Gazi University
Journal of Science

Proximity Coincidence Points for a Pair of Maps with Three Auxiliary Functions in Partially Ordered Metric Spaces

*Venkata Ravindranadh Babu Gutti ${ }^{1}$, Leta Bekere Kumssa ${ }^{2}$
1,2 Department of Mathematics, Andhra University, Visakhapatnam-530 003, India.

Article Info

Received: 02/11/2016 Accepted: 10/03/2017

Keywords

proximity coincidence point,
proximally increasing
map,
best proximity point, partially ordered set.

Abstract

In this paper, we establish proximity coincidence point results using three auxiliary functions, which need not be continuous, in partially ordered metric spaces for a pair of maps. We also discuss several corollaries and give illustrative examples in support of our results. The results presented in this paper generalize the results of Wangkeeree and Sisarat [17].

1. INTRODUCTION

The famous Banach's contraction principle is an important tool to assert the uniqueness of fixed point for selfmaps in complete metric spaces. When a map from a metric space into itself has no fixed points, it could be interesting to study the existence and uniqueness of some points that minimize the distance between an origin and its corresponding image. That is, it may be speculated to determine an element x for which the error $d(x, T x)$ is minimal, in the sense x and $T x$ are in close proximity to each other. This concept gives rise to the best proximity theory.

Let A be a nonempty subset of a metric space (X, d) and $f: A \rightarrow X$ is a map. If the fixed point equation $f x=x$ does not possess a solution, then $d(x, f x)>0$ for all $x \in A$. In such a situation, it is the aim of best proximity theory to find an element $x \in A$ such that $d(x, f x)$ is minimum in some sense. A point $x \in A$ is called best proximity point of $T: A \rightarrow B$ if $d(x, T x)=d(A, B)$ where $d(A, B):=\inf \{d(x, y):(x, y) \in A \times B\}$. A best proximity point becomes a fixed point if the underlying mapping is a selfmapping. Therefore, it can be concluded that best proximity point theorems generalize fixed point theorems in a natural way.

In recent years, the existence and convergence of best proximity points is an interesting topic of optimization theory which attracted the attention of many authors [1-3, 5-6, 12, 15]. The best proximity point evolves as a generalization of the concept of the best approximation. The authors [7, 9-11, 13-14] and reference therein obtained best proximity point theorems under certain contraction conditions for non-selfmaps.

2. PRELIMINARIES

We recall the following notations and definitions. Let (X, d, \preccurlyeq) be a partially ordered metric space and let A and B be nonempty subsets of X.

$$
\begin{aligned}
& A_{0}:=\{x \in A: d(x, y)=d(A, B) \text { for some } y \in B\} \\
& B_{0}:=\{y \in B: d(x, y)=d(A, B) \text { for some } x \in A\}
\end{aligned}
$$

Definition 2.1 [16] Let A and B be two nonempty subsets of a metric space (X, d) with $A_{0} \neq \emptyset$. Then the pair (A, B) is said to have the P-property, iffor any $x_{1}, x_{2} \in A_{0}$ and $y_{1}, y_{2} \in B_{0}$,

$$
\left.\begin{array}{c}
d\left(x_{1}, y_{1}\right)=d(A, B) \\
d\left(x_{2}, y_{2}\right)=d(A, B
\end{array}\right\} \Rightarrow d\left(x_{1}, x_{2}\right)=d\left(y_{1}, y_{1}\right)
$$

Definition 2.2 A mapping $T: A \rightarrow A$ is said to be increasing iffor all $x, y \in A, x \preccurlyeq y \Rightarrow T x \preccurlyeq T y$.
Definition 2.3 [8] Let (X, \preccurlyeq) be a partially ordered set and $F, g: X \rightarrow X$ be maps.
(i) F is called g-nondecreasing if $g x \leqslant$ gy implies $F x \leqslant F y$ for all $x, y \in X$.
(ii) F is called g-non-increasing if $g x \preccurlyeq$ gy implies $F y \preccurlyeq F x$ for all $x, y \in X$.

