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Miloš B. Djorić and Mirjana Djorić*
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ABSTRACT

In this paper we give necessary and sufficient conditions for a CR submanifold of maximal CR
dimension in arbitrary Kähler manifold to admit (quasi-)Yamabe structure, with naturally chosen
soliton vector field. When the ambient manifold is a non-flat complex space form, we give a
complete classification of such solitons, under certain conditions.
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1. Introduction

Riemannian differential geometry originated in attempts to generalize the highly successful theory of
compact surfaces. One consequence of the famous uniformization theorem of complex analysis is the fact that
every compact surface has a conformally equivalent metric of the constant (Gaussian) curvature. However, in
a higher dimension (n ⩾ 3) this can not be true since the Riemannian curvature tensor has the independent
components of the order n4, while a conformal change of metric allows us to choose only one unknown
function. From this point of view it seems natural instead to seek a conformal change of metric that makes
only the scalar curvature (the complete contraction of the curvature tensor) constant. This famous problem is
known as the Yamabe problem and it was completely solved (see [13]) using techniques of elliptic partial
differential equations and calculus of variations, without using the notions of Yamabe flow and Yamabe
soliton. Therefore, for every compact Riemannian manifold (M, g) of dimension n ⩾ 3, it is true that there
is a conformally equivalent metric ḡ such that (M, ḡ) has the constant scalar curvature. Such metric ḡ is then
called a Yamabe metric.

R. Hamilton introduced the notion of Yamabe flow (see [9]), in which the metric on a Riemannian manifold
is deformed by evolving according to the flow ∂

∂tg(t) = −ρ(t)g(t), where ρ(t) is the scalar curvature of the
metric g(t). However, there are certain metrics which, instead of evolving with the flow, remain invariant up
to the scaling and diffeomorphisms - they are called self-similar solutions of the flow. One-parameter family of
metrics g(t) = σ(t)ψ∗

t g(0), for some smooth function σ(t) and some one-parameter family of diffeomorphisms
ψt, which is a self-similar solution of the Yamabe flow, corresponds to the Yamabe solitons. In dimension n = 2,
the Yamabe flow is equivalent to the Ricci flow, which under suitable conditions evolves an initial metric to an
Einstein metric. However, in dimension n > 2 the Yamabe and Ricci flows do not agree, since the former one
evolves an initial metric to a new one with constant scalar curvature within the same conformal class, while the
latter one does not in general. Yamabe flows and Yamabe solitons have been studied quite extensively recently
(see [10], [12]), as well as Ricci solitons (see [4], [5]). For any geometric soliton, there exists a vector field V (the
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soliton vector field) which relates the Lie derivative of the metric LV g with the geometric object defining the
flow under consideration.

The aim of submanifold geometry is to understand geometric invariants of submanifolds and to classify
submanifolds according to given geometric data. In light of this, the purpose of this paper is to study an
important class of submanifolds of Kähler manifolds - CR submanifolds with maximal CR dimension, which
are also (quasi-) Yamabe solitons, with a specially, naturally chosen soliton vector field. In Theorem 3.1 we
prove necessary and sufficient conditions which have to be satisfied on such a submanifold, when the ambient
space is a Kähler manifold. Moreover, when the ambient space is a non-flat complex space form, we are able to
give a complete classification of such solitons, under certain conditions.

2. Preliminaries

A Riemannian manifold (M, g) is a Yamabe soliton if it admits a vector field V such that

1

2
LV g = (ρ− λ)g, (2.1)

where LV denotes the Lie derivative in the direction of the vector field V , ρ is the scalar curvature of the metric
g and λ is a real constant. A vector field V is then called a soliton vector field for (M, g).

A Riemannian manifold (M, g) is a quasi-Yamabe soliton if it admits a vector field V such that

1

2
LV g = (ρ− λ)g + µη ⊗ η, (2.2)

where µ is some function, λ is a real constant and η is a dual 1-form of V , given by η(X) = g(X,V ).

2.1. CR submanifolds of maximal CR dimension of a Kähler manifold.

Let (M
n+p

, J, ḡ) be a real (n+ p)-dimensional almost Hermitian manifold such that natural almost complex
structure J is the endomorphism of the tangent bundle TM satisfying J2 = −I and ḡ is the Riemannian metric
ofM satisfying the Hermitian condition ḡ(JX, JY ) = ḡ(X,Y ) for anyX,Y ∈ TM . Furthermore, letMn be a real
n-dimensional submanifold of M defined via the isometric immersion ı :M →M , with Riemannian metric g
on M isometrically induced from ḡ in such a way that g(X,Y ) = ḡ(ıX, ıY ) for all X,Y tangent to M . We denote
by TM and T⊥M the tangent and normal bundle of M , respectively.

