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• This paper focuses on the comparison of time functions in the extended Cox regression model. 
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• All computations are carried out by using R.  
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Abstract 

Extended Cox regression model by using any form of time function is one of the alternative 

methods to the Cox regression model in non-proportional hazards case or time-dependent 

covariate problem. It is a key concern which time function should be used in which case for an 

extended Cox regression model. In this study, a comparison of the most commonly used time 

functions for the extended Cox regression model to obtain the effects of variables not satisfying 

the proportional hazard assumption is carried out. This simulation study assesses the ability of 

the time functions for the extended Cox regression model in modeling non-proportional hazards 

according to sample sizes, censoring rate, and prevalence ratio of the binary covariate. The results 

indicate that the linear time function (t) is more biased than the logarithmic time function (log(t)), 

which is a frequently used time function in modeling the hazard ratio. Also, it is shown that the 

use of time function 1/t has better results in most situations. 
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1. INTRODUCTION 

 

Cox regression model (CRM) is the most commonly used model to analyze survival data or time to event 

data [1]. The advantages of the model are that there is no assumption about the shape of the underlying 

hazard function and relative effects can be directly estimated. But with these advantages of the model, CRM 

has a fundamental assumption of proportional hazard (PH) which requires a constant hazard ratio over time 

with different covariate levels. CRM cannot be used if the covariate does not satisfy the PH assumption [2, 

3]. The violation of the PH assumption causes biased parameter estimations [4]. One of the alternative 

methods that carry out the non-proportionality problem is extended CRM. The model can be used to check 

the PH assumption as well as for obtaining a hazard ratio formula that considers the effects of variables not 

satisfying the PH assumption [5]. Extended CRM extends to a model that contains non-proportional 

covariates and the multiplication of these covariates with time or a function of time. That is, if the ith non-

proportional covariate is denoted as Xi, then we can define the ith product term as Xigi(t) where gi(t) is a 

function of time for the ith variable. One difficulty with this approach is which time function g(t) to use is 

more suitable. A lot of form of g(t) was used in the literature to analyze such data. That is the main reason 

for the choice of topic in this article, to try to find some better guidelines for the researchers. One of the 

most common choices for the g(t) is to get the multiplication of the covariate or covariates with time, g(t) 

= t [5, 6]. This implies that for each Xi in the model as a main effect, there is a corresponding time-dependent 

variable in the model of the form Xi × t. Another most used choice for the g(t) is the log of t [5, 6]. Also, 

numerous forms of time functions can be used. Sauerbrei et al. [7] and Persson and Khamis [8] used some 

other function of time to assess PH assumption with extended CRM in their study. We take into 

consideration t, log(t), square root of t, t square, exp(t), and 1/t as the form of time function in this study.  
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There are several studies that involve time-dependent covariates in survival analysis. Some of them can be 

listed as follows:  

 

Chai and Sun [9] study over Kernel-weighted local linear estimation approach to achieve a more flexible 

model for time-dependent covariates. The performance of their approach is tested through simulation 

studies and real data applications and the results show that more accurate and reliable time-varying effects 

are achieved.  

 

Platt et al. [10] study CRM with time-dependent covariate and time varying effects of fetal and infant death 

via a real data example and a simulation study.  It is shown that the effects of certain risk factors may not 

remain constant over time especially in the prenatal and postnatal periods. The proposed method explains 

the effects of factors on fetal and infant deaths over time more accurately. 

 

Wang [11] studies CRM with unknown link function and time-dependent covariate. This approach helps to 

model situations where the coefficients and the link function can depend on both observed variables and 

time. The semi-parametric and the profile likelihood approach is used to estimate the coefficients. The 

results point out that wrong determination of the link function can create biases in the estimations. 

 

Sparling et al. [12] study parametric survival model for interval censored data with time-dependent 

covariate. It is emphasized that complex survival structures involving time-dependent variables and interval 

censoring together increases modeling accuracy. 

 

Zhang and Huang [13] study nonparametric survival analysis on time-dependent covariate effects in case-

cohort sampling design. They state that the suggested method based on non-parametric approach capture 

the effects of covariates vary over time flexibly. 

 

Kremers [14] studies concordance for survival time data with fixed and time-dependent covariates. They 

examine the definition and calculation of concordance index that is an important criterion used to evaluate 

the prediction accuracy of the model for the time-dependent covariates in a data with tied survival times. 

 

Heinze and Dunkler [15] study how to avoid infinite estimates of time-dependent effects in small-sample 

survival studies. They recommend alternative statistical methods such as penalized regression techniques 

to avoid the problem of overestimation of coefficients and unstable model in case of small number of events. 

 

Bower et al. [16] examines time-dependent effects in flexible parametric survival models.  The study 

reveals that flexible parametric models depend on spline-based methods outperform classical methods in 

accurately capturing time-dependent effects. Also, their findings suggest that there is a reduction in biases 

of survival function. 

 

Therneau et al. [17] study the time dependent covariates and coefficients in CRM in R. They examine how 

time-dependent covariates and time-dependent coefficients can be modelled within the CRM by using the 

counting process and start-stop data structures. 

 

Husain et al. [18] model the factors that affect the survival time and rate of cure of breast cancer patients 

with the time function t. They showed that the degree of malignancy of the tumor has a significant effect 

on the survival time of patients. 

 

Wu and Li [19] offer a flexible and effective joint analysis of multivariate interval-censored survival data 

and time-dependent covariates. Model parameters were obtained by the EM algorithm and the inferences 

for finite-dimensional parameters were made using the bootstrap method. Simulation studies have shown 

that model fit and inference approaches perform well under different sample sizes. 

 

Suresh et al. [20] study a copula-based approach for dynamic prediction of survival with a binary time-

dependent covariate. Their method allows specifying flexible models for marginal distributions and 

evaluating the fit of these models. The prediction performance of the proposed approach is compared with 
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joint modeling and landmarking methods through simulations and a real prostate cancer data set. The results 

demonstrate the flexibility and effectiveness of the copula-based method. 

 

Austin et al. [21] examine the effects of time-varying covariates in Cox regression using fractional 

polynomials and restricted cubic splines. They used these methods to allow a regression coefficient to vary 

as a flexible function of time as an alternative to Cox regression model with time-dependent covariates.  

