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1. Introduction  

Researchers from all across the world are investigating inter-

nal combustion engines with replacement fuels due to the deple-

tion of crude oil supplies, environmental pollution owing to the 

usage of petroleum-based fuels, and ever-rising petroleum-

based fuel prices [1]. Previously, there have been attempts to use 

pure vegetable oils as a substitute for traditional diesel fuel [2, 

3]. However, raw vegetable oils are not meant for direct use in 

diesel engines due to their increased viscosity [4, 5]. Thus, the 

transesterification has been normally adopted to convert vegeta-

ble oils into biodiesel [6-10]. For diesel engines, biodiesel is a 

good alternative fuel. They are less harmful to the environment, 

renewable, affordable, and have a better cetane number, less sul-

phur and more oxygen and have higher lubricity [11, 12]. Con-

versely, their drawbacks include decreased volatility and calo-

rific value, as well as higher viscosity and pour point. 

Several studies employing methyl esters of sunflower oil [13], 

palm oil [14, 15], mahua oil [16], pongamia oil [17, 18], soybean 

oil [19-21], jatropha oil [22, 23], and Tomato Seed oil [24] have 

been conducted on the performance and combustion of CI en-

gines. These investigations show that the usage of raw biodiesel 

or its blends in diesel engines lowered hydrocarbons, carbon 

monoxide, and smoke by about 3-45% [25-27]. Conversely, 

many have noted a rise in NOx emissions, ‘Brake-Specific Fuel 

Consumption’ (BSFC) and a decrease in thermal efficiency, 

power output, and mean effective pressure [28-31]. The primary 

reason for biodiesel-fueled diesel engine's poor performance is 

mainly caused by its high viscosity, less calorific value, and low 

volatility [32, 33]. Even after transesterification biodiesel’s vis-

cosity was found higher by about 70-90% in contrast to the 

standard diesel. This property of biodiesel influences the atomi-

zation, vaporization, and mixing with air, which in turn influ-

ences the emissions, performance, and combustion of biodiesel 

[34]. The viscosity can be significantly reduced by heating, thus 

the issues due to high viscosity during the injection can be obvi-
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ated [35]. Anis and Budiandono [36] studied the impact of pre-

heating biodiesel blends on spray characteristics and injection 

pump performance and reported that injection pump perfor-

mance was significantly impacted by biodiesel’s high viscosity. 

Besides, they have also specified that as the blend's biodiesel 

content increased, so did the necessary preheating temperatures. 

Bhatt and Shrivastava [37] have reported that biodiesel can be 

atomized and vaporized more easily with preheating. Mekonen 

and Sahoo [38] observed a 17.4% reduction in BSFC, a 23% 

increase in BTE, a drop in CO, and UBHC emissions and an 

upsurge in oxides of nitrogen emissions after using a heat ex-

changer to preheat the biodiesel. A study that used heated garlic 

methyl ester found that emissions of CO, smoke, and HC de-

creased.[39]. By employing preheated pongamia oil, Nadaf et al. 

[40] focused their efforts on enhancing engine performance and 

concluded that the engine performed better in terms of BTE and 

BSFC. According to certain research, preheating the biodiesel 

or increasing the injection pressure in biodiesel-operated diesel 

engines increased the performance on account of enhanced at-

omization, improved vaporization and air-fuel mixing, which 

leads to better combustion [41, 42]. 

It is evident from the literature that there aren't many research 

publications available on Thevetia Peruviana biodiesel as an al-

ternative fuel. There are no published works on the preheating 

of Thevetia Peruviana biodiesel in the literature. Hence here an 

effort has been taken to assess the influences of preheating of 

Thevetia Peruviana biodiesel on CI engine performance, com-

bustion, and emission characteristics. Results were evaluated 

and related to standard diesel and unheated Thevetia Peruviana 

biodiesel operations. 

 

2. Experimental Resources and Testing Procedure 

2.1. TPME Production, Test Fuel and Its Characteristics 

In this research, Thevetia Peruviana Methyl Ester (TPME) 

was utilized. TPME was prepared using the transesterification 

process. A catalyst called sodium hydroxide was employed in 

the trans-esterification procedure. Methoxide was first prepared 

for the transesterification process. To make methoxide, 160 mil-

lilitres of methyl alcohol was assorted with 5 grams of sodium 

hydroxide per litre of Thevetia Peruviana oil. After heating the 

oil to 60°C, prepared methoxide was added to the oil. The tem-

perature of the reaction was maintained at this level employing 

a constant temperature bath and a stirrer spinning at 200 rpm to 

mix the reactants. Subsequently, the mixture was transferred 

into a separating funnel. The end products, biodiesel and glyc-

erol, were permitted to settle in the separating funnel overnight 

to isolate the biodiesel. After the separation of biodiesel, the 

contaminants were removed from the biodiesel through four or 

five rounds of distilled water washing. The fuels' characteristics 

were then measured. Table 1 compares the fuel characteristics 

of diesel, TPME, and TPME20. 