It is known that, for any x ∈M , the holomorphic subspace HxM = JTxM ∩ TxM of TxM is the maximal
J-invariant subspace of the tangent space TxM at x. In general, the dimension of HxM varies with x, but if
the subspace HxM has constant dimension for any x ∈M , the submanifold M is called the Cauchy-Riemann
submanifold or briefly CR submanifold and the constant complex dimension of HxM is called the CR
dimension of M (see [8] for more details). This important class of submanifolds includes both almost complex
submanifolds (when HxM = TxM is as maximal as possible) and totally real submanifolds (when HxM = {0}
is as minimal as possible), which are widely investigated in the literature. In this paper we consider the

case when Mn is a CR submanifold of complex n+p
2 -dimensional almost Hermitian manifold M

n+p
2 whose

CR dimension is n−1
2 , called maximal CR dimension. In this case, the above definition of CR submanifolds

coincide with Bejancu’s definition given in [1]. Besides the typical example of a real hypersurface Mn of

M
n+1
2 , other important examples are real hypersurfaces of complex submanifolds of M and odd-dimensional

ϕ′-invariant submanifolds of real hypersurfaces M ′ of M , where ϕ′ is the almost contact structure of M ′.
Consequently, M is necessarily odd–dimensional and there exists a unit vector field ξ normal to M such that
JTM ⊂ TM ⊕ span{ξ}, that is, for anyX ∈ TM we have the following decomposition in tangential and normal
components:

JıX = ı ϕX + η(X)ξ, (2.3)

where η is one-form on M and ϕ is a skew–symmetric endomorphism acting on TM . Moreover, using (2.3), the
Hermitian property of J implies

Jξ = −ıU, g(U,X) = η(X), g(U,U) = 1. (2.4)
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Applying J to (2.3) and (2.4) and comparing the tangential and normal part to M , we obtain

ϕ2X = −X + η(X)U, η(ϕX) = 0,

g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ), ϕU = 0.
(2.5)

These relations imply that (ϕ, η, U, g) is an almost contact metric structure on M .
Since it is well-known that the subbundle T⊥

1 M = {η ∈ T⊥M | g(η, ξ) = 0} is J-invariant, we can choose a
local J-adapted orthonormal basis ξ, ξ1, . . . , ξq, ξ1∗ , . . . , ξq∗ of T⊥M so that ξa∗ = Jξa, a = 1, . . . , q, q = p−1

2 .

Next, let ∇ and ∇ denote the Levi-Civita connection of M and M , respectively, and D the induced normal

connection from ∇ to T⊥M . As DXξ =

q∑
a=1

{sa(X)ξa + sa∗(X)ξa∗}, the distinguished vector field ξ is parallel

with respect to the normal connection D, namely

DXξ = 0, (2.6)

if and only if sa = sa∗ = 0, for all a = 1, . . . , q. Consequently, the Gauss and Weingarten formulae (both for the
distinguished normal ξ and for the normals ξa, ξa∗) hold in the following manner:

∇ıX ıY = ı∇XY + g(AX,Y )ξ +

q∑
a=1

{g(AaX,Y )ξa + g(Aa∗X,Y )ξa∗}, (2.7)

∇ıXξ = −ıAX +DXξ = −ıAX, (2.8)

∇ıXξa = −ıAaX +DXξa = −ıAaX +

q∑
b=1

{sab(X)ξb + sab∗(X)ξb∗}, (2.9)

∇ıXξa∗ = −ıAa∗X +DXξa∗ = −ıAa∗X +

q∑
b=1

{sa∗b(X)ξb + sa∗b∗(X)ξb∗}, (2.10)

for all X,Y ∈ TM , where A, Aa, Aa∗ are the shape operators for the normals ξ, ξa, ξa∗ , a = 1, . . . , q, q = p−1
2 ,

respectively and s’s are the coefficients of the normal connection D. Recall that real hypersurfaces of totally
geodesic complex submanifolds of M and odd-dimensional ϕ′-invariant submanifolds of real hypersurfaces
M ′ of M , where ϕ′ is the almost contact structure of M ′, such that A′X ′ = λ′X ′ + µu′(X ′)U ′, as well as real
hypersurfaces ofM , are examples of CR submanifolds of maximal CR dimension withDξ = 0. For more details
we refer to [8].

When the ambient almost Hermitian manifold (M,J) is a Kähler manifold (∇J = 0), taking the covariant
derivative of (2.3) and comparing the tangential and normal part, we conclude that

∇XU = ϕAX, (2.11)
(∇Xϕ)Y = η(Y )AX − g(AX,Y )U, (2.12)
(∇Xη)Y = g(ϕAX, Y ). (2.13)

Further, if Dξ = 0, taking the covariant derivative of ξa∗ = Jξa and using (2.3), (2.4), (2.6), (2.9) and (2.10), it
follows that

AaU = 0, Aa = −ϕAa∗ , Aaϕ = −ϕAa,

Aa∗U = 0, Aa∗ = ϕAa, Aa∗ϕ = −ϕAa∗ ,

TrAa = TrAa∗ = 0 for all a = 1, . . . , q.