 

Geraili et al. [22] evaluate the time-varying biomarkers in mortality outcome of 1641 COVID-19 patients 

in Iranian with extended CRM using t and log(t) time functions. The study also emphasizes that monitoring 

biomarkers that change over time has an importance in interpreting disease severity and risk of death. Their 

findings suggest that the extended CRM framework provides more accurate and reliable results in the 

presence of non-proportional hazards, aligning with our study’s objective of comparing different time 

functions. 

 

Maharela et al. [23] compare the performance of the stratified and extended CRMs under varying censoring 

rates, sample sizes, and survival distributions. They found that the extended CRM outperformed other 

models under every combination of censoring, sample size and survival distribution. However, they did not 

specify the time function used in their extended model, which further motivates our study to systematically 

evaluate the effects of different time functions in extended Cox regression.  

 

The choice of time function is important in such studies and this situation supports the purpose of our study 

since time-dependent covariate is currently studied. Previous studies have examined time-dependent 

covariates, but not all have explicitly considered the choice of time functions. The choice of time function 

is crucial in survival studies involving time-dependent covariates, as previous literature has often 

overlooked or not clearly addressed the impact of selecting different time functions. This gap directly 

supports the purpose of our study, which focuses on the comparison of time functions in extended Cox 

regression models. In addition, researchers often prefer the extended CRM with the log(t) or t time function, 

and the Extended CRM with the 1/t time function is a form that researchers are not accustomed to. Most of 

the studies in the literature include applications for only one data set. In addition, to our knowledge, there 

is no study including how the time function should be selected according to sample size or censoring rate. 

In general, there are studies that suggest usage of alternative regression type model. By integrating insights 

from existing literature and applying them to our research context, we contribute to a more comprehensive 

understanding of how time functions influence the reliability of survival estimates. Since survival analysis 

is widely used by practitioners in different fields, our study was conducted to help them to choose of the 

correct time function.   

 

The objective of this paper was to examine which time function is preferred to get a less biased estimator 

when fitting an extended CRM. A simulation study was run to evaluate the behavior of time functions in 

different sample sizes, censoring rates, and prevalence ratio of binary covariates. The rest of the paper is 

organized as follows. In section 2, we define the methods and notations. In section 3, we evaluate the used 

models' performances through simulation studies. In section 4, we make comparisons by analyzing three 

different real datasets. In section 5, we summarize our findings.  

 

2. COX REGRESSION MODEL 

 

One of the most applicable and used models in survival analysis to evaluate the effects of covariates is 

CRM also sometimes abbreviated to the Cox model or proportional hazards model. According to the CRM, 

the hazard function is given as follows: 

 

h(t, 𝐗) = h0(t)exp (∑ βk
p

k=1
Xk) 

 

where h0(t) is the baseline hazard function at that time, X represents the covariates vector and β is a 1 × p 

vector of regression parameters. Coefficient vectors of the covariates are estimated using a maximum 
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likelihood (ML) procedure [1, 24]. ML estimates are obtained by maximizing the partial likelihood 

function, which is expressed as follows:  

 

𝐿𝑖(𝜷) =∏ (
exp⁡(∑ βk

p
k=1 Xk)

∑ exp⁡(∑ βk
p
k=1 Xk)𝑗∈𝑅(𝑇𝑖)

)

𝛿𝑖𝑛

𝑖=1
 

 

where R(Ti) is the risk set (all individuals still at risk at time Ti), and 𝛿𝑖 is the event indicator for individual 

i. PH assumption is a key assumption of CRM.  The meaning of the PH assumption is that the ratio of the 

hazard function of one covariate level over another covariate level is constant, and not affected by time. If 

the PH assumption is not met, the CRM is not appropriate. In some cases, covariates may not meet the 

assumption of proportional hazards, and some alternative models are suggested. Extended CRM is one of 

these alternatives. 

 

2.1. Extended Cox Regression Model 

 

CRM extends to a model which contains non-proportional covariates and the multiplication of these 

covariates with a function of time. The extended CRM is defined as follows, 

 

h(t, X(t)) = h0(t)exp (∑ βk
𝑝
k=1 Xk + ∑ γk

p
k=1 Xkgk(t))  

 

where gk(t) is a specified function of time for covariate 𝑋𝑘. This general form allows each covariate to have 

both a time-invariant effect βk and a time-varying component γkgk(t). To reflect the PH assumption for some 

covariates, the model can be restructured by partitioning the covariates into two groups: 

 

h(t, X(t)) = h0(t)exp (∑ βℓ
p1
ℓ=1 Xℓ + ∑ βk

p2
k=p1+1

Xk + ∑ γk
p2
k=p1+1

Xkgk(t))  

 

where p1 denotes the number of covariates which meet the PH assumption and p2=p-p1 denotes the number 

of covariates which does not meet the PH assumption [5, 6].  

 

This is sometimes referred to as the time-varying coefficient model. Likelihood function of extended CRM 

is expressed as follows: 

 

𝐿𝑖(𝜷) =∏ (
exp⁡(∑ βℓ

p1
ℓ=1 Xℓ +∑ βk

p2
k=p1+1

Xk + ∑ γk
p2
k=p1+1

Xkgk(t))

∑ exp⁡(∑ βℓ
p1
ℓ=1 Xℓ + ∑ βk

p2
k=p1+1

Xk + ∑ γk
p2
k=p1+1

Xkgk(t))𝑗∈𝑅(𝑇𝑖)

)

𝛿𝑖
𝑛

𝑖=1
 

 

where R(Ti) is the risk set, and 𝛿𝑖 is the event indicator for individual i. As with the simpler CRM, an ML 

procedure is used to estimate the regression coefficients in the extended CRM. ML estimates are obtained 

by maximizing the partial likelihood function. The likelihood function of the extended CRM is maximized 

using the Newton-Raphson algorithm. This method iteratively updates parameter estimates by computing 

the gradient and Hessian of the likelihood function until convergence. For this method, the critical decision 

is to determine the form of the time function. t and log(t) are usually used for the time function g(t) and also 

the square root of t (√t), t square (t2), and exp(t) are some other functions used for the same purpose. Also, 

we used 1/t as a time function in the simulation study, motivated by its inclusion in fractional polynomial 

approaches for modeling time-varying effects in Cox regression [21]. 