Definition 2.4 [6] A mapping $T: A \rightarrow B$ is said to be proximally increasing (nondecreasing) if for all $u_{1}, u_{2}, x_{1}, x_{2} \in A$,

$$
\left.\begin{array}{c}
x_{1} \preccurlyeq x_{2} \\
d\left(u_{1}, T x_{1}\right)=d(A, B) \\
d\left(u_{2}, T x_{2}\right)=d(A, B
\end{array}\right\} \Rightarrow u_{1} \preccurlyeq u_{2} .
$$

Similarly, a mapping $T: A \rightarrow B$ is said to be proximally decreasing (non-increasing) if for all u_{1}, u_{2}, x_{1}, $x_{2} \in A$,

$$
\left.\begin{array}{c}
x_{1} \leqslant x_{2} \\
d\left(u_{1}, T x_{1}\right)=d(A, B) \\
d\left(u_{2}, T x_{2}\right)=d(A, B
\end{array}\right\} \Rightarrow u_{2} \preccurlyeq u_{1} .
$$

Definition 2.5 [17] (g-proximally increasing). Suppose (X, \preccurlyeq) is a partially ordered set. Let $f: A \rightarrow B$ and $g: A \rightarrow A$ be maps. A map f is said to be g-proximally increasing iffor all x_{1}, x_{2}, y_{1}, $y_{2} \in A$,

$$
\left.\begin{array}{c}
g y_{1} \preccurlyeq g y_{2} \\
d\left(x_{1}, f y_{1}\right)=d(A, B) \\
d\left(x_{2}, f y_{2}\right)=d(A, B
\end{array}\right\} \Rightarrow x_{1} \preccurlyeq x_{2}
$$

Here we note that if g is an identity map of A, then clearly f is proximally increasing (nondecreasing) and if $A=B$, then f is g increasing (nondecreasing).

Definition 2.6 [17] (Proximity coincidence point). Let A and B be nonempty subsets of a metric space (X, d). Let $f: A \rightarrow B$ be a non-selfmap and $g: A \rightarrow A$ be a self map on A. A point $x \in A$ is said to be a proximity coincidence point of f and g if $d(g x, f x)=d(A, B)$.
In 2015, Wangkeeree and Sisarat [17] proved some proximity coincidence point for non-selfmap and selfmap in partially ordered metric space.
Theorem 2.7 [17] Let (X, \preccurlyeq) be a partially ordered set and suppose that there is a metric d on X such that (X, d) is a complete metric space. Let (A, B) be a pair of nonempty subsets of X. Assume that A_{0} and B_{0} are nonempty subsets of A and B respectively. Let $f: A \rightarrow B$ and $g: A \rightarrow A$ satisfy the following conditions.
(i) f is a g-proximally increasing and (A, B) satisfy the P-property,
(ii) $g\left(A_{0}\right)$ is closed and $f\left(A_{0}\right) \subseteq B_{0}, A_{0} \subseteq g\left(A_{0}\right)$,
(iii) $\psi(d(f x, f y)) \leq \alpha(d(g x, g y))-\beta(d(g x, g y))$ for all $x, y \in A$ such that $g x \preccurlyeq g y$, where $\psi, \alpha, \beta:[0, \infty) \rightarrow[0, \infty)$ are such that ψ is continuous and monotone nondecreasing, α is continuous and β is lower semi-continuous, $\psi(t)=0$ if and only if $t=0, \alpha(0)=\beta(0)=0$ and $\psi(t)-\alpha(t)+\beta(t)>0$ for all $t>0$,
(iv) there exist elements $x_{0}, x_{I} \in A_{0}$ such that $d\left(g x_{1}, f x_{0}\right)=d(A, B)$ and $g x_{0} \leqslant g x_{1}$.

Also, we assume that if any nondecreasing sequence $\left\{x_{n}\right\}$ in $g A_{0}$ converges to z, then $x_{n} \leqslant z$ for all $n \geq 0$.
Then there exists an element $x^{*} \in A$ such that $d\left(g x^{*}, f x^{*}\right)=d(A, B)$.
We denote by Ψ the set of all functions $\psi:[0, \infty) \rightarrow[0, \infty)$ such that
(i) ψ is nondecreasing,
(ii) $\psi(t)=0$ if and only if $t=0$ and
(iii) if $\left\{t_{n}\right\} \subseteq(0, \infty)$ is any bounded sequence such that $\lim _{n \rightarrow \infty} \psi\left(t_{n}\right)=0$, then $\lim _{n \rightarrow \infty} t_{n}=0$.

We denote by Θ the set of all functions $\varphi:[0, \infty) \rightarrow[0, \infty)$ such that
(i) φ is bounded on any bounded interval in $[0, \infty)$ and
(ii) φ is continuous at 0 and $\varphi(0)=0$.

In Section 3 of this paper, we prove our main results by using three auxiliary functions in which we drop the continuity assumption from the result of Wangkeeree and Sisarat [17], so that our result is more general. In Section 4, we draw some corollaries and provide examples in support of our results.

