control system exactly matches the open loop transfer function of ISE optimal Bode’s ideal loop and 
this assures fully matching of frequency responses. Accordingly, this controller structure is referred to as ISE 
Optimal Bode’s Ideal Loop Inverse (OBILI) controller in this study. The inverse control is based on the utilization 
of an inverse model of the plant function for the controller design. (It was also known as the direct synthesis 
method (Fergani, 2022). Previously, the inverse control strategy has been applied in the control systems (J. Cho et 
al., 2006; Deniz, 2022; Fergani, 2022; Nagarsheth & Sharma, 2020; Saxena & Biradar, 2022; Shafiq, 2005; Yadav & 
Hirenkumar, 2022; Yumuk et al., 2016; Zheng et al., 2020) and it has been implemented in conjunction with several 
control system types such as in fuzzy control systems (Kumbasar et al., 2011), in neural network control (Narendra 
& Parthasarathy, 1990), in PID controller design (Chakraborty et al., 2020; Jeng & Lin, 2012). A Smith predictor 
based fractional-order PI control law is suggested by using direct synthesis (Vu & Lee, 2014). The second 
generation CRONE controller design has also been utilized from the inverse controller design scheme (Lanusse et 
al., 2013). In this section, we illustrate a generic inverse controller structure that exactly matches with the 
frequency response of ISE optimal Bode’s ideal loop for minimum phase plant models. 
 
For this purpose, the open loop transfer function is matched with Bode’s ideal loop transfer function as follows: 
 

𝐶(𝑠)𝐺(𝑠) = (
𝜔𝑐

𝑠
)

𝛼

. (14) 

 
Then, the Bode’s ideal loop inverse controller is obtained as 
 

𝐶(𝑠) =
1

𝐺(𝑠)
(

𝜔𝑐

𝑠
)

𝛼

, (15) 

 
where the 𝐶(𝑠) is the inverse controller function and 𝐺(𝑠) is the plant function that is controlled by the controller 
𝐶(𝑠) in a negative feedback loop (Zheng et al., 2020). Figure 6 shows a block diagram of the closed-loop control 
system with the inverse controller 𝐶(𝑠). 
 
We assumed that the minimum phase plant function model is accurate and well-represent the real system 
response. Under this modeling assumption, it is investigated whether the loop shaping designs based on the ISE 
optimal Bode’s ideal loop reference model can improve the robustness and optimality of the designed closed-loop 
control system. By matching with the optimal ISE Bode’s ideal loop reference model, the designed control system 
inherits the frequency domain properties of Bode’s ideal loop reference model; for instance, providing flattened 
phase response and a decrease of the magnitude response with almost a constant slope in log-log scales. 
 
 
 
 
 
 
 

Figure 6. Block diagram of the closed-loop Bode’s ideal loop inverse control 
 
The findings of analyses in the previous section have demonstrated that the ISE optimality of Bode’s ideal loop 
reference model is possible for 𝛼∗ = 1 and 𝜔𝑐

∗ → ∞, the ISE OBILI controller can be expressed in the form of 
cascaded two functions as follows: 
 

𝐶(𝑠) = 𝐺(𝑠)−1 (
𝜔𝑐

𝑠
)

𝜔𝑐
∗→∞

, (16) 

 
where 𝐺(𝑠)−1 is the inverse function of the plant model and the term (𝜔𝑐/𝑠)𝜔𝑐

∗→∞ stands for the ISE optimal Bode’s 

ideal loop reference model. (This term indeed performs an ideal integral operation with the infinite bandwidth.) 
Eqn. 16 reveals a design concern to improve the ISE optimality of this control system, that is, the maximization of 
crossover frequency 𝜔𝑐 .This maximization improves the ISE optimality without causing overshoots in settling. 
Thus, the OBILI controller function with Eqn. 16 achieves a control performance that allows an enhanced ISE 
optimality with an overshoot-free settling and the control robustness that allows insensitivity to the crossover 
frequency fluctuations of the control system. 
 

y
e

r
 )(sG

 

 












= −

s
sGsC c1)()(

u



ALAGÖZ et. al. 10.21923/jesd.1452157 

 

212 
 

In the literature, several approaches were proposed for the inverse control of non-minimum phase plant models. 
Minimum phase and non-minimum phase parts are separated (Arya & Chakrabarty, 2018) and approximated 
(Saxena & Biradar, 2022; Yadav & Hirenkumar, 2022; Yumuk et al., 2016). Works on Internal Model Control 
techniques have suggested effective solutions for dealing with non-minimum phase plant models (Arya & 
Chakrabarty, 2018; Kumbasar et al., 2011; Saxena & Hote, 2022). To illustrate a simplified design example for 
robust control performance analysis, we consider a class of minimum phase fractional order plant model that has 
been expressed in the form of 
 