 

3. SIMULATION STUDIES 

 

We used the simulation procedure of Schemper [25] and Ata and Demirhan [26] to generate non-

proportional survival data. x1 and x2 are two 0/1 coded covariates and generated from Bernoulli(p) for four 

different prevalence of the binary covariates (p= 20, 40, 60 and 80 percent). We specified that two 

covariates have equal prevalence ratios. Survival times were generated from Weibull (α; γ) distribution and 

the setting of α and γ is chosen to define non-proportional hazards for x1 and proportional hazards for x2. 
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The shape parameters γ were taken as 1 for x1=0 and as 3 for x1=1, defining non-proportional hazards for 

x1. The shape parameters α were taken as 0.8 for x1=0 and x2=0, as 1.5 for x1=1 and x2=0, as 2.2 for x1=0 

and x2=1, and as 4.125 for x1=1 and x2=1. This configuration ensures that x1 affects the time-dependence 

of the hazard (via changes in γ), while x2 influences the baseline scale without altering the time-dependence, 

thereby preserving proportional hazards for x2. Population regression parameters were taken as 0.7 for x1 

and 1.4 for x2. The study of Persson and Khamis [27] was used to generate censoring times and determine 

the censored observations. Censoring times were drawn from the uniform distribution U(0, T) where T was 

determined to achieve the desired censoring rate. It was checked while the simulation code was carried out 

that observed censoring rates were in the range of ± 0.05 of the desired censoring rates. All computations 

were carried out by using the coxph() function in the R package survival [17]. 

 

We would like to study the effect of the censoring rates, sample sizes, and prevalence of the binary covariate 

on the beta estimates obtained from the models.  Understanding how censoring rates, sample sizes, and the 

prevalence of the binary covariate affect beta estimates is crucial for ensuring the reliability of survival 

models. In real-world applications, survival data often include a high proportion of censored observations, 

which can impact the accuracy and stability of parameter estimates. Our study provides insights into how 

different levels of censoring influence model performance, helping researchers anticipate potential biases 

in their analyses. Additionally, sample size plays a key role in statistical inference, and our findings 

highlight how variations in sample size affect the precision of beta estimates. This is particularly relevant 

for studies with limited data, such as clinical trials with small patient cohorts or rare disease studies, where 

selecting an appropriate time function is critical to obtaining valid results. The prevalence of the binary 

covariate is another important factor, as imbalanced distributions can lead to issues such as estimation 

instability or reduced statistical power. Our study explores these effects, offering guidance on how 

researchers should interpret results when dealing with unevenly distributed covariates. By systematically 

evaluating these factors in a controlled simulation setting, our findings provide practical recommendations 

for researchers conducting survival analysis. This helps improve model selection and enhances the 

robustness of statistical conclusions in applied research. The comparison was carried out under three 

different censorship levels (that is, c=10, 30, and 60 percent), using four different sample sizes (n=30, 50, 

100, and 1000) and for four different prevalence of the binary covariates (p= 20, 40, 60 and 80 percent). It 

was generated 1000 samples for each scenario. We compared the results of extended CRM with the time 

functions t, log(t), √t, t2, and exp(t). In addition to the most used time functions in literature, the use of time 

function 1/t was also examined. The mean square error (MSE) and the mean absolute bias (MAE) values 

were obtained to compare the performance of the time functions examined in the simulation study. The 

MSE was calculated as the average of the squared differences between actual and predicted values of 

parameters and the MAE was defined as the average of the absolute difference between actual and predicted 

values of parameters, across all simulation scenarios. The MSE and the MAE results were reported in Table 

1 and 2, respectively. Additionally, the log-likelihood values for extended CRMs with six different time 

functions were calculated for each scenario. These log-likelihood values were then ranked, and the 

proportions of each model providing the maximum log-likelihood value across 1000 repetitions were 

reported in Table 3. This approach allows for the identification of the model with the best fit, based on the 

time function that provides the maximum log-likelihood value, as a higher log-likelihood indicates a better 

fit to the data.  
 

Table 1 shows the MSE results across simulation scenarios. For the sample size 30 with 10% and 30% 

censoring rate, minimum MSE is obtained in 40%, 60%, and 80% prevalence ratio by using the time 

function 1/t for the non-proportional covariate. The same result is also obtained for sample size 30 with 

60% and 80% prevalence ratio of 60% censoring rates in extended CRM with the time function 1/t for non-

proportional covariate. Minimum MSE is calculated with time function log(t) for all remaining cases of 

sample size 30. The function 1/t shows a good performance for the sample size 50, except for 30% and 60% 

censoring rates with 20% prevalence ratios and 60% censoring rate with 40% prevalence ratio. The 

estimations with time function log(t) have better results in the exceptional cases of sample size 50 for non-

proportional covariate. The time function 1/t is not a usual function for the extended CRM but it performs 

well than the all functions used in all other cases, except for the sample size 100 at 60% censoring rate with 

20% prevalence ratio, for non-proportional covariate in large sample sizes. In the exceptional case of a 
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sample size of 100 with a 60% censoring rate and a 20% prevalence ratio, the extended CRM with the time 

function log(t) yields the lowest MSE for the non-proportional covariate. 

 

Table 2 presents the MAE results of the scenarios. Similar results with MSE are obtained in terms of MAE 

with exception of a few differences for the non-proportional covariate. The estimations with time function 

log(t) for the non-proportional covariate have better results in the all censoring rates of sample size 30 for 

the smallest prevalence ratio. Also log(t) performs well at the high censoring and smallest prevalence ratio 

in terms of MAE for sample size 50. In all remaining scenarios, the extended CRM with the time function 

1/t have the smallest MAE value for non-proportional covariate.  

 

In all scenarios, g(t)=√t has the largest bias than the other methods in terms of MSE and MAE for non-

proportional covariate but approximate results for proportional covariate within the other models. It is also 

obtained a decreasing bias with increasing sample size for g(t)=t2 within the non-proportional covariate but 

not the minimum MSE or MAE across models. In all scenarios, more bias is obtained from the extended 

CRM with time function t when we compare to log(t) and 1/t when estimating the effect of the non-

proportional covariate. 