We state the following lemma, which we use in our main results.
Lemma 2.8. [4] Suppose that (X, d) is a metric space. Let $\left\{x_{n}\right\}$ be a sequence in X such that $d\left(x_{n}, x_{n+1}\right) \rightarrow 0$ as $n \rightarrow \infty$. If $\left\{x_{n}\right\}$ is not a Cauchy sequence, then there exists an $\varepsilon>0$ and sequences of positive integers $\left\{m_{k}\right\}$ and $\left\{n_{k}\right\}$ with $n_{k}>m_{k}>k$ such that $d\left(x_{m_{k}}, x_{n_{k}}\right) \geq \varepsilon$, $d\left(x_{m_{k}}, x_{n_{k}-1}\right)<\varepsilon$ and
(i) $\lim _{k \rightarrow \infty} d\left(x_{n_{k}-1}, x_{m_{k}+1}\right)=\varepsilon$
(ii) $\lim _{k \rightarrow \infty} d\left(x_{n_{k}}, x_{m_{k}}\right)=\varepsilon$
(iii) $\lim _{k \rightarrow \infty} d\left(x_{n_{k}-1}, x_{m_{k}}\right)=\varepsilon$
(iv) $\lim _{k \rightarrow \infty} d\left(x_{n_{k}}, x_{m_{k}+1}\right)=\varepsilon$.

3. MAIN RESULTS

Theorem 3.1 Let (X, d, \lessgtr) be a partially ordered complete metric space. Let (A, B) be a pair of nonempty subsets of X. Assume that A_{0} is a nonempty subset of A. Let $f: A \rightarrow B$ and $g: A \rightarrow A$ satisfy the following conditions:
(i) f is a g-proximally increasing and (A, B) satisfy the P-property,
(ii) $g\left(A_{0}\right)$ is closed and $f\left(A_{0}\right) \subseteq B_{0}, A_{0} \subseteq g\left(A_{0}\right)$,
(iii) there exist $\psi \in \Psi$ and $\varphi, \theta \in \Theta$ with the condition

$$
\begin{equation*}
\psi(t)-\varlimsup \overline{\operatorname{lom}} \varphi\left(x_{n}\right)+\underline{\lim } \theta\left(x_{n}\right)>0, \tag{1}
\end{equation*}
$$

where $\left\{x_{n}\right\}$ is any sequence in $[0, \infty)$ with $x_{n} \rightarrow t>0$ and

$$
\begin{equation*}
\psi(d(f x, f y)) \leq \varphi(d(g x, g y))-\theta(d(g x, g y)) \tag{2}
\end{equation*}
$$

for all $x, y \in A_{0}$ with $g x \preccurlyeq g y$ and also,

$$
\begin{equation*}
\psi(x) \leq \varphi(y) \Rightarrow x \leq y \tag{3}
\end{equation*}
$$

Also, suppose that if $\left\{g x_{n}\right\}$ is a nondecreasing sequence in $g A_{0}$ such that $g x_{n} \rightarrow g z$, then $g x_{n} \leqslant g z$ for all $n \geq 0$. Furthermore, assume that there exist elements $x_{0}, x_{1} \in A_{0}$ such that $d\left(g x_{1}, f x_{0}\right)=d(A, B)$ and $g x_{0} \leqslant g x_{1}$.
Then f and g have proximity coincidence point.
Proof. By our assumpsion, there exist $x_{0}, x_{1} \in A_{0}$ such that

$$
\begin{equation*}
d\left(g x_{1}, f x_{0}\right)=d(A, B) \text { and } g x_{0} \leqslant g x_{1} . \tag{4}
\end{equation*}
$$

As $x_{1} \in A_{0}$ so $f\left(x_{1}\right) \subseteq B_{0}$. Hence there exists $z \in A$ such that $d\left(z, f x_{1}\right)=d(A, B)$. Therefore $z \in A_{0}$. Since $A_{0} \subseteq g\left(A_{0}\right)$, there exists $x_{2} \in A_{0}$ such that $z=g x_{2}$. Hence

$$
\begin{equation*}
d\left(g x_{2}, f x_{1}\right)=d(A, B) . \tag{5}
\end{equation*}
$$