(2.14)

2.2. Complex space forms M
m
(c).

A Kähler manifold (M, ḡ, J) is called a complex space form if it has constant holomorphic sectional curvature c.
The only complete, simply connected complex space forms, of a complex dimensionm, are: complex projective
space CPm (c > 0), complex Euclidean space Cm (c = 0) and complex hyperbolic space CHm (c < 0). It is well-
known (see [8], [15]) that the Riemannian curvature tensor R of M

m
(c) is given by

R(X̄, Ȳ )Z̄ =
c

4
{ḡ(Ȳ , Z̄)X̄ − ḡ(X̄, Z̄)Ȳ + ḡ(JȲ , Z̄)JX̄ − ḡ(JX̄, Z̄)JȲ + 2ḡ(X̄, JȲ )JZ̄}. (2.15)
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Consequently, for a CR submanifold of maximal CR dimension Mn of a complex space form M
n+p
2 , the Gauss

equation, as well as the Codazzi equation for the shape operator with respect to parallel distinguished vector
field ξ (Dξ = 0), become

R(X,Y )Z =
c

4
{g(Y, Z)X − g(X,Z)Y + g(ϕY,Z)ϕX − g(ϕX,Z)ϕY

− 2g(ϕX, Y )ϕZ}+ g(AY,Z)AX − g(AX,Z)AY,

+

q∑
a=1

(g(AaY,Z)AaX − g(AaX,Z)AaY ) (2.16)

+

q∑
a=1

(g(Aa∗Y,Z)Aa∗X − g(Aa∗X,Z)Aa∗Y ),

(∇XA)Y − (∇YA)X =
c

4
{η(X)ϕY − η(Y )ϕX − 2g(ϕX, Y )U} , (2.17)

for all X,Y, Z tangent to M . Therefore, using (2.14) and (2.16), we obtain that the Ricci tensor Ric, the Ricci
operator S and the scalar curvature ρ of M are given by:

Ric(X,Y ) =
c

4
((n+ 2)g(X,Y )− 3η(X)η(Y )) + (TrA)g(AX,Y )− g(AX,AY ), (2.18)

SX =
c

4
((n+ 2)X − 3η(X)U) + (TrA)AX −A2X, (2.19)

ρ = (n+ 3)(n− 1)
c

4
+ (TrA)2 − Tr(A2). (2.20)

For the case of a complex projective and complex hyperbolic space, we will use the well-known complete
classification of real hypersurfaces whose almost contact structure and shape operator commute, which will
prove extremely useful in the proofs of Theorem 3.3 and Theorem 3.4.

Theorem 2.1. [14][16] The only complete real hypersurfaces in the non-flat complex space forms M
n
(c), n ⩾ 2, whose

almost contact structure and shape operator commute are the following hypersurfaces (these hypersurfaces are known in
the literature as hypersurfaces of type A):

• geodesic hyperspheres in CPn;
• tubes over totally geodesic complex projective space CPk in CPn, 1 ⩽ k ⩽ n− 2, n ⩾ 3;
• horospheres in CHn;
• geodesic hyperspheres in CHn;
• tubes over totally geodesic complex hyperbolic hyperplanes CHn−1 in CHn;
• tubes over totally geodesic complex hyperbolic space CHk in CHn, 1 ⩽ k ⩽ n− 2, n ⩾ 3.

3. Main results

Let us now investigate real n-dimension CR submanifoldsM of maximal CR dimension in a Kähler manifold

(M
n+p
2 , J, ḡ), which are the (quasi)-Yamabe solitons with a soliton vector field specially chosen to be a structure

vector field U = −Jξ, where ξ is a distinguished normal vector field on M , determined by (2.3). We will call
such submanifolds maximal CR (quasi)-Yamabe solitons.

Recall that a vector field X in a Riemannian manifold is a Killing vector field when its flow is locally an
isometry, namely if X satisfies the so called Killing equation LXg = 0. Observe that the following result holds
not only for the hypersurfaces, but for all CR submanifolds.

Lemma 3.1. The structure vector field U of a CR submanifold of maximal CR dimension in a Kähler manifold is Killing
if and only if the shape operator A and the almost contact metric structure ϕ commute.