 

On the other hand, all methods have approximate results for proportional covariate (β2) in all scenarios in 

terms of both MSE and MAE. 

 

Table 3 shows the percentages of fitting using log-likelihood across simulations. It is seen that the 

proportion of the extended CRM with 1/t time function is the highest for all censoring and prevalence ratios 

and varies between 0.529 and 0.80 for the sample sizes 30, 50, and 100. Moreover, a pattern that higher 

censoring rates reduce the proportion of fit to the 1/t time function, especially under high prevalence 

conditions, is also evident in our findings. Increasing the sample size from 30 to 100 leads to a higher 

proportion of fitting for the extended CRM with the 1/t time function at 0.60 censoring rate. However, for 

a sample size of 1000, it is concluded that extended CRM with the 1/t time function provided the best model 

above 70% for prevalence ratios of 0.20 and 0.40 in all censoring rates. On the other hand, for prevalence 

ratio of 0.80, extended CRM with the log(t) time function provide the highest rate of fitting in all censoring 

rates and also the proportion of fitting decreased as the censoring increased. For the 0.60 prevalence ratio 

of 1000 sample size, while log(t) at 0.10 and 0.30 censor rates provide the highest rate of fitting, and at 0.60 

censor rate extended CRM with 1/t provide a higher rate of fitting. Also, in very large sample size scenarios, 

the extended CRM with t, √t, t2, and exp(t) provide the fit very few or never. Although the extended CRM 

with time function 1/t achieve the lowest MSE and MAE for the all scenarios of 1000 sample size across 

simulation replications, its fitting proportion remains relatively low for some exceptions. This suggests that 

while the model offers stable and consistently accurate estimates, it is not always the best performer for 

sample size 1000. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Hatice ISIK, Nihal ATA TUTKUN, Duru KARASOY/ GU J Sci, 38(4): x-x (2025) 

 

Table 1. MSE Results for Extended CRM with Different Time Functions and Simulation Settings  
 

 β1 β2  
c p t log(t) 1/t √t t2 exp(t) t log(t) 1/t √t t2 exp(t) 