To ascertain how heating affects Thevetia Peruviana bio-

diesel's variation in viscosity, the oil was warmed up above 

room temperature in steps of 5oC and the viscosity was noted. 

Table 2 displays and compares the viscosities of diesel and 

TPME at various temperatures. Table 2 makes it clear that 

TPME viscosity at 50°C is nearly identical to diesel, negating 

the need for engine changes. However, as the heating value of 

TPME is lower by 7% compared to standard diesel, TPME 

blended with diesel. As a result, diesel and 20% of TPME by 

volume were combined to create a test fuel that was used for the 

investigation. 

Table 1. Test fuel properties  

Properties DIESEL TPME TPME20 
IS:15607  

specifications 

Test methods 

IS1448 / ASTM 

Density (kg/m3) 850 860 852 860-890 P16 

Kinematic Viscosity (cSt) 3.4 5.96 4.32 2.5-6.0 P 25 / D 445 

Heating Value (MJ/kg) 44.12 41.08 43.26  D5865 

Flash Pt (°C) 76 158 86 120 P 21 / D93 

Cloud Pt (°C) 6.5 10.8 7.1 - D2500 

Pour Pt (°C) 3.1 4.4 3.4 - D2500 

Cetane No 49 57.6 51 51 P9 / D613 

Sulphur, mg/kg 29 0.003 18 ≤ 50 P 83/D 5453 
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Table 2. Variation of viscosity of TPME and diesel with temperature 

Viscosity in cSt 
Temperature in oC 

25 30 35 40 45 50 

Viscosity of Diesel 3.42 3.1 2.85 2.59 2. 38 2.17 

Viscosity of TPME 5.96 5.48 5.16 4.72 4.38 4.16 

2.2. Experimental Setup and Procedure  

Figure 1 represents the investigation arrangement that was 

employed. For experimentation, a 4-stroke, single-cylinder DI-

CI engine was used. An eddy current dynamometer for measur-

ing braking power and a system for acquiring data comprising a 

computer, combustion analyzer, piezo-electric pressure trans-

ducer, crank angle encoder, and thermocouple were used. A pi-

ezoelectric pressure transducer and a crank angle encoder were 

used to measure the pressure within the cylinder. The signal 

from them was detected and elevated to a higher level of electri-

cal signal using a signal conditioning charge amplifier. To ana-

lyse these data, a SeS combustion analyser was employed. A 

five-gas analyzer was employed to measure CO and HC and to 

measure NOx and smoke a SIGNAL analyzer and a smoke me-

ter were utilized respectively. The essential technical specifica-

tions of the engine used in this study are listed in Table 3. 

Table 3. Descriptions of the test engine 

Brand Kirloskar  

Category single-cylinder diesel engine, 4stroke,  

Cubic capacity 661 cc 

Bore & Stroke 87.5 mm & 110 mm 

Compression ratio 17.5:1 

Rated power 5.2 kW  

Ignition system Compression ignition 

Injection pressure 200 bar 

Dynamometer 
Benz systems ECB-70 eddy current dy-

namometer 

Cylinder pressure sen-

sor 
Kistler Piezoelectric 6613CQ09 

Exhaust Gas Analyser AVL Gas Analyser (DIGAS 444) 

NOx Analyser 
SIGNAL Heated Vacuum NOx Ana-

lyser 4000VM 

Smoke Meter AVL 437 C Smoke Meter 

The measuring range and resolution of emission measuring 

instruments used are given in Table 4. The engine was tested 

with diesel, a 20% blend of Thevetia Peruviana Methyl Ester 

(TPME20), and pre-heated TPME20 (PH-TPME20) to investi-

gate performance, combustion, and emission characteristics. To 

achieve better atomization by reducing the viscosity, TPME20 

was heated by a heat exchanger. The heat exchanger was main-

tained at a temperature of 50oC. In every test, the test engine was 

warmed up till the engine temperature reached a stable condition. 

The engine was set to run at 1500 rpm speed by adjusting the 

fuel injection pump. The manufacturer's recommended injection 

operating conditions were followed during the engine tests. 

Throughout the test, the temperature and flow rate of the cooling 

water were maintained unchanged. 