By g-proximally increasing property of f, from (4) and (5), we obtain $g x_{1} \leqslant g x_{2}$. On continuing this process, we get a sequence $\left\{\mathrm{g} x_{n}\right\}$ in $g A_{0}$ such that

$$
\begin{equation*}
d\left(g x_{n+1}, f x_{n}\right)=d(A, B) \text { for all } n \geq 0 \tag{6}
\end{equation*}
$$

satisfying

$$
\begin{equation*}
g x_{0} \leqslant g x_{1} \leqslant \cdots \preccurlyeq g x_{n} \leqslant g x_{n+1} \leqslant \cdots . \tag{7}
\end{equation*}
$$

By the P-property of (A,B), from (4) and (5), we obtain $d\left(g x_{1}, g x_{2}\right)=d\left(f x_{0}, f x_{1}\right)$.
On continuing this step, we have,

$$
\begin{equation*}
d\left(g x_{n}, g x_{n+1}\right)=d\left(f x_{n-1}, f x_{n}\right) \text { for all } n \geq 0 . \tag{8}
\end{equation*}
$$

As $g x_{n} \preccurlyeq g x_{n+1}$ for all $n \geq 0$, by applyin the inequality (2), we have

$$
\begin{aligned}
\psi\left(d\left(g x_{n}, g x_{n+1}\right)\right)=\psi\left(d\left(f x_{n-1}, f x_{n}\right)\right) & \leq \varphi\left(d\left(g x_{n-1}, g x_{n}\right)\right)-\theta\left(d\left(g x_{n-1}, g x_{n}\right)\right) \\
& \leq \varphi\left(d\left(g x_{n-1}, g x_{n}\right)\right) .
\end{aligned}
$$

This implies, by (3), that $d\left(g x_{n}, g x_{n+1}\right) \leq d\left(g x_{n-1}, g x_{n}\right)$ and hence $\left\{d\left(g x_{n}, g x_{n+1}\right)\right\}$ is a decreasing sequence of non-negative real numbers. Therefore there exists $r \geq 0$ such that

$$
\lim _{n \rightarrow \infty} d\left(g x_{n}, g x_{n+1}\right)=r .
$$

Since $d\left(g x_{n}, g x_{n+1}\right)$ is a decreasing sequence which converges to r, we have $r \leq d\left(g x_{n}, g x_{n+1}\right)$ for all $n \geq 0$. From nondecreasing property of ψ, we get

$$
\psi(r) \leq \psi\left(d\left(g x_{n}, g x_{n+1}\right)\right)
$$

Suppose $r>0$. By applying the inequality (2), using (7) and (8), it follows that

$$
\begin{equation*}
\psi(r) \leq \psi\left(d\left(g x_{n}, g x_{n+1}\right)\right)=\psi\left(d\left(f x_{n-1}, f x_{n}\right)\right) \leq \varphi\left(d\left(g x_{n-1}, g x_{n}\right)\right)-\theta\left(d\left(g x_{n-1}, g x_{n}\right)\right) . \tag{9}
\end{equation*}
$$

On taking the limit supremum in (9), we have

$$
\psi(r)-\overline{\lim } \varphi\left(d\left(g x_{n-1}, g x_{n}\right)\right)+\underline{\lim } \theta\left(d\left(g x_{n-1}, g x_{n}\right)\right) \leq 0,
$$

a contradiction. Hence

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(g x_{n}, g x_{n+1}\right)=0 \tag{10}
\end{equation*}
$$

We now show that the sequence $\left\{\mathrm{g} x_{n}\right\}$ is Cauchy. Let $\mathrm{g} x_{n}=y_{n}$. Suppose that $\left\{\mathrm{y}_{n}\right\}$ is not a Cauchy sequence. Then by Lemma 2.8, then there exists an $\varepsilon>0$ and sequences of positive integers $\left\{m_{k}\right\}$ and $\left\{n_{k}\right\}$ such that n_{k} is the smallest index with $n_{k}>m_{k}>k$,

$$
\begin{equation*}
d\left(y_{m_{k}}, y_{n_{k}}\right) \geq \varepsilon \text { and } d\left(y_{m_{k}}, y_{n_{k}-1}\right)<\varepsilon \tag{11}
\end{equation*}
$$

satisfying $\lim _{k \rightarrow \infty} d\left(y_{m_{k}}, y_{n_{k}}\right)=\varepsilon$.
From (11) and by the nondecreasing property of ψ, we obtain $\psi(\varepsilon) \leq \psi\left(d\left(y_{m_{k}}, y_{n_{k}}\right)\right)$. Since $y_{m_{k}} \leq y_{n_{k}}$ for $k \geq 0$, by applying the inequality (2) and by using (8), we have

$$
\psi(\varepsilon) \leq \psi\left(d\left(y_{m_{k}}, y_{n_{k}}\right)\right)=\psi\left(d\left(f y_{m_{k}-1}, f y_{n_{k}-1}\right)\right) \leq \varphi\left(d\left(y_{m_{k}-1}, y_{n_{k}-1}\right)\right)-\theta\left(d\left(y_{m_{k}-1}, y_{n_{k}-1}\right)\right)
$$