Proof. From the definition of the Lie derivative of the metric tensor g in direction of U

(LUg)(X,Y ) = g(∇XU, Y ) + g(∇Y U,X), (3.1)

and (2.11), it follows that
(LUg)(X,Y ) = g((ϕA−Aϕ)X,Y ). (3.2)
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Therefore, U is a Killing vector field if and only if g((ϕA−Aϕ)X,Y ) = 0 holds for all X,Y ∈ TM , which is
equivalent to the condition Aϕ = ϕA.

Remark 3.1. Using (2.5), the condition Aϕ = ϕA implies AU = αU , where the function α is given by α =
g(AU,U).

Furthermore, X is a geodesic vector field if the acceleration of its integral curve is proportional to velocity.
Moreover, a unit vector field on a Riemannian manifold is a geodesic vector field when its integral curves are
geodesics, i.e. have zero acceleration. Next, we will give a sufficient condition for the structure vector field U
of a CR submanifold of maximal CR dimension to be a geodesic vector field.

Proposition 3.1. Let M be a CR submanifold of maximal CR dimension, with the structure vector field U , in a Kähler
manifold M . If M is a quasi-Yamabe soliton with U as a soliton vector field, then U is a geodesic vector field.

Proof. Using (2.2) and (3.2) it follows that M is a quasi-Yamabe soliton with the soliton vector field U = −Jξ if
and only if the following relation holds for every X,Y ∈ TM

1

2
g((ϕA−Aϕ)X,Y ) = (ρ− λ)g(X,Y ) + µg(X,U)g(Y,U). (3.3)

Therefore, as U is a unit vector field, the endomorphism ϕ is skew-symmetric and ϕU = 0, substituting X = U
and Y = ∇UU in (3.3), it follows g(ϕAU,∇UU) = 0. Consequently, using (2.11), we conclude ∇UU = 0, namely
U is a geodesic vector field.

Remark 3.2. Since (2.11) implies ∇UU = ϕAU , from the definition it follows that the vector field U is geodesic if
and only if U is in the kernel of the endomorphism ϕ, i.e. U is a principal vector field for the shape operator A.
This means thatAU = αU holds, where the function α is given by α = g(AU,U). WhenM is a real hypersurface,
this is one way to define a Hopf hypersurface and it is known that, for a Hopf hypersurface of a complex space
form, the function α is constant. In Proposition 3.2 we will present a new sufficient condition for α to be
constant, in the case when M is a CR submanifold of maximal CR dimension in a non-flat complex space form.

Now, let us prove that a CR submanifold of maximal CR dimension M of a Kähler manifold is a maximal CR
quasi-Yamabe soliton if and only if it is a maximal CR Yamabe soliton and we find the necessary and sufficient
conditions for M to be a maximal CR Yamabe soliton.

Theorem 3.1. For a CR submanifold M of maximal CR dimension of an arbitrary Kähler manifold M , the following
conditions are equivalent:

1. M is a maximal CR quasi-Yamabe soliton;

2. M is a maximal CR Yamabe soliton;

3. the structure vector field of M is a Killing vector field and the scalar curvature of M is constant.

Proof. Implications (2) ⇒ (1) and (3) ⇒ (2) follow directly from the definitions (2.1) and (2.2) of maximal CR
(quasi)-Yamabe solitons.

Let us proceed to the proof of the implications (1) ⇒ (2) and (1) ⇒ (3). Supposing that M is a maximal
CR quasi-Yamabe soliton, i.e. a CR submanifold of maximal CR dimension which is a quasi-Yamabe soliton
with the soliton vector field U = −Jξ and using Proposition 3.1, we conclude that U is a geodesic vector field
and AU = αU = g(AU,U)U . Therefore, substituting X = Y = U into (3.3), we get ρ = λ− µ. If α is the only
eigenvalue of A, choosing arbitrary Z ⊥ U such that AZ = αZ and replacing X and Y in (3.3) by Z, leads to

ρ = λ. (3.4)

If A has more than one eigenvalue, let Z ⊥ U be a vector field on M such that AZ = νZ, i.e. let Z be the
eigenvector of A with the principal curvature function ν ̸= α. The same arguments asE those above again lead
to relation (3.4).

Therefore, using (3.4), we conclude that µ = 0, i.e. every maximal CR quasi-Yamabe soliton is also a maximal
CR Yamabe soliton. Moreover, its scalar curvature ρ is constant, since λ is constant. We conclude the proof by
showing that if M is a maximal CR Yamabe soliton, then U is a Killing vector field. Since ρ = λ and µ = 0,
relation (3.3) implies that g((ϕA−Aϕ)X,Y ) = 0 holds for all tangent vector fields X,Y on M , which, according
to Lemma 3.1, implies that U is a Killing vector field.
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Example 3.1. Real hypersurfaces of complex manifolds are very important in our study since it is well-
known that they are CR submanifolds of maximal CR dimension. It is proved in [3] that the only complete
real hypersurfaces in the non-flat complex space forms, which are (quasi)-Yamabe solitons with the Reeb
vector field as a soliton vector field, are those known in the literature as the hypersurfaces of type A:
geodesic hyperspheres, tubes over totally geodesic complex projective space (in a complex projective space),
horospheres, geodesic hyperspheres, tubes over totally geodesic complex hyperbolic hyperplanes and tubes
over totally geodesic complex hyperbolic space (in a complex hyperbolic space). However, it is well-known (see
[8]) that these manifolds Mn can be considered as CR submanifolds with maximal CR dimension isometrically
immersed in complex space forms M(c) (M = CP