n=30 

10% 

20% 15.69 2.64 6.67 46.79 6.88 11.92 8.00 8.00 7.97 8.01 7.96 7.93 

40% 9.85 4.39 2.00 24.59 5.19 5.51 10.45 10.67 10.97 10.57 10.24 10.08 

60% 10.98 5.32 1.61 24.10 6.47 6.19 13.10 12.88 12.58 13.03 13.04 12.76 

80% 17.72 10.13 3.81 38.65 10.49 9.96 18.97 19.76 21.42 19.40 18.31 17.47 

30% 

20% 25.86 4.08 13.26 81.27 10.67 21.83 8.35 8.41 8.41 8.39 8.36 8.35 

40% 13.37 4.17 3.38 33.14 7.29 9.84 10.60 10.36 10.22 10.48 10.75 10.76 

60% 16.00 6.52 2.98 35.86 9.43 11.52 13.71 13.35 13.02 13.55 13.78 13.61 

80% 24.84 12.29 6.32 57.42 14.40 16.74 20.08 20.69 22.31 20.39 19.65 19.21 

60% 

20% 40.74 4.61 23.95 134.76 15.36 58.71 7.05 6.84 6.76 6.93 7.36 7.25 

40% 24.10 5.37 8.34 64.79 12.19 25.70 10.12 9.85 9.82 9.97 10.35 10.30 

60% 27.74 7.65 7.10 66.30 15.97 26.69 13.94 13.25 12.88 13.58 14.42 14.25 

80% 46.67 14.57 11.02 110.68 27.11 41.34 23.82 23.44 23.64 23.70 24.03 23.48 

n=50 

10% 

20% 9.36 2.15 2.14 25.00 4.57 6.03 7.76 7.75 7.68 7.77 7.70 7.64 

40% 7.03 2.92 0.65 16.18 3.98 3.64 9.47 9.40 9.28 9.45 9.43 9.36 

60% 8.60 4.23 0.72 18.55 5.08 4.28 11.98 11.83 11.60 11.93 11.93 11.71 

80% 14.79 7.91 1.78 31.64 8.49 7.27 17.03 17.17 16.76 17.20 16.50 15.90 

30% 

20% 16.46 2.82 6.36 47.78 7.45 12.68 7.90 7.82 7.80 7.86 7.97 7.99 

40% 9.43 3.37 1.16 21.28 5.46 5.99 9.78 9.58 9.46 9.68 9.90 9.91 

60% 11.21 4.82 1.23 23.35 6.88 6.95 12.26 11.98 11.72 12.14 12.34 12.22 

80% 18.57 8.96 2.65 39.20 11.07 11.46 17.63 17.81 17.63 17.79 17.13 16.66 

60% 

20% 39.59 4.10 21.25 127.22 15.66 44.57 8.05 7.87 7.82 7.95 8.27 8.25 

40% 21.51 4.88 5.29 54.22 11.54 21.22 9.96 9.75 9.73 9.84 10.19 10.12 

60% 20.66 6.12 3.88 46.86 12.23 18.61 11.86 11.53 11.32 11.70 12.07 12.07 

80% 31.33 10.07 7.24 71.62 18.53 27.93 17.72 17.63 17.78 17.68 17.64 17.46 

n=100 

10% 

20% 6.42 1.92 0.66 16.30 3.26 3.21 7.62 7.61 7.50 7.64 7.50 7.40 

40% 5.98 2.60 0.29 13.82 3.34 2.73 9.03 9.05 8.95 9.07 8.90 8.76 

60% 7.66 3.75 0.38 16.84 4.38 3.30 11.35 11.29 11.10 11.35 11.24 10.98 

80% 11.66 6.12 0.70 24.99 6.58 4.80 15.12 15.05 14.75 15.14 14.86 14.38 

30% 

20% 8.73 2.12 1.01 21.51 4.56 5.50 7.57 7.50 7.48 7.53 7.62 7.64 

40% 7.68 2.91 0.45 17.01 4.44 4.16 9.19 9.05 8.95 9.13 9.24 9.23 

60% 9.27 4.10 0.55 19.38 5.58 4.86 11.54 11.35 11.15 11.46 11.58 11.46 

80% 14.70 6.85 1.21 29.95 8.85 7.98 15.71 15.50 15.14 15.65 15.56 15.19 

60% 

20% 16.84 2.70 4.19 43.66 8.71 16.14 7.73 7.56 7.53 7.62 7.94 7.96 

40% 13.24 3.51 1.35 28.55 7.96 10.75 8.99 8.74 8.64 8.85 9.23 9.26 

60% 15.58 4.90 1.65 31.67 9.80 12.79 11.12 10.82 10.64 10.96 11.33 11.34 

80% 23.10 7.79 2.60 46.61 14.63 19.33 15.06 14.75 14.45 14.92 15.16 15.07 

n=1000 

10% 

20% 4.62 1.72 0.09 11.74 2.42 1.91 7.30 7.38 7.24 7.38 7.09 6.91 

40% 5.31 2.40 0.03 12.46 2.92 2.08 8.69 8.79 8.66 8.78 8.48 8.24 

60% 6.73 3.33 0.04 15.26 3.69 2.33 10.59 10.70 10.57 10.68 10.35 10.08 

80% 9.56 5.00 0.07 21.25 5.11 2.82 13.56 13.65 13.50 13.64 13.32 13.00 

30% 

20% 5.79 1.88 0.06 14.03 3.08 2.55 7.43 7.36 7.31 7.40 7.44 7.42 

40% 6.56 2.66 0.09 14.49 3.77 2.98 8.94 8.85 8.75 8.90 8.94 8.87 

60% 8.30 3.68 0.17 17.56 4.86 3.66 10.92 10.81 10.67 10.88 10.89 10.76 

80% 11.74 5.39 0.29 24.25 6.83 4.88 13.83 13.71 13.51 13.79 13.77 13.54 

60% 

20% 9.41 2.16 0.23 20.32 5.42 6.04 7.33 7.12 7.11 7.19 7.63 7.72 

40% 10.17 3.17 0.57 20.07 6.36 6.83 8.79 8.53 8.45 8.64 9.05 9.11 

60% 12.26 4.37 1.02 23.01 7.96 8.49 10.58 10.31 10.16 10.44 10.80 10.83 

80% 16.47 6.09 1.44 30.41 10.75 11.59 13.31 13.03 12.82 13.17 13.48 13.48 

n: sample size, c: censoring rate, p: prevalence ratio, β1: regression coefficient for the non-proportional covariate, β2: regression 

coefficient for the proportional covariate 
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Table 2. MAE Results for Extended CRM with Different Time Functions and Simulation Settings  

  β1 β2  
c p t log(t) 1/t √t t2 exp(t) t log(t) 1/t √t t2 exp(t) 