On taking the limit supremum as $k \rightarrow \infty$ in the above inequality, we obtain
$\psi(\epsilon) \leq \varlimsup_{k \rightarrow \infty} \varphi\left(d\left(y_{m_{k}}, y_{n_{k}}\right)\right)+\underline{\lim }_{k \rightarrow \infty} \theta\left(d\left(y_{m_{k}}, y_{n_{k}}\right)\right) \leq 0$,
a contradiction. Hence $\left\{y_{n}\right\}$ is a Cauchy sequence. i.e. $\left\{g x_{n}\right\}$ is a Cauchy sequence in $g\left(A_{0}\right)$.
Since $g\left(A_{0}\right)$ is a closed subset of a complete metric space X and hence complete, so that there exists $x^{*} \in A_{0}$ such that $g x_{n} \rightarrow g x^{*} \in g\left(A_{0}\right)$. By the hypothesis of the theorem, we have $g x_{n} \leqslant g x^{*}$ for all $n \in \mathbb{N}$. Since $x^{*} \in A_{0}$, we have $f x^{*} \in f\left(A_{0}\right) \subseteq B_{0}$. Therefore there exists a point $z \in A_{0}$ such that

$$
\begin{equation*}
d\left(z, f x^{*}\right)=d(A, B) \tag{12}
\end{equation*}
$$

Since the pair (A,B) satisfy the P-property, from (12) and (6), we have $d\left(g x_{n+1}, z\right)=d\left(f x_{n}, f x^{*}\right)$.
By appling the inequality (2), it follows that

$$
\begin{equation*}
\psi\left(d\left(g x_{n+1}, z\right)\right)=\psi\left(d\left(f x_{n}, f x^{*}\right)\right) \leq \varphi\left(d\left(g x_{n}, g x^{*}\right)\right)-\theta\left(d\left(g x_{n}, g x^{*}\right)\right) \tag{13}
\end{equation*}
$$

On taking the limit as $n \rightarrow \infty$ in (13), using the fact that $g x_{n} \rightarrow g x^{*}$ as $n \rightarrow \infty$, by the property (ii) of φ and θ and the property of ψ, we optain

$$
\lim _{n \rightarrow \infty} \psi\left(d\left(g x_{n+1}, z\right)\right)=0
$$

Therefore by hypothesis $(i v)$, we get $d\left(g x_{n+1}, z\right) \rightarrow 0$ as $n \rightarrow \infty$. i.e. $\lim _{n \rightarrow \infty} g x_{n+1}=z$ which implies
by the uniqueness of limit, that $z=g x^{*}$. Hence, we have $d\left(g x^{*}, f x^{*}\right)=d(A, B)$. Therefore x^{*} is the proximity coincidence point of f and g.

Theorem 3.2 In addition to the hypotheses of Theorem 3.1, assume the following:
Condition H:Suppose that g is one-to-one and for every $x, y \in A$ there exists $u \in A_{0}$ such that gu is comparable to $g x$ and $g y$. Then f and g have a unique proximity coincidence point.

Proof. In view of the proof of Theorem 3.1, the set of proximity coincidence points of f and g is nonempty. Suppose that $x, y \in A$ are the two distinct proximity coincidence points of f and g That is,

$$
\begin{equation*}
d(g x, f x)=d(A, B) \text { and } d(g y, f y)=d(A, B) \tag{14}
\end{equation*}
$$

Case (i): $g x$ is comparable to $g y$. i.e., either $g x \preccurlyeq g y$ or $g y \preccurlyeq g x$.
We assume, without loss of generality, that $g x \preccurlyeq g y$. Since (A,B) satisfies the P-property, from (14), it follows that

$$
\begin{equation*}
d(g x, g y)=d(f x, f y) \tag{15}
\end{equation*}
$$

Since $g x \leqslant g y$, by the inequality (2), we get

$$
\psi(d(g x, g y))=\psi(d(f x, f y)) \leq \varphi(d(g x, g y))-\theta(d(g x, g y))
$$