n+p
2 or M = CH

n+p
2 ), with the real codimension p > 1.

Moreover, it is established that they are real n−dimensional hypersurfaces of the non-flat complex space forms
M ′ (M ′ = CP

n+1
2 orM ′ = CH

n+1
2 ) which are totally geodesic complex submanifolds of a complex space formM

(M = CP
n+p
2 or M = CH

n+p
2 ). We also recall that in this case ξ is parallel with respect to the normal connection.

More precisely, let M ′ be a complex submanifold of a non-flat complex space form (M
n+p
2 , J) with totally

geodesic immersion j :M ′ →M and let Mn be a real hypersurface of a complex manifold (M ′, J ′) with
immersion ı′ :M →M ′, where J ′ is the induced complex structure of M ′. Moreover, let M be a quasi Yamabe
soliton in M ′ with the Reeb vector field as a soliton vector field. We will prove that ı = j ◦ ı′ is the immersion
of M in M which endows it with a maximal CR quasi Yamabe soliton structure. We denote the Levi-Civita
connections of M,M ′,M by ∇,∇′,∇, respectively. Furthermore, let ξ′ be the unit normal vector field of M
in M ′ and ξa, a = 1, . . . , p− 1 be the unit normal vector fields of M ′ in M . Let us denote the shape operators
corresponding to unit normal vector fields ξ = jξ′, ξa of M in M by A,Aa, a = 1, . . . , p− 1.

Consequently, the Gauss formula implies that for all X,Y ∈ TM the following relations hold

∇X(ıY ) = ∇X((j ◦ ı′)Y ) = j∇′
X(ı′Y ) = j(ı′∇XY + h′(X,Y ))

= j(ı′∇XY + g(A′X,Y )ξ′) = ı∇XY + g(A′X,Y )jξ′, (3.5)

∇X(ıY ) = ı∇XY + h(X,Y ) = ı∇XY + g(AX,Y )ξ +

p−1∑
a=1

g(AaX,Y )ξa. (3.6)

Comparing (3.5) and (3.6), we derive that A = A′ and Aa = 0. Consequently, since from [3] it follows that the
scalar curvature ρ′ of M in M ′ is constant, using (2.20), we conclude that the scalar curvature ρ of M in M is
also constant.

Moreover, since M ′ is a complex submanifold of M , relation JjX ′ = jJ ′X ′ holds for any X ′ ∈ TM ′. Thus,
we compute

JıX = J(j ◦ ı′)X = jJ ′ı′X = j(ı′ϕ′X + η′(X)ξ′)

= ıϕ′X + η′(X)jξ′ = ıϕ′X + η′(X)ξ, (3.7)

where we denoted by ϕ′ and η′ the almost contact structure and 1−form for the immersion of M in M ′,
defined by the relation for hypersurfaces, analogous to (2.3). Comparing (2.3) and (3.7), we obtain ϕ′ = ϕ,
η′ = η. Consequently, we deduce that Aϕ = A′ϕ′ = ϕ′A′ = ϕA, so the induced almost contact structure ϕ and
the shape operator A commute. From [3] it follows that the structure vector field U ′ = −J ′ξ′ of M in M ′ is a
Killing vector field. Since Aϕ = A′ϕ′ = ϕ′A′ = ϕA, using Lemma 3.1 we conclude that the structure vector field
U = −Jξ of M in M is also Killing and that the conditions of Theorem 3.1 are satisfied. Therefore, Mn is a

maximal CR quasi-Yamabe soliton in M
n+p
2 .

Remark 3.3. LetM be a CR submanifold of maximal CR dimension of a complex space formM . It is well-known
(see [8]) that if the shape operator A associated to ξ has only one eigenvalue, then M is a complex Euclidean
space.

We will now restrict our further investigation of the maximal CR quasi Yamabe solitons when the ambient
space is a non-flat complex space form and the distinguished normal vector field ξ is parallel with respect to the
normal connection D. It turns out, with the assumptions above, that all the eigenvalues of the shape operator
associated to ξ are constant, namely the following proposition holds.