Table 4. Emission measuring instruments range and resolution 

Parameters Range Resolution 

HC 0–20,000 ppm 1 ppm 

CO 0–15% 0.01% 

NOX 0–5,000 ppm 1 ppm 

Smoke  0–100% 1% 

2.3. Analysis of Uncertainty  

Various instruments and apparatus were employed in the ex-

perimental research to measure various parameters. These de-

vices and tools are produced by various manufacturers utilizing 

various technology. The performance and precision of the meas-

urements can change based on the experimental environment 

and operational parameters. Therefore, fixed or random errors 

are the cause of the uncertainty. Analytical techniques were used 

to evaluate the uncertainty in the measured parameters. The Hol-

man root-mean-square approach is used to calculate the overall 

uncertainty. Table 5 presents the calculated uncertainty for the 

observed quantities. 

Table 5. Experiment uncertainties 

Parameters Percentage Errors (%) 

Speed ±2  

Load ± 0.2  

Time ± 0.1  

Temperature ± 2 

Pressure ± 2  

Brake power ± 0.05  

BTE ± 0.1 

BSFC ± 0.2 

NOX ± 1  

CO ± 0.02 

HC ± 1.1  

Smoke opacity ± 1  
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Fig. 1. Schematic illustration of experimental arrangement 

3. Results and discussion 

3.1. Combustion Characteristics 

One significant factor in describing the knocking phenome-

non of C.I. engines is the fuel's delay period. The ignition delay 

(ID) variations for diesel, TPME20 and preheated TPME20 are 

displayed in Figure 2. Preheated TPME20 had a noticeably 

shorter delay period than both unheated TPME20 and diesel. 

The ID of TPME20 lies in between PH-TPME20 and diesel. 

This suggests that TPME20 has a higher cetane number than 

diesel. For all fuels, the ignition delay had become shorter at 

higher loads. This can be explained by the decrease in exhaust 

gas dilution, especially at greater loads and higher temperatures 

during PH-TPME20 operation. 

 

Fig. 2. Ignition delay vs brake power (BP) 

A crucial element of this investigation is the in-cylinder pres-

sure fluctuation. The differences in the engine's in-cylinder pres-

sure when running on diesel, TPME20, and warmed TPME20 at 

maximum load are shown in Figure 3. The pressure fluctuations 

for the three tested fuels follow the same pattern at all loads of 

testing. Nonetheless, consistent with the findings of earlier re-

search [43], the pressure data values of TPME20 were inferior 

in contrast to diesel and PH-TPME20. Higher fuel viscosity and 

a lower TPME heating value were the causes of this. The PH-

TPME20 had a marginally lower in-cylinder pressure trend than 

the diesel, but significantly higher than the TPME20. This is ex-

plained by PH-TPME20's enhanced combustion, which is 

brought about by greater fuel vaporization, air-fuel mixing, and 

atomization. 

In an effort to learn more about the engine's combustion pro-

cess, heat release calculations are performed. Figure 4 compares 

the rate of heat release of diesel, TPME20 and preheated 

TPME20 at full engine loads. Figure 4 illustrates that the diesel 

had a marginally higher heat release than the PH-TPME20. 

Among the fuels, TPME20 had a lower heat release. 

Inadequate atomization of TPME20 due to its increased sur-

face tension and viscosity, might be the reason for this. Moreo-

ver, the heat release of the biodiesel blend during the diffusion 

combustion phase is marginally superior to diesel. This can be 

reasoned to TPME20's shorter delay period than diesel. PH-

TPME20's heat release trend is almost similar to diesel. Better 

combustion, improved atomization, better fuel vaporization and 

air-fuel mixing can be reasoned to this. A comparable trend was 

reported by other researchers [41]. 
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Fig. 3. In-cylinder pressure vs BP at full load 

 

Fig. 4. Rate of heat release vs BP at full load 

3.2. Performance Characteristics 

The term “brake specific fuel consumption” refers to the pro-

portion of fuel used to the engine power. This serves as a means 

of comparing the engine’s efficiency. Figure 5 displays the en-

gine’s Brake Specific Fuel Consumption (BSFC) deviations for 

the diesel, TPME20 and preheated TPME20 at various engine 

loads. When operating at full load PH-TPME20’s BSFC (0.259 

kg/Kw-hr) was lower than the TPME20 (0.282 kg/Kw-hr). Sim-

ilar variations were observed at all operating loads too. A reduc-

tion in BSFC signifies an engine’s enhanced overall perfor-

mance. Superior fuel atomization and vaporization that promote 

better combustion are accountable for these characteristics [36]. 

These outcomes align with the study findings of other investiga-

tors [43]. 