𝐺(𝑠) =
1

𝑎2𝑠𝛽2+𝑎1𝑠𝛽1+𝑎0
, (17) 

 
An analytical optimal FOPID controller design method has been proposed by Zhao et al. for this class of the 
fractional order plant model (Zhao et al., 2005). One can generalize this class of minimum phase plant function for 
n number of fractional elements as 
 

𝐺(𝑠) =
𝐾

𝑎𝑛𝑠𝛽𝑛+𝑎𝑛−1𝑠𝛽𝑛−1+⋯+𝑎2𝑠𝛽2+𝑎1𝑠𝛽1+𝑎0
, (18) 

 
An ISE OBILI controller for this class of fractional plant function can be designed in a generic form by considering 
Eqn. 16 as, 
 

𝐶(𝑠) = (𝑘𝑛𝑠𝛽𝑛−1 + 𝑘𝑛−1𝑠𝛽𝑛−1−1+. . +𝑘2𝑠𝛽2−1 + 𝑘1𝑠𝛽1−1 + 𝑘0𝑠−1)
𝜔𝑐

∗→∞
, (19) 

 
Then, one can rearrange this controller function to express it in a more elegant form as follows: 
 

𝐶(𝑠) = (
𝑘0

𝑠
+ ∑ 𝑘𝑖𝑠

𝛽𝑖−1𝑛
𝑖=1 )

𝜔𝑐
∗→∞

, (20) 

 

where the controller coefficients are 𝑘𝑖 =
𝜔𝑐𝑎𝑖

𝐾
. In fact, Eqn. 20 infers a generic fractional order controller that 

involves transformative fractional order elements: The term 𝑠𝛽𝑖−1 infers a fractional order derivative element 
for𝛽𝑖 > 1, it transforms to a fractional order integral element in the case of 𝛽𝑖 < 1and it becomes a constant gain 
element for 𝛽𝑖 = 0. This flexibility of the generic OBILI controller structure allows for taking over all features of 
Bode’s ideal loop reference model. Previously, generic model control has been studied and the advantage of 
generic model controller designs has been illustrated by Lee et al. (Kharrazi et al., 2012; Lee & Sullivan, 1988). 
 
3.2. A Numerical Study for Control of a Heating Furnace System Model 
 
In this section, we illustrate a design example for a fractional order nominal model of a heating furnace that was 
written by 
 

𝐺(𝑠) =
1

14994𝑠1.31+6009.5𝑠0.97+1.93
, (21) 

 
where the nominal model parameters of the heating furnace according to Eqn. 18 are 𝐾 = 1, 𝑎2 = 14994, 𝑎1 =
6009.5, 𝑎0 = 1.93, 𝛽2 = 1.31, 𝛽1 = 0.97(Podlubny, 1994; Zhao et al., 2005). Let us design an OBILI controller with 
𝜔𝑐 = 0.2 rad/s for the plant function that is given by Eqn. 21. (𝜔𝑐 = 0.2 rad/s is suitable for physically 
implementable heating furnace control.)   By considering Eqn. 20 and taking 𝑛 = 2 for the number of fractional 
order elements in the plant function (Eqn. 21), the generic controller function can be written by 
 

𝐶(𝑠) =
𝑘0

𝑠
+ 𝑘1𝑠𝛽1−1 + 𝑘2𝑠𝛽2−1, (22) 

 
where controller coefficients are 𝑘2 = 𝜔𝑐𝑎2 𝐾⁄ = 0.2 × 14994/1 = 2998.8, 𝑘1 = 𝜔𝑐𝑎1/𝐾 = 0.2 × 6009.5/1 =
1201.9 and 𝑘0 = 𝜔𝑐𝑎0/𝐾 = 0.2 × 1.93/1 = 0.3860. Then, by using  𝛽2 = 1.31 and 𝛽1 = 0.97 , the proposed OBILI 
controller becomes 
 

𝐶𝑂𝐵𝐼𝐿𝐼(𝑠) = 0.3860𝑠−1 + 1201.9𝑠−0.03 + 2998.8𝑠0.31. (23) 
 
For the plant function (Eqn. 21), a FOPID controller has been designed in (Zhao et al., 2005) as follows: 
 