Proposition 3.2. Let M be a maximal CR quasi Yamabe soliton of a non-flat complex space form with distinguished
normal vector field ξ parallel with respect to the normal connection. Then the shape operator A, associated to ξ, has at
most three distinct eigenvalues and they are constant.
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Proof. Under the hypotheses of Proposition 3.2, using Remark 3.1, Remark 3.2 and Theorem 3.1, we have
concluded that AU = αU and Aϕ = ϕA. Let us first prove that α is constant. Differentiating AU = αU
covariantly, with respect to arbitrary tangent vector field X , we obtain (∇XA)U +A∇XU = (Xα)U + α∇XU.
Since ∇A is symmetric, after taking the scalar product with arbitrary tangent vector field Y and using (2.11),
we derive

g((∇XA)Y,U) = (Xα)η(Y ) + αg(ϕAX, Y )− g(AϕAX, Y ). (3.8)

Switching the roles of X and Y , and using Aϕ = ϕA, relation (3.8) now implies

g((∇XA)Y − (∇YA)X,U) = (Xα)η(Y )− (Y α)η(X) + 2αg(ϕAX, Y )− 2g(AϕAX, Y ). (3.9)

Since the Codazzi equation (2.17) implies g((∇XA)Y − (∇YA)X,U) = − c
2g(ϕX, Y ), relation (3.9) leads to

(Xα)η(Y )− (Y α)η(X) + 2αg(ϕAX, Y ) +
c

2
g(ϕX, Y )− 2g(AϕAX, Y ) = 0. (3.10)

Replacing Y by U in (3.10), we conclude
Xα = (Uα)η(X). (3.11)

Differentiating covariantly (3.11), then interchanging X and Y and subtracting, gives

Y (Uα)η(X)−X(Uα)η(Y ) = (Uα)(g(ϕAX, Y )− g(ϕAY,X)). (3.12)

As Aϕ = ϕA, A is symmetric and ϕ is skew-symmetric, substituting Y for U in (3.12), we deduce

X(Uα) = U(Uα)η(X). (3.13)

Substituting (3.13) in (3.12), yields
(Uα) g(ϕAX, Y ) = 0 (3.14)

for all tangent vector fields X,Y . If there is a point x ∈M such that (Uα)(x) ̸= 0, then there is a neighborhood
U(x) such that ϕA = 0 = Aϕ on U . Let us note that putting (3.11) back in (3.10) gives that relation

ϕA2X − αϕAX − c

4
ϕX = 0 (3.15)

holds for all tangent vector fields X . Consequently, ϕA = 0 and (3.15) would imply c = 0, which is a
contradiction, sinceM is a non-flat complex space form. Thus we have proved that Uα = 0. Now, (3.11) directly
implies that α is a constant function.

Finally, sinceA is a symmetric operator, letX ⊥ U be another eigenvector with the corresponding eigenvalue
λ. Then, according to (3.15), it follows

λ2 − αλ− c

4
= 0. (3.16)

Therefore, the shape operator A has at most three distinct eigenvalues and they are constant. Moreover, since
M is a non-flat complex space form, having in mind Remark 3.3, we conclude that the shape operator A has
two or three distinct, constant eigenvalues.

Remark 3.4. Let us note that we have confirmed one of the necessary conditions for a CR submanifold of
maximal CR dimension of a non-flat complex space form with Dξ = 0 to be a quasi Yamabe soliton. Namely,
using relation (2.20) and Proposition 3.2, we deduce that the scalar curvature of Mn must be constant.

Further, we continue our investigation of maximal CR quasi Yamabe solitonsMn in a non-flat complex space
formM under the additional assumptionAa = 0 = Aa∗ , a = 1, . . . , q, q = p−1

2 . Using the codimension reduction
technique, we will prove in Proposition 3.3 that there exists a a real (n+ 1)-dimensional totally geodesic non-
flat complex space form M ′ of M such that M is a real hypersurface of M ′.

First, let us define N0 = {η ∈ T⊥
x M : Aη = 0} and note that, under the conditions stated above,

N0(x) = span {ξ1(x), . . . , ξq(x), ξ1∗(x), . . . , ξq∗(x)}.

More precisely, the assumption Aa = 0 = Aa∗ , a = 1, . . . , q, implies

span {ξ1(x), . . . , ξq(x), ξ1∗(x), . . . , ξq∗(x)} ⊂ N0(x).
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On the other hand, for any ν ∈ N0(x), ν = lξ +
∑q

a=1{laξa + la
∗
ξa∗}, we obtain 0 = Aν = lA+

∑q
a=1{laAa +

la
∗
Aa∗} = lA. As A ̸≡ 0, it follows that l = 0 and

ν =

q∑
a=1

{paξa + pa
∗
ξa∗} ∈ span {ξ1(x), . . . , ξq(x), ξ1∗(x), . . . , ξq∗(x)}, i.e.