n=30 

10% 

20% 3.42 1.44 1.62 5.59 2.38 2.90 2.73 2.74 2.73 2.74 2.72 2.72 

40% 2.81 1.76 0.97 4.26 2.11 2.11 3.11 3.11 3.10 3.11 3.10 3.09 

60% 3.04 2.15 0.92 4.41 2.36 2.22 3.53 3.51 3.47 3.53 3.52 3.49 

80% 3.78 2.92 1.46 5.47 2.89 2.67 4.24 4.30 4.35 4.28 4.16 4.08 

30% 

20% 4.06 1.64 2.03 6.60 2.84 3.70 2.76 2.76 2.76 2.76 2.76 2.76 

40% 3.26 1.86 1.22 4.87 2.49 2.72 3.16 3.13 3.11 3.14 3.18 3.18 

60% 3.57 2.34 1.27 5.14 2.80 2.90 3.58 3.54 3.50 3.56 3.59 3.57 

80% 4.25 3.03 1.64 6.17 3.27 3.30 4.29 4.34 4.39 4.32 4.23 4.17 

60% 

20% 4.57 1.56 2.49 7.51 3.15 5.16 2.53 2.50 2.49 2.51 2.56 2.55 

40% 4.04 2.02 1.75 6.02 3.10 3.96 3.03 2.99 2.98 3.01 3.06 3.05 

60% 4.38 2.49 1.76 6.26 3.50 4.16 3.50 3.44 3.41 3.47 3.54 3.53 

80% 5.25 3.25 2.32 7.58 4.16 4.83 4.29 4.30 4.31 4.30 4.29 4.26 

n=50 

10% 

20% 2.85 1.37 0.99 4.52 2.03 2.22 2.73 2.73 2.71 2.73 2.71 2.70 

40% 2.56 1.65 0.61 3.85 1.93 1.83 3.04 3.03 3.01 3.04 3.03 3.01 

60% 2.82 1.99 0.68 4.12 2.17 1.96 3.42 3.40 3.37 3.41 3.41 3.38 

80% 3.61 2.66 1.03 5.23 2.73 2.42 4.06 4.07 4.02 4.07 4.00 3.93 

30% 

20% 3.51 1.48 1.43 5.60 2.50 3.03 2.73 2.72 2.72 2.73 2.74 2.74 

40% 2.93 1.76 0.81 4.32 2.25 2.29 3.08 3.05 3.03 3.06 3.09 3.09 

60% 3.21 2.11 0.88 4.57 2.52 2.47 3.44 3.41 3.38 3.43 3.45 3.44 

80% 4.00 2.81 1.26 5.70 3.11 3.03 4.11 4.11 4.08 4.12 4.06 4.01 

60% 

20% 4.67 1.60 2.26 7.54 3.29 4.77 2.72 2.70 2.69 2.71 2.75 2.75 

40% 4.04 1.95 1.48 5.99 3.12 3.85 3.04 3.01 2.99 3.03 3.08 3.07 

60% 4.11 2.32 1.41 5.82 3.28 3.80 3.36 3.32 3.29 3.34 3.38 3.38 

80% 4.92 2.93 1.86 6.97 3.92 4.50 4.04 4.02 4.00 4.03 4.03 4.01 

n=100 

10% 

20% 2.46 1.35 0.61 3.88 1.77 1.72 2.74 2.74 2.72 2.74 2.72 2.70 

40% 2.41 1.59 0.43 3.65 1.81 1.63 2.99 2.99 2.98 3.00 2.97 2.94 

60% 2.72 1.91 0.48 4.03 2.06 1.78 3.35 3.34 3.32 3.35 3.33 3.29 

80% 3.32 2.41 0.65 4.85 2.49 2.08 3.86 3.85 3.81 3.86 3.83 3.77 

30% 

20% 2.84 1.41 0.73 4.39 2.07 2.20 2.72 2.71 2.70 2.71 2.73 2.73 

40% 2.72 1.68 0.53 4.02 2.07 1.99 3.01 2.99 2.97 3.00 3.02 3.02 

60% 2.99 1.99 0.60 4.30 2.32 2.15 3.37 3.35 3.32 3.36 3.38 3.36 

80% 3.71 2.55 0.87 5.25 2.88 2.67 3.93 3.90 3.86 3.92 3.91 3.87 

60% 

20% 3.71 1.49 1.27 5.65 2.77 3.49 2.72 2.69 2.69 2.70 2.76 2.76 

40% 3.51 1.81 0.90 5.05 2.75 3.09 2.96 2.92 2.91 2.94 3.00 3.01 

60% 3.80 2.15 1.05 5.31 3.05 3.37 3.30 3.25 3.23 3.28 3.33 3.33 

80% 4.59 2.69 1.32 6.36 3.69 4.11 3.82 3.78 3.75 3.80 3.83 3.82 

n=1000 

10% 

20% 2.15 1.31 0.25 3.42 1.55 1.38 2.70 2.71 2.69 2.72 2.66 2.63 

40% 2.30 1.55 0.13 3.52 1.71 1.44 2.95 2.96 2.94 2.96 2.91 2.87 

60% 2.59 1.82 0.16 3.90 1.92 1.52 3.25 3.27 3.25 3.27 3.22 3.17 

80% 3.08 2.23 0.21 4.60 2.25 1.67 3.68 3.69 3.67 3.69 3.65 3.60 

30% 

20% 2.40 1.37 0.20 3.73 1.75 1.59 2.72 2.71 2.70 2.72 2.73 2.72 

40% 2.56 1.63 0.25 3.80 1.94 1.72 2.99 2.97 2.96 2.98 2.99 2.98 

60% 2.88 1.92 0.37 4.18 2.20 1.91 3.30 3.29 3.26 3.30 3.30 3.28 

80% 3.42 2.32 0.47 4.91 2.61 2.20 3.72 3.70 3.67 3.71 3.71 3.68 

60% 

20% 3.06 1.46 0.38 4.49 2.32 2.45 2.70 2.66 2.66 2.68 2.76 2.77 

40% 3.18 1.78 0.70 4.46 2.52 2.61 2.96 2.92 2.90 2.94 3.00 3.01 

60% 3.49 2.09 0.97 4.78 2.82 2.91 3.25 3.21 3.18 3.23 3.28 3.29 

80% 4.05 2.46 1.15 5.49 3.27 3.39 3.64 3.61 3.58 3.63 3.67 3.67 

n: sample size, c: censoring rate, p: prevalence ratio, β1: regression coefficient for the non-proportional covariate, β2: regression 

coefficient for the proportional covariate 
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Table 3. Percentages of Fitting Based on Time Functions Across Simulation Scenarios  

  Time functions  Time functions  
c p t log(t) 1/t √t t2 exp(t)  c p t log(t) 1/t √t t2 exp(t) 

n=30 

10% 

20% 0.018 0.060 0.725 0.041 0.014 0.142  

10% 

20% 0.018 0.060 0.725 0.041 0.014 0.142 

40% 0.013 0.091 0.762 0.051 0.009 0.074 

n=100 

40% 0.007 0.235 0.727 0.027 0 0.004 

60% 0.034 0.113 0.658 0.048 0.014 0.133 60% 0.011 0.298 0.619 0.058 0.005 0.009 

80% 0.027 0.100 0.647 0.046 0.042 0.138 80% 0.033 0.290 0.529 0.113 0.007 0.028 

30% 

20% 0.007 0.041 0.749 0.029 0.043 0.131 

30% 

20% 0.02 0.131 0.761 0.057 0.003 0.028 

40% 0.016 0.063 0.743 0.044 0.018 0.116 40% 0.011 0.206 0.725 0.044 0 0.014 

60% 0.022 0.084 0.672 0.035 0.025 0.162 60% 0.024 0.238 0.633 0.072 0.004 0.029 

80% 0.02 0.061 0.644 0.033 0.051 0.191 80% 0.044 0.213 0.551 0.103 0.013 0.076 

60% 

20% 0.004 0.022 0.795 0.016 0.103 0.06 

60% 

20% 0.012 0.061 0.798 0.033 0.017 0.079 

40% 0.011 0.042 0.711 0.024 0.085 0.127 40% 0.016 0.103 0.800 0.033 0.003 0.045 

60% 0.014 0.039 0.643 0.019 0.091 0.194 60% 0.025 0.114 0.687 0.069 0.011 0.094 

80% 0.014 0.037 0.555 0.022 0.126 0.246 80% 0.032 0.126 0.600 0.055 0.029 0.158 

n=50 

10% 

20% 0.022 0.114 0.746 0.034 0.007 0.077  

10% 

20% 0.022 0.114 0.746 0.034 0.007 0.077 

40% 0.015 0.150 0.746 0.042 0.003 0.044 

n=1000 

40% 0.015 0.150 0.746 0.042 0.003 0.044 

60% 0.026 0.172 0.671 0.076 0.005 0.05 60% 0 0.704 0.296 0 0 0 

80% 0.044 0.16 0.618 0.064 0.023 0.091 80% 0 0.904 0.075 0.021 0 0 

30% 

20% 0.022 0.077 0.762 0.035 0.013 0.091 

30% 

20% 0 0.165 0.835 0 0 0 

40% 0.021 0.097 0.756 0.055 0.005 0.066 40% 0 0.296 0.704 0 0 0 

60% 0.03 0.142 0.674 0.055 0.014 0.085 60% 0 0.592 0.408 0 0 0 

80% 0.035 0.107 0.637 0.063 0.025 0.133 80% 0 0.814 0.142 0.044 0 0 

60% 

20% 0.009 0.037 0.777 0.04 0.05 0.087 

60% 

20% 0 0.247 0.749 0.004 0 0 

40% 0.009 0.056 0.746 0.039 0.042 0.108 40% 0 0.255 0.745 0 0 0 

60% 0.006 0.048 0.710 0.027 0.041 0.168 60% 0 0.358 0.637 0.005 0 0 

80% 0.023 0.045 0.588 0.035 0.073 0.236 80% 0.004 0.579 0.346 0.071 0 0 

n: sample size, c: censoring rate, p: prevalence ratio 

 

4. DATA APPLICATIONS 

 

We used different data sets to see which time function is more suitable to analyze non-proportional hazards. 