𝐶Z(𝑠) = 736.8054 − 0.5885𝑠−0.6 − 818.4204𝑠0.35, (24) 
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Figure 7 shows Bode plots of the proposed OBILI control system and the optimal FOPID control system that was 

designed for a phase margin of 
𝜋

3
 rad and a gain margin of 1.1 by (Zhao et al., 2005). Zhao et al’s approcah does not 

consider ISE optimality. One can see that the frequency responses of the Bode’s ideal loop and the proposed OBILI 
control system completely match and therefore the OBILI control system takes all inherent properties of the 
optimal Bode’s ideal loop such as the iso-damping property, independence of phase response from the crossover 
frequency of the system and ISE optimality for 𝛼∗ = 1. Specifically, the OBILI control system achieves complete 

phase flatness at 
𝜋

2
 rad in the phase response. However, Zhao et al.’s optimal FOPID control system provides a slight 

slope around the crossover frequency. These results show that the OBILI control system can provide control 
performance assets that are inherited from the ISE optimal Bode’s ideal loop. Zhao et al.  
 
Figure 8 shows unit step responses of the proposed OBILI controller and Zhao et al.’s FOPID controller from the 
control simulation of the heating furnace model. The OBILI control provides a faster settling without any 
overshoots and its step response can completely overlap with the step response of the closed-loop transfer 
function of the Bode’s ideal loop. This result also confirms the matching of time response properties of the OBILI 
control system and Bode’s ideal loop and inherits optimality and robustness assets of Bode’s ideal loop in the time 
domain. The optimal FOPID control settles in a longer period by producing a slight overshoot. The figure clearly 
shows that the ISE optimality of the proposed OBILI control can also be preferable when compared to the ISE 
optimality of the Zhao et al.’s optimal FOPID control. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Frequency responses of the proposed OBILI control and the optimal FOPID control for the heating furnace model 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Unit step responses of the proposed OBILI control and the optimal FOPID control for the heating furnace model 
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Figure 9. Time responses of the proposed OBILI control and the optimal FOPID control for sinusoidal reference inputs 

 

To observe response of complete phase flatness at 
π

2
 rad, sinusoidal reference signals with angular frequencies of 

0.1257 rad/sec and 0.0377 rad/sec were applied, and responses of both controllers are illustrated in Figure 9. 
Since the crossover frequency of Zhao et al.’s FOPID control system is lower than the reference signal frequency 
0.1257 rad/sec, it cannot well-track the reference signal amplitude, and the output amplitude is attenuated. (For 
attenuation-free control, the phase crossover frequency should be greater than the maximum operation frequency 

ωmax , accordingly the crossover frequency depending on application requirements can be selected according to 
application requirements as  ωc > ωmax ) Since the phase response of the FOPID control system is not flat, varying 
phase delay is observed at the output of the FOPID control system for changing frequency of the reference input 
signal. However, the phase delay of the proposed OBILI control system is lower at these frequencies and it is almost 
constant when frequency of the reference signal is changed. This effect is called as the phase delay robustness that 
is related to the complete phase flatness property of OBILI control. It can also better track the sinusoidal reference 
signal because the crossover frequency of controller is greater than frequencies of sinusoidal waveforms in figures. 
 

 
Figure 10. Control signals for the proposed OBILI control and the optimal FOPID control for the heating furnace model 

 
Figure 10 shows control signals (𝑢(𝑡)) for the proposed OBILI and Zhao et al.’s FOPID controllers. The OBILI 
controller can achieve optimal control with lower amplitude and lower energy control signal compared to Zhao et 
al.’s FOPID controller. 
 
It is useful to investigate the robust control performance of the control systems under the parametric 
perturbations of the plant model. Figure 11 shows the unit step responses of the proposed OBILI controller and 
the optimal FOPID controller (Zhao et al., 2005) for the parametric perturbation of the model coefficients. The gain 
coefficients 𝐾 = 1 and 𝑎2 = 14994  are increased 1.5  and 2 times to perform a high variability in these coefficients. 
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Then, we observed the sensitivity of the step responses to each variation in these coefficients to evaluate the 
control performance robustness of the control systems. The figure illustrates that the OBILI control can present a 
more robust step response performance than the optimal FOPID control for such variations in the gain coefficients. 
(Deviations in step responses of the OBILI control are less than those of optimal PID control)  As discussed in the 
previous sections, this robust performance improvement is achievable because of inheriting all assets of Bode 
Ideal loops. 