N0(x) ⊂ span {ξ1(x), . . . , ξq(x), ξ1∗(x), . . . , ξq∗(x)}.

Furthermore, since Jξa = ξa∗ , we have JN0(x) = N0(x) and consequently we conclude that

H0(x) = JN0(x) ∩N0(x) = span {ξ1(x), . . . , ξq(x), ξ1∗(x), . . . , ξq∗(x)}

is the maximal J-invariant subspace of N0 and JH0(x) = H0(x), since J is an isomorphism. Hence the
orthogonal complement H1(x) of H0(x) in T⊥

x M is spanned by {ξ} and its dimension is one. Since by
assumption ξ is parallel with respect to the normal connection, we can apply the following (codimension
reduction) theorems (for a complex projective space and for a complex hyperbolic space), for H(x) = H0(x)
and therefore H2(x) = H1(x) = span{ξ} and r = 1.

Theorem 3.2. [17], [11] Let M be a real n-dimensional submanifold of a real (n+ p)-dimensional complex projective
space CP

n+p
2 (complex hyperbolic space CH

n+p
2 ) and H(x) be a J-invariant subspace of H0(x). If the orthogonal

complement H2(x) of H(x) in T⊥
x M is invariant under parallel translation with respect to the normal connection and r

is the constant dimension of H2, then there exists a real (n+ r)-dimensional totally geodesic complex projective subspace
CP

n+r
2 (complex hyperbolic subspace CH

n+r
2 ) such that M ⊂ CP

n+r
2 (M ⊂ CH

n+r
2 ).

Summarizing, we conclude that maximal CR quasi Yamabe soliton Mn may be regarded as a real
hypersurface of CP

n+1
2 (CH

n+1
2 ), which are totally geodesic submanifolds in CP

n+p
2 (CH

n+p
2 ) and the following

proposition holds.

Proposition 3.3. Let Mn be a maximal CR quasi Yamabe soliton of a complex projective space CP
n+p
2 (respectively a

complex hyperbolic space CH
n+p
2 ) with distinguished normal vector field ξ parallel with respect to the normal connection.

If the shape operators for the normals ξa, ξa∗ , a = 1, . . . , q, q = p−1
2 vanish identically, then there exists a totally

geodesic complex projective subspace CP
n+1
2 (respectively complex hyperbolic subspace CH

n+1
2 ) such that Mn is a real

hypersurface of CP
n+1
2 (respectively CH

n+1
2 ).

In what follows we denote CP
n+1
2 (CH

n+1
2 ) by M ′ and CP

n+p
2 (CH

n+p
2 ) by M . Let ı1 be the immersion of M

into M ′ and let ı2 be the totally geodesic immersion of M ′ into M . Then, using the Gauss formula (2.7) for
hypersurfaces, it follows that

∇′
X ı1Y = ı1∇XY + g′(A′X,Y )ξ′, (3.17)

where ξ′ is the unit vector field to M in M ′, A′ is its shape operator. Since M ′ is totally geodesic in M , using
(3.17), we compute for the immersion ı = ı2 ◦ ı1 of M in M

∇X ıY = ı2∇′
X ı1Y = ı2(ı1∇XY + g′(A′X,Y )ξ′), (3.18)

since M ′ is totally geodesic in M . Comparing (3.18) and (2.7), we conclude ξ = ı2ξ
′ and A′ = A.

Further, as M ′ is a complex submanifold of M , relation Jı2X
′ = ı2J

′X ′ holds for any X ′ ∈ TM ′, where J ′ is
the induced complex structure of M ′. Thus, we compute

JıX = Jı2 ◦ ı1X = ı2J
′ı1X = ı2(ı1ϕ

′X + η′(X)ξ′)

= ıϕ′X + η′(X)ı2ξ
′ = ıϕ′X + η′(X)ξ. (3.19)

Comparing (2.3) and (3.19), we conclude that ϕ′ = ϕ, η′ = η. Consequently, as M is a maximal CR quasi
Yamabe soliton of a non-flat complex space form, Theorem 3.1 implies that Aϕ = ϕA. Thus, we deduce that
M is a real hypersurface of a non-flat complex space form M ′ which satisfies A′ϕ′ = ϕ′A′, so we can apply
known results from the hypersurface theory, specifically Theorem 2.1. This finishes the proofs of the following
theorems.

Theorem 3.3. Let Mn, n ≥ 3, be a maximal CR quasi Yamabe soliton in a complex projective space CP
n+p
2 . If vector

field ξ is parallel with respect to the normal connection and all the shape operators with respect to other normal vector
fields vanish, then Mn is locally congruent to:

dergipark.org.tr/en/pub/iejg 274

https://dergipark.org.tr/en/pub/iejg


M. B. Djorić & M. Djoric

• geodesic hypersphere;
• tube over totally geodesic complex projective space CPk in CP

n+1
2 , 1 ⩽ k ⩽ n−1

2 .