Since x and y are distinct and g is one-to-one, it follows that $d(g x, g y)>0$. Therefore

$$
\psi(d(g x, g y))-\varlimsup \overline{\lim } \varphi(d(g x, g y))+\underline{\lim } \theta(d(g x, g y)) \leq 0
$$

a contradiction. Hence $g x=g y$. This implies that $x=y$.
Case (ii): $g x$ is not comparable to $g y$.
By assumption, there exists $u \in A_{0}$ such that $g u$ is comparable to $g x$ and $g y$. Now, we set $g u_{0}=g u$. Suppose that either

$$
\begin{equation*}
g u_{0} \succcurlyeq g x \text { or } g u_{0} \leqslant g x \tag{16}
\end{equation*}
$$

We assume, without loss of generality, that

$$
\begin{equation*}
g u_{0} \leqslant g x \tag{17}
\end{equation*}
$$

As $u_{0}=u \in A$, so $f\left(A_{0}\right) \subseteq B_{0}$. Hence there exists $z \in A$ such that $d\left(z, f u_{0}\right)=d(A, B)$. Therfore $z \in A_{0}$. Since $A_{0} \subseteq g\left(A_{0}\right)$, there exists $u_{1} \in A_{0}$ such that $z=g u_{1}$. Hence

$$
\begin{equation*}
d\left(z, f u_{0}\right)=d\left(g u_{1}, f u_{0}\right)=d(A, B) \tag{18}
\end{equation*}
$$

Since f is g-proximally inceasing, from (14), (17) and (18), we obtain

$$
g u_{1} \leqslant g x
$$

By using the P-property of the pair (A, B), from (14) and (18), we have

$$
d\left(g x, g u_{1}\right)=d\left(f x, f u_{0}\right)
$$

On continuing this process, we can constract a sequence $\left\{g u_{n}\right\}$ in $g A_{0}$ such that

$$
\begin{equation*}
d\left(g x, g u_{n+1}\right)=d\left(f x, f u_{n}\right) \text { and } g u_{n} \preccurlyeq g x \text { for all } n \geq 0 \tag{19}
\end{equation*}
$$

Hence by using (19) and the inequality (2), we have

$$
\begin{align*}
\psi\left(d\left(g x, g u_{n+1}\right)\right)=\psi\left(d\left(f x, f u_{n}\right)\right) & \leq \varphi\left(d\left(g x, g u_{n}\right)\right)-\theta\left(d\left(g x, g u_{n}\right)\right) \\
& \leq \varphi\left(d\left(g x, g u_{n}\right)\right. \tag{20}
\end{align*}
$$

Therefore by condition (3), it follows that $d\left(g x, g u_{n+1}\right) \leq d\left(g x, g u_{n}\right)$ so that $\left\{d\left(g x, g u_{n}\right)\right\}$ is a decreasing sequence of non-negative real numbers. Hence there exists $t \geq 0$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(g x, g u_{n+1}\right)=t \tag{21}
\end{equation*}
$$

Suppose that $t>0$. Since $\left\{d\left(g x, g x_{n}\right)\right\}$ is a decreasing sequence which converges to t, we have $t \leq d\left(g x, g u_{n+1}\right)$ for all $n \geq 0$. Hence by nondecreasing property of ψ, it follows that

$$
\begin{equation*}
\psi(t) \leq \psi\left(d\left(g x, g x_{n+1}\right)\right) \tag{22}
\end{equation*}
$$

Combinig (20), (22) and on taking limit supremum, we get
$\psi(t) \leq \lim \sup \varphi\left(d\left(g x, g u_{n}\right)+\lim \sup \left(-\theta\left(d\left(g x, g u_{n}\right)\right)\right)\right.$. i.e.,
$\psi(t)-\lim \sup \varphi\left(d\left(g x, g u_{n}\right)+\lim \inf \left(\theta\left(d\left(g x, g u_{n}\right)\right)\right) \leq 0\right.$,
which is a contradiction. Hence $t=0$.
Similarly, we can show that $\lim _{n \rightarrow \infty} d\left(g y, g u_{n}\right)=0$. Hence by triange inequality, we have $d(g x, g y) \leq d\left(g x, g u_{n}\right)+d\left(g u_{n}, g y\right) \rightarrow 0$ as $n \rightarrow \infty$. Hence $g x=g y$. Since g is one-to-one, we have $x=y$.