Figure 11. Changes in the unit step responses of the proposed OBILI control and the optimal FOPID control under parametric 
perturbations of the heating furnace model for the gain parameters 𝐾 in (a) and the denominator coefficient 𝑎2 in (b) 

 
It is also valuable to consider changeability in step responses of the proposed OBILI controller and the optimal 
FOPID controller (Zhao et al., 2005) under the fractional model order perturbations. Figure 12 shows step 
responses of the proposed OBILI controller and the FOPID controller under parametric perturbations of the model 
orders 𝛽1 and 𝛽2. The order 𝛽1 = 0.97  was changed to 1.2 × 𝛽1 and 0.8 × 𝛽1. The order 𝛽2 = 1.31 is changed to 
1.2 × 𝛽2  and  0.8 × 𝛽2 .These order variations can be assumed as a significant variation in the fractional order 
system dynamics. The step response of the OBILI controller is less affected by these order variations compared to 
the optimal PID controller. (Deviations in step responses of OBILI control is less than those of the optimal PID 
control)  These numerical experiments indicate that the step response performance robustness of the OBILI 
control under the variations of the fractional model orders could be relatively better than those of the optimal 
FOPID control. Reasons for this improvement in robust control performance can be closely related to Bode’s ideal 
loop properties that are associated with the phase response flatness (iso-damping property) and the constant 
slope of the magnitude curve. Another factor can be the higher crossover frequency of the OBILI control system. 

Figure 12. Changes in the unit step responses of the proposed OBILI control and the optimal FOPID control for parametric 
perturbations of the heating furnace model for the fractional order parameters 𝛽1 in (a) and 𝛽2 in (b) 
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Table 2 lists the ISE performances of the control systems under the parametric model perturbations that were 
illustrated in Figures 11 and 12. The ISE data in the table confirms both enhanced ISE optimality and the improved 
performance robustness of the proposed OBILI control system. 

Table 2. ISE performances of the proposed OBILI control system and the optimal FOPID control system (Zhao et al., 2005) 
under some parametric model perturbations 

Plant Model and Parametric Perturbations The optimal FOPID 
Control System  

The proposed OBILI 
Control System 

ISE for the nominal system  113.25 25.75 
ISE under 1.5 × 𝑎2 coefficient perturbation  135.28 32.94 
ISE under 2.0 × 𝑎2 coefficient perturbation 155.86 39.85 
ISE under 1.5 × 𝐾 coefficient perturbation  85.10 17.42 
ISE under 2.0 × 𝐾 coefficient perturbation 70.41 13.25 
ISE under 1.2 × 𝛽2  fractional order perturbation 93.28 21.32 
ISE under 0.8 × 𝛽2  fractional order perturbation 157.31 36.26 
ISE under 1.2 × 𝛽1  fractional order perturbation 107.48 23.73 
ISE under 0.8 × 𝛽1  fractional order perturbation 147.39 32.76 

 
3.3. Monte Carlo Simulations for Analysis of Control Performance Robustness 
 
In order to more realistically analyze performance robustness in case of parametric perturbations of the fractional 
order heating furnace model, we randomly varied all parameters of the heating furnace model in the interval 
uncertainty ranges that involve±50% deviation range from nominal values of the gain coefficients and ±20% 
deviation range from nominal values of the fractional orders of the model. For these uncertainty ranges, the 
interval uncertain model of the heating furnace model can be expressed as. 
 

𝐺(𝑠) =
1

[7497,22491 ]𝑠[0.655,1.965]+[3004.8,9014,3]𝑠[0.485,1.455]+[0.965,2.895]
. (25) 

 
Accordingly, by performing 100 times uniform random sampling of the model parameters within the deviation 
ranges, 100 versions of parametric perturbed heating furnace model were randomly generated from the interval 
uncertain system model (Eqn. 25). Thus, a Monte Carlo simulation of the control robustness was carried out to 
observe the robustness of the step response and ISE performances. Figure 13 shows randomly sampled parameter 
distributions for each parameter of the heating furnace model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 13. The random sampled parameter distributions from the interval uncertainty range to mimic unpredictable 

parametric perturbations of the heating furnace model 

 
Figure 14 shows the unit step responses of the proposed OBILI controller and the optimal FOPID controller 
(Kharrazi et al., 2012) for all perturbed models. The dispersion in the step responses is less for the OBILI control 
than the dispersion in the FOPID control, and these results suggest that the OBILI control can respond more 
robustly to the parametric perturbation of the system model. The ISE performance distributions in Figure 15 
confirm these results. Table 3 lists ISE performance statistics of the control systems for 100 randomly perturbed 
plant models and verifies the contributions of the proposed OBILI control to the improvement of robust control 
performance.  Figure 16 shows the convergence of the average ISE of both control systems during the Monte Carlo 
simulation. 
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Figure 14. Unit step responses of the proposed OBILI controller and the optimal FOPID controller for all randomly perturbed 

versions of the heating furnace model 
 

Table 3.Comparisons of ISE performance statistics for the proposed OBILI control system and Zhao et al.’s optimal FOPID 
control system 