The datasets used in this study were selected due to their relevance to the objectives of our research. 

Specifically, these datasets were chosen based on several factors: their sample sizes, censoring rates, and 

the inclusion of two binary explanatory variables. Models were run by using selected two binary covariates 

in which one is non-proportional and one is proportional in three of the data sets.  This allows us to explore 

how the extended Cox regression model handles both types of covariates, providing valuable insights into 

the model’s performance under different conditions. We used curve -log(-log) S(t) for all categories of the 

covariates and tested the Schoenfeld residuals to the examination of the PH assumptions. Data set 1 called 

as Anderson data was taken from Kleinbaum and Klein [5]. Survival times in weeks (in remission) of 42 

leukemia patients, of which 30% are censored, in a clinical trial to compare treatment with placebo in 

Anderson data. The covariate sex (1=male, 0=female) was taken as a non-proportional covariate and the 

treatment indicator (1=placebo, 0=treatment) was taken as a proportional covariate. The prevalence ratio is 

48% for the non-proportional covariate and 50% for the proportional covariate. Data set 2 called as 

melanoma data set was obtained from Andersen et al. [28]. Data set 2 consists of measurements made on 

patients with malignant melanoma. Each patient had their tumor removed by surgery at the Department of 

Plastic Surgery, University Hospital of Odense, Denmark during the period 1962 to 1977. The surgery 

consisted of the complete removal of the tumor together with about 2.5 cm of the surrounding skin. Survival 

time in days since the operation of 205 patients with malignant melanoma, of which 72% are censored. 

Patients, who are still alive or died from causes unrelated to their melanoma at the end of the follow-up 

period, are treated as censored observations. The covariate ulceration indicator (1=absent, 0=present) was 

taken as a non-proportional covariate, and sex (1=female, 0=male) was taken as a proportional covariate. 

Data set 3 was taken from Şafak and Tutkun [29]. Breastfeeding duration is taken into consideration in this 

study. Those who quit breastfeeding before 6 months were defined as failing, and those who continued to 

be breastfed for longer than 6 months were defined as censored. Failure time in months was the time elapsed 

between the time that babies started to be fed with breast milk and stopped feeding. 187 mothers who 

volunteered to participate were included in this study. 48% of the observations are censored.  The covariate 

birth week (1=(≥37 weeks), 0=(<37 weeks)) was taken as a non-proportional covariate, and 
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alcohol/smoking (1=yes, 0=no) was taken as a proportional covariate. Table 4 shows a summary of the 

covariates. We ran the naive CRM and all extended CRM with time functions taken into consideration in 

simulations for the three data sets. 

 

 Table 4. Summary of Data Sets 

Data Covariate n % 
Number of 

Event 

Number 

of Censor 

Censor 

Rate 

Data Set 1 
Sex (Non-proportional) 

1=Male 20 0.48 14 6 

30% 0=Female 22 0.52 16 6 

Treatment (Proportional) 
1=Placebo 21 0.50 21 0 

0=Treatment 21 0.50 9 12 

Data Set 2 
Ulcer (Non-proportional) 

1=Absent 115 0.56 16 99 

72% 0=Present 90 0.44 41 49 

Sex (Proportional) 
1=Female 126 0.61 28 98 

0=Male 79 0.39 29 50 

Data Set 3 
Birth week (Non-proportional) 

1= >=37 130 0.70 66 64 

48% 0= <37 57 0.30 32 25 

Alcohol/Smoking 

(Proportional) 

1=yes 46 0.25 34 12 

0=no 141 0.75 64 77 

 

Table 5 displays the results of the data sets described above. According to Akaike’s Information Criterion 

(AIC), the model with the lowest AIC value is the best model that can explain the data. Based on Table 5, 

the AIC values for the extended CRM with time function 1/t are lower than the considered models for all 

three data sets. Similar to the simulation results, we also obtain approximate parameter estimations for the 

proportional covariate in all data sets.  Thus, the extended models with time function 1/t are the best model 

based on the results of these data sets. 
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 Table 5. Results of Parameter Estimations for Real Data Sets with Different Time Functions 

Data Model b1 b2 g(t)*x1 Log-Likelihood LR AIC 

Data Set 1 

Naive Cox 
0.295 1.674*** 

- -84.769 - 173.539 
(0.424) (0.438) 

g(t)= t 
2.239** 1.430** -0.234** 

-79.859 9.822 165.718 
(0.827) (0.444) (0.085) 

g(t)= log(t) 
5.126** 1.366** -2.479** 

-77.919 13.701 161.839 
(1.832) (0.442) (0.861) 

g(t)=1/t 
-3.092* 1.345** 21.62** 

-76.908 15.725 159.815 
(1.22) (0.441) (8.246) 

g(t)=√t 
4.663** 1.391** -1.586** 

-78.794 11.953 163.587 
(1.589) (0.443) (0.542) 

g(t)=t2 
1.063* 1.515*** -0.008* 

-81.751 6.037 169.503 
(0.532) (0.443) (0.003) 

  g(t)=exp(t) 
0.389 

(0.429) 

1.644*** 

(0.440) 