4. COROLLARIES AND EXAMPLES

If ψ is the identity mapping and $\theta(t)=0$ for all $t \in[0, \infty)$ in Theorem 3.1, we have the following.
Corollary 4.1 Let (X, d, \preccurlyeq) be a partially ordered complete metric space. Let (A, B) be a pair of nonempty subsets of X. Assume that A_{0} is a nonempty subset of A. Let $f: A \rightarrow B$ and $g: A \rightarrow A$ satisfy the following conditions:
(i) f is a g-proximally increasing and (A, B) satisfy the P-property,
(ii) $g\left(A_{0}\right)$ is closed, $f\left(A_{0}\right) \subseteq B_{0}$ and $A_{0} \subseteq g\left(A_{0}\right)$,
(iii) there exists $\varphi \in \Theta$ with the condition

$$
\begin{equation*}
\varlimsup \overline{\lim } \varphi\left(x_{n}\right)<t \tag{23}
\end{equation*}
$$

where $\left\{x_{n}\right\}$ is any sequence in $[0, \infty)$ with $x_{n} \rightarrow t>0$ and

$$
\begin{equation*}
d(f x, f y) \leq \varphi(d(g x, g y)) \tag{24}
\end{equation*}
$$

for all $x, y \in A_{0}$ with $g x \leqslant g y$.
Also, suppose that if $\left\{g x_{n}\right\}$ is a nondecreasing sequence in $g A_{0}$ such that $g x_{n} \rightarrow g z$, then $g x_{n} \leqslant g z$ for all $n \geq 0$. Furthermore, assume that there exist elements $x_{0}, x_{1} \in A_{0}$ such that $d\left(g x_{1}, f x_{0}\right)=d(A, B)$ and $g x_{0} \leqslant g x_{1}$.
Then fand g have proximity coincidence point.
If $\psi(t)=\varphi(t)$ for all $t \in[0, \infty)$ in Theorem 3.1, we have the following.

Corollary 4.2 Let (X, d, \preccurlyeq) be a partially ordered complete metric space. Let (A, B) be a pair of nonempty subsets of X. Assume that A_{0} is a nonempty subset of A. Let $f: A \rightarrow B$ and $g: A \rightarrow A$ satisfy the following conditions:
(i) f is a g-proximally increasing and (A, B) satisfy the P-property,
(ii) $g\left(A_{0}\right)$ is closed, $f\left(A_{0}\right) \subseteq B_{0}$ and $A_{0} \subseteq g\left(A_{0}\right)$,
(iii) there exists $\psi \in \Psi$ and $\varphi \in \Theta$ with the condition

$$
\begin{equation*}
\varlimsup \tag{24}
\end{equation*}
$$

where $\left\{x_{n}\right\}$ is any sequence in $[0, \infty)$ with $x_{n} \rightarrow t>0$ and

$$
\begin{equation*}
\psi(d(f x, f y)) \leq \psi(d(g x, g y))-\theta(d(g x, g y)) \tag{25}
\end{equation*}
$$

for all $x, y \in A_{0}$ with $g x \leqslant g y$.
Also, suppose that if $\left\{\mathrm{g} x_{n}\right\}$ is a nondecreasing sequence in $g A_{0}$ such that $g x_{n} \rightarrow g z$, then $g x_{n} \leqslant g z$ for all $n \geq 0$. Furthermore, assume that there exist elements $x_{0}, x_{1} \in A_{0}$ such that $d\left(g x_{1}, f x_{0}\right)=d(A, B)$ and $g x_{0} \leqslant g x_{1}$.
Then f and g have proximity coincidence point.
If ψ and φ are identity mappings and $\theta(t)=(1-k) t$, where $0 \leq k<1$ in Theorem 3.1, we have the following.

Corollary 4.3 Let (X, d, \preccurlyeq) be a partially ordered complete metric space. Let (A, B) be a pair of nonempty subsets of X. Assume that A_{0} is a nonempty subset of A. Let $f: A \rightarrow B$ and $g: A \rightarrow A$ satisfy the following conditions:
(i) f is a g-proximally increasing and (A, B) satisfy the P-property,
(ii) $g\left(A_{0}\right)$ is closed, $f\left(A_{0}\right) \subseteq B_{0}$ and $A_{0} \subseteq g\left(A_{0}\right)$.