ISE Statistics FOPID Control System  The proposed OBILI Control System 
Mean value of ISE 124.07 28.29 
Standard deviation of ISE  27.02 7.20 
Maximum value of ISE 208.56 50.07 
Minimum value of ISE 85.03 17.31 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15. ISE performances of both control systems for 100 randomly perturbed versions of the heating furnace model 
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Figure 16. Convergence of average ISE performances of both control systems for all randomly perturbed versions of the 

heating furnace model from Monte Carlo simulation 

 
4. Discussions and Conclusions 
 
The fractional order control topic has come up with a robust control performance paradigm (Manabe, 1960). Loop 
shaping design methodologies based on Bode’s ideal loop contribute to this paradigm. Although it has been used 
as a reference model in controller design to improve performance robustness, a detailed investigation of Bode’s 
ideal loop itself is quite limited. In this fashion, we aim to revisit Bode’s ideal loops in this study. After briefly 
surveying the role of Bode’s ideal loops in the system design, the control optimality of Bode’s ideal loop reference 
models was discussed. The author revealed a sufficient control optimality condition for closed-loop Bode’s ideal 
loops by numerically solving the stated ISE optimization problem. The numerical solution of this optimization 
problem indicated that the fractional order value of 1 (𝛼∗ = 1 ) and the highest possible value of the crossover 
frequency parameter (ideally 𝜔𝑐

∗ → ∞) can enhance the ISE optimality of Bode’s ideal loops. These findings are 
significant for controller design because of suggesting improvement in both performance robustness and the ISE 
optimality in the loop shaping controller design. 
 
This study elaborated two assets of Bode’s ideal loops for control system design practice: (i) performance 
robustness for gain variations and (ii) the ISE optimality. On the other hand, analysis results indicate an important 
performance limitation of control systems, that is, in order to improve the ISE control performance, maximization 
of the crossover frequency is required in Bode’s ideal loop-based control system designs. This result confirms 
Åström’s conjecture that suggests the crossover frequency of real systems as a limitation for control performance 
(Åström, 2000). The current study demonstrated the underlying mechanism of this limitation in relation with the 
optimality of Bode’s ideal loops. We also conclude that an ideally optimal design with zero ISE requires an infinite 
bandwidth system due to the condition of 𝜔𝑐

∗ → ∞. In reality; the finite crossover frequency nature of real-world 
systems introduces a physical limitation for the ISE optimality of the Bode’s ideal loop-based control system 
designs. 
 
Realization of fractional order elements is possible by using approximate equivalent models today.  OBILI 
controller models for the non-minimum phase plant are instable because of occurrence of poles in right-side of s-
domain, and this may lead to realization complications. Due to practical design concerns, we addressed a generic 
type of OBILI controller for the closed-loop control of a class of fractional order minimum phase plant models with 
n-fractional order denominator elements. This generic fractional-order controller structure allows matching with 
frequency response characteristics of Bode’s ideal loops and possesses all frequency domain properties of Bode’s 
ideal loop reference model. Furthermore, the optimal Bode’s ideal loop reference model also makes an important 
practical contribution to optimal and robust loop shaping controller design methodologies. Essentially, the OBILI 
control design scheme reduces the need for solving optimization problems for optimal tuning of controller 
coefficients. Rather, the OBILI control design scheme can provide very effective generic fractional order controller 
solutions, particularly for minimum phase processes. To demonstrate these design improvements, the OBILI 
controller design scheme was illustrated for the closed-loop control of the fractional order heat furnace system 
model, and control performance improvements in terms of the ISE optimality and the robustness against 
parametric perturbation were verified by using Monte Carlo simulation for statistical analyses of performance 
robustness. Future works can address OBILI controllers for the non-minimum phase plant model and their 
realization problems. 
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Appendix: 
 
A Matlab code for the numerical calculation of Eqn. 11 is given below. 
 
 
 
 
 
 
 
 
 
 

% Matlab code for the numerical calculation of Eqn. 11 
wc=100; % Crossover frequency 
alpha=1; % Fractional order 
% Matlab codes for Eq.11 
fw=@(w,wc,alpha) (abs((1./(1+(wc./(sqrt(-1).*w)).^alpha)).*(1./(sqrt(-1).*w))).^2); 
% Numerical integral calculation 
E=(1/(2*pi))*integral(@(w) fw(w,wc,alpha),-1e+10,1e+10) 