 

Fig. 5. BSFC vs brake power 

 

Fig. 6. BTE vs brake power 

Brake thermal efficiency (BTE) is a metric used to quantify 

how well heat energy is converted into work in internal combus-

tion engines. Figure 6 illustrates the variations in BTE to BP for 

diesel, TPME20, and preheated TPME20. It shows that, the BTE 

rises as brake power increases for all fuels. In contrast to diesel 

(33.58%), TPME20 had a lower BTE (32.32%). However, when 

using PH-TPME20, the BTE was greater than TPME20 at all 

loads. Better atomization leads to improved mixture formation 

and thereby enhances combustion and BTE [34]. These results 

are in line with previous researchers' findings [43]. 

3.3. Emission Characteristics 

Unburnt hydrocarbons (UBHC) are produced when fuel burns 

partially and the flames close to combustion chamber walls are 

quenched. Figure 7 compares the emissions of UBHC for diesel, 

TPME20 and preheated TPME20 at all engine load conditions. 

In relation to diesel operation, UBHC emissions were lower for 

TPME20 and preheated TPME20 operations. Additionally, in 

contrast to the TPME20 operation, the engine operating with 

preheated TPME20 produced lower levels of UBHC emissions. 

This can be explained by improved fuel vaporization, air-fuel 

mixing, improved atomization, and oxygen substance in TPME. 
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When testing with PH-TPME20, there was a 26% reduction in 

HC emissions related to the engine working with diesel at full-

loaded condition. 

 

Fig. 7. UBHC vs brake power 

The main causes of the formation of CO are low oxygen lev-

els and incomplete fuel combustion. CO emissions with respect 

to the brake power developed for diesel, TPME20 and preheated 

TPME20 are displayed in Figure 8. CO emissions from 

TPME20 and preheated TPME20 operations were lower at all 

loads when compared to diesel emissions. Compared to the 

TPME20 operation, the preheated TPME20 operation emitted 

very low levels of CO emissions. This is explained by better at-

omization, improved fuel vaporization, air-fuel mixing, and 

complete combustion for preheated TPME20. CO emissions 

were 46.7% lower when tested with the PH-TPME20 than when 

operating with diesel at the maximum load. Jaichandar and An-

namalai [31, 34] found comparable decrease in CO levels 

brought about by the oxygen present in biodiesel and improved 

vaporization and air-fuel mixing. 

 

Fig. 8. CO vs brake power 

Oxygen and nitrogen combine in a chain reaction to form ox-

ides of nitrogen at very high temperatures during combustion. 

Figure 9 illustrates the changes in nitrogen oxide emissions for 

TPME20, preheated TPME20, and diesel at various loads. The 

PH-TPME20 engine produced more NOx emissions than the 

diesel or TPME20 engine. Increased oxygen availability in 

TPME and higher in-cylinder temperatures brought on by com-

plete combustion of the air-fuel mixture owing to improved mix-

ture formation might be the source of the spike in NOx emis-

sions. For PH-TPME20, an additional factor is that a greater por-

tion of the combustion was completed before the top dead centre. 

Kannan and Gounder [43] observed similar reduction in smoke 

levels due to availability of oxygen in biodiesel and better atom-

ization and air-fuel mixing due to preheating. 

 

Fig. 9. NOx vs brake power 

At high temperatures, the rich zone, or the centre core of the 

fuel droplets, is where smoke forms most frequently in diesel 

engines. Figure 10 compares the smoke levels for diesel, 

TPME20 and preheated TPME20 at various loads. Compared to 

diesel, the smoke productions were dramatically decreased for 

both TPME20 and preheated TPME20 at all loads. The oxygen 

substance in the biodiesel blend was responsible for the decrease 

in smoke emissions. In contrast to TPME20, the preheated 

TPME20 operation produced fewer smoke emissions. This was 

brought about by greater air-fuel mixing and oxygen availability 

in the TPME, which led to more thorough combustion. Smoke 

emissions were 27% lower than diesel during full load operation 

when tested with the PH-TPME20. Other researchers noticed a 

similar tendency [31]. 

 

Fig. 10. Smoke vs brake power 
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4. Conclusions 

A preheated TPME20 fuel was used to power a 5.2 kW CI 

engine. The impact of preheating the biodiesel on the engine's 

operating characteristics was investigated and compared with 

the typical diesel. The preheated TPME20's performance, com-

bustion, and emissions significantly improved. Preheating en-

hances atomization, fuel vaporization, air-fuel mixing and com-

bustion, which in turn enhances the engine's ability to run on 

biodiesel. The following sums up the findings of the present 

study: 

Preheating the biodiesel, 

- Raises BTE. 

- Lowers the BSFC. 

- Reduces smoke, HC, and CO emissions. 

- Increases NOx emissions levels. 

- Increases the in-cylinder pressure and heat release. 
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