-4.401  10-10 

(4.167  10-10) 
-84.249 1.040 174.497 

Data Set 2 

Naive Cox 
-1.418*** -0.517* 

- -267.120 - 538.239 
(0.297) (0.267) 

g(t)= t 
-2.340*** -0.502 0.246 

-265.691 2.858 537.382 
(0.661) (0.267) (0.150) 

g(t)= log(t) 
-2.834*** -0.495 1.191* 

-264.474 5.292 534.948 
(0.819) (0.267) (0.586) 

g(t)=1/t 
-0.035 -0.493 -4.04 

-263.630 6.980 533.260 
(0.712) (0.267) (2.196) 

g(t)=√t 
-3.564** -0.498 1.145 

-265.085 4.070 536.170 
(1.209) (0.267) (0.603) 

g(t)=t2 
-1.710*** -0.509 0.016 

-266.578 1.085 539.155 
(0.420) (0.267) (0.016) 

 g(t)=exp(t) 
-1.366*** 

(0.309) 

-0.517 

(0.267) 

-0.0001 

(0.0003) 
-266.947 0.346 539.894 

Data Set 3 

Naive Cox 
-0.209 -0.807*** 

- -473.948 - 951.896 
(0.216) (0.213) 

g(t)= t 
-1.044* -0.819*** 0.288* 

-471.294 5.312 948.588 
(0.421) (0.214) (0.131) 

g(t)= log(t) 
-0.841* -0.810*** 0.759* 

-470.537 6.827 947.073 
(0.333) (0.214) (0.307) 

g(t)=1/t 
0.461 -0.802*** -1.187* 

-470.363 7.174 946.726 
(0.373) (0.214) (0.544) 

g(t)=√t 
-1.820** -0.815*** 0.998* 

-470.922 6.056 947.844 
(0.698) (0.214) (0.421) 

g(t)=t2 
-0.646* -0.822*** 0.038 

-471.876 4.148 949.752 
(0.301) (0.214) (0.020) 

 g(t)=exp(t)  
-0.405 

(0.250) 

-0.821*** 

(0.214) 

0.002 

(0.002) -472.842 2.212 951.683 

The numbers in parentheses are the standard error of the coefficient. *, ** and *** significant at 0.05, 0.01 and 0.001 significance 

level respectively. LR: Likelihood ratio test statistic for CRM and extended CRM with g(t), AIC: Akaike Information Criteria, b1: 

coefficient for non-proportional covariate, b2: coefficient for proportional covariate 

 

5. CONCLUSION 

 

Using CRM, the most used model in survival data can be resulted in suspicious parameter estimation in the 

case of violation of the PH assumption. The choice and interpretation of the time function in the extended 

Cox regression model may differ depending on the primary goal—whether the model is used to test the 

proportional hazards assumption or to improve prediction. Persson and Khamis [8] and Austin [30] studied 

statistical power to detect violation of the PH assumption by using some time functions. There is on-going 

debate regarding the most appropriate time function to use in extended CRM for modelling non-

proportional hazards. For assumption testing, the time function serves to detect deviations from 
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proportionality, whereas for prediction, selecting an appropriate time function is crucial for capturing non-

proportional covariate effects accurately and enhancing predictive performance. Mismodelling the 

functional form of a covariate may result in unreal non-proportional effects [6, 31]. The main aim is to the 

identification of functional forms of time which fit the data best. We used an extensive set of Monte Carlo 

simulations to compare the performance of the most used time functions in extended CRM in different 

sample sizes, censoring rates, and prevalence ratio of the binary covariate for prediction.  

 

The simulation results show that, 

 

• For the proportional covariate, all methods yield similar results across all scenarios in terms of both 

MSE and MAE. The choice of time function has minimal impact on the estimation of proportional 

covariate. 

• In estimating the effect of the non-proportional covariate, commonly used time function g(t)=t, has 

more bias than the other most used time function log(t) in the extended CRM for obtaining a hazard 

ratio formula.  

• The extended CRM with time function 1/t produced lower MAE and MSE in the estimation of non-

proportional covariate effects across most simulation scenarios particularly under moderate to large 

sample sizes. The performance advantage of 1/t may diminish in very small sample sizes, where 

increased variability in estimation can occur due to the sharper curvature of the 1/t function at early 

time points. 

• The extended CRM with time function log(t) demonstrated superior performance in terms of MAE 

and MSE for non-proportional hazards, particularly when data were subject to rare covariate 

exposure for small sample sizes. 

• As the sample size increases, MSE and MAE values decrease for all functions, as expected, 

indicating improved estimation accuracy. 

• High censoring rates negatively impact the accuracy of estimates. 

• The prevalence of the binary covariate influences estimate reliability; imbalanced covariate 

distributions can amplify the effect of time function choice. 

• Among the six time functions evaluated, the extended CRM with time function 1/t consistently 

yielded the highest proportion of best-fitting across nearly all settings. In contrast, extended CRM 

with time function log(t) emerged as a strong alternative under higher prevalence and censoring 

rates for very large sample size, occasionally outperforming the extended CRM with time function 

1/t. The remaining time functions (t, √t, t2, and exp(t)) showed negligible contribution, with very 

low or never best-fit proportions especially in very large samples. 

 

In the extended CRM, time-dependent effects are introduced only for covariates that violate the PH 

assumption. Covariates that satisfy the PH assumption are modeled with constant coefficients, independent 

of time. Therefore, it is theoretically expected that the specification of the time function g(t) affects only 

the estimation of non-proportional covariates, while having no influence on the estimates of proportional 

covariates. This property ensures that the inclusion of time-varying terms does not introduce bias into the 

estimation of proportional covariate effects. As a result, similar parameter estimates obtained for the PH 

covariates across different extended models confirm the robustness of these estimates and support the 

theoretical foundations of the extended CRM. 

 

The results support the need for attention in selection of time function based on study design characteristics 

to improve the robustness of survival analysis outcomes. The main aim is the identification of appropriate 

time functions that accurately capture time-varying effects in extended CRM. Based on our findings, the 

1/t function demonstrated consistently lower bias and MSE across the most of the simulation scenarios. 

Theoretically, the 1/t transformation provides flexibility in modelling time-varying effects that are initially 

strong but weaken over time. This behaviour is especially relevant in clinical or survival settings, where 

the influence of certain covariates may decline with increasing time. These empirical results, combined 

with the theoretical appeal of 1/t in modelling diminishing covariate effects over time, suggest that its use 

by practitioners deserves greater consideration. 
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