Theorem 3.4. Let Mn, n ≥ 3, be a maximal CR quasi Yamabe soliton in a complex hyperbolic space CH
n+p
2 . If vector

field ξ is parallel with respect to the normal connection and all the shape operators with respect to other normal vector
fields vanish, then Mn is locally congruent to:

• horosphere;
• geodesic hypersphere;
• tube over totally geodesic complex hyperbolic hyperplane;
• tube over totally geodesic complex hyperbolic space CHk in CH

n+1
2 , 1 ⩽ k ⩽ n−1

2 .

Remark 3.5. Taking into account the proofs of Theorem 3.3 and Theorem 3.4, and using the results from [3],
we may conclude that if Mn (n ≥ 3) is a maximal CR quasi Yamabe soliton in CP

n+p
2 (CH

n+p
2 , respectively),

with Dξ = 0 and Aa = 0 = Aa∗ , a = 1, . . . , q, q = p−1
2 , then Mn is a quasi-Yamabe soliton in CP

n+1
2 (CH

n+1
2 ,

respectively). More precisely, under the above conditions, it follows that Aϕ = ϕA, A = A′, ϕ = ϕ′, which
implies A′ϕ′ = ϕ′A′. Moreover, since Proposition 3.2 claims that the eigenvalues of A(= A′) are constant, it
follows that ρ′ = (n2 − 1)c+ (TrA′)2 − Tr(A′2) is constant. Thus, Theorem 3.1. from [3] asserts that Mn is a
quasi-Yamabe soliton in M ′ = CP

n+1
2 (CH

n+1
2 , respectively).

In Riemannian geometry, the structure of a submanifold is encoded in the second fundamental form. Let us
recall that in [6] the authors studied a certain algebraic relation between the naturaly induced almost contact
structure tensor ϕ and the second fundamental form h of CR submanifolds of maximal CR dimension Mn in a
complex space form M . They proved that if the condition

h(ϕX, Y ) + h(X,ϕY ) = 0 (3.20)

is satisfied for all X,Y ∈ TM , then Aϕ = ϕA and AU = αU . Moreover, the ambient manifold M has to be a
complex Euclidean space or the distinguished vector field ξ is parallel with respect to a normal connection D.
Consequently, for a non-flat space form, they proved that Aa = 0 = Aa∗ . Therefore, in Proposition 3.3, Theorem
3.3 and Theorem 3.4, we may replace the conditions: the vector field ξ is parallel with respect to the normal
connection and all the shape operators with respect to other normal vector fields vanish, with the condition
(3.20). Proceeding analogously to the proofs of Theorem 3.3 and Theorem 3.4 the following proposition holds.

Theorem 3.5. Let Mn, n ≥ 3, be a maximal CR quasi Yamabe soliton in a complex non-flat space form M
n+p
2 . If the

condition (3.20) is satisfied, then Mn is locally congruent to:

• geodesic hypersphere;
• tube over totally geodesic complex projective space CPk in CP

n+1
2 , 1 ⩽ k ⩽ n−1

2 .
• horosphere;
• geodesic hypersphere;
• tube over totally geodesic complex hyperbolic hyperplane;
• tube over totally geodesic complex hyperbolic space CHk in CH

n+1
2 , 1 ⩽ k ⩽ n−1

2 .

In [7] the authors proved that if for n-dimensional compact, minimal CR submanifold of maximal CR
dimension of a complex projective space CP

n+p
2 the scalar curvature ρ of M satisfies

ρ ≥ (n+ 2)(n− 1),

then the naturaly induced almost contact structure tensor ϕ and the shape operator A commute, Aa = Aa∗ = 0,
a = 1, . . . , q and ρ = (n+ 2)(n− 1). This, using Theorem 3.1, proves the following theorem.

Theorem 3.6. Let M be an n-dimensional compact, minimal CR submanifold of maximal CR dimension of CP
n+p
2 . If

the scalar curvature ρ of M satisfies
ρ ≥ (n+ 2)(n− 1), (3.21)

then M is a maximal CR quasi-Yamabe soliton.

Remark 3.6. Note that in [7] the authors also proved ifM is an n-dimensional compact, minimal CR submanifold
of maximal CR dimension of CP

n+p
2 and if the scalar curvature ρ of M satisfies (3.21), then M is congruent to a

geodesic hypersphere or a tube over totally geodesic complex projective space CPk in CP
n+1
2 , 1 ⩽ k ⩽ n−1

2 .
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