Suppose that there exists $k \in[0,1)$ such that for all $x, y \in A_{0}$ with $g x \preccurlyeq g y$,

$$
\begin{equation*}
d(f x, f y) \leq k d(g x, g y), \quad \text { for all } x, y \in A_{0} . \tag{26}
\end{equation*}
$$

Also, suppose that if $\left\{\mathrm{g} x_{n}\right\}$ is a nondecreasing sequence in $g A_{0}$ such that $g x_{n} \rightarrow g z$, then $g x_{n} \leqslant g z$ for all $n \geq 0$. Furthermore, assume that there exist elements $x_{0}, x_{1} \in A_{0}$ such that $d\left(g x_{1}, f x_{0}\right)=d(A, B)$ and $g x_{0} \leqslant g x_{1}$.
Then f and g have proximity coincidence point.
Since, for any nonempty subset A of X, the pair (A, A) satisfies the P-property if $A=B$ in Theorem 3.1, we have the following fixed point result.

Corollary 4.4 Let (X, d, \preccurlyeq) be a partially ordered complete metric space. Let A be a nonempty subset of X. Let $f: A \rightarrow A$ and $g: A \rightarrow A$ satisfy the following conditions:
(i) f is a g-nondecreasing,
(ii) $g(A)$ is closed and $f(A) \subseteq g(A)$,
(iii) there exist $\psi \in \Psi$ and $\varphi, \theta \in \Theta$ with the condition

$$
\begin{equation*}
\psi(t)-\varlimsup \varphi\left(x_{n}\right)+\underline{\lim } \theta\left(x_{n}\right)>0, \tag{27}
\end{equation*}
$$

where $\left\{x_{n}\right\}$ is any sequence in $[0, \infty)$ with $x_{n} \rightarrow t>0$ and

$$
\begin{equation*}
\psi(d(f x, f y)) \leq \varphi(d(g x, g y))-\theta(d(g x, g y)) \tag{28}
\end{equation*}
$$

for all $x, y \in A$ with $g x \preccurlyeq g y$ and also, $\psi(x) \leq \varphi(y) \Rightarrow x \leq y$.
Also, suppose that if $\left\{\mathrm{g} x_{n}\right\}$ is a nondecreasing sequence in $g A$ such that $g x_{n} \rightarrow g z$, then $g x_{n} \leqslant g z$ for all $n \geq 0$. Furthermore, assume that there exists an element $x_{0} \in A$ such that $g x_{0} \preccurlyeq f x_{0}$. Then f and g have a coincidence point in A.

If ψ is the identity mapping and $\theta(t)=0$ for all $t \in[0, \infty)$ in Corollary 4.4 , we have the following.
Corollary 4.5 Let (X, d, \preccurlyeq) be a partially ordered complete metric space. Let A be a nonempty subset of X. Let $f: A \rightarrow A$ and $g: A \rightarrow A$ satisfy the following conditions:
(i) f is a g-nondecreasing,
(ii) $g(A)$ is closed, $f(A) \subseteq g(A)$,
(iii) there exists $\varphi \in \Theta$ with the condition

$$
\begin{equation*}
\overline{\lim } \varphi\left(x_{n}\right)<t \tag{29}
\end{equation*}
$$

where $\left\{x_{n}\right\}$ is any sequence in $[0, \infty)$ with $x_{n} \rightarrow t>0$ and

$$
\begin{equation*}
d(f x, f y) \leq \varphi(d(g x, g y)) \tag{30}
\end{equation*}
$$

for all $x, y \in A_{0}$ with $g x \leqslant g y$.
Also, suppose that if $\left\{\mathrm{g} x_{n}\right\}$ is a nondecreasing sequence in $g A$ such that $g x_{n} \rightarrow g z$, then $g x_{n} \leqslant g z$ for all $n \geq 0$. Furthermore, assume that there exists an element $x_{0} \in A$ such that $g x_{0} \preccurlyeq f x_{0}$. Then f and g have a coincidence point in A.

If $\psi(t)=\varphi(t)$ for all $t \in[0, \infty)$ in Corollary 4.4, we have the following.
Corollary 4.6 Let (X, d, \preccurlyeq) be a partially ordered complete metric space. Let A be a nonempty subset of X. Let $f: A \rightarrow A$ and $g: A \rightarrow A$ satisfy the following conditions:
(i) f is a g-nondecreasing,
(ii) $g(A)$ is closed and $f(A) \subseteq g(A)$,
(iii) there exist $\psi \in \Psi$ and $\varphi \in \Theta$ with the condition

$$
\begin{equation*}
\underline{\lim } \theta\left(x_{n}\right)>0, \tag{31}
\end{equation*}
$$

where $\left\{x_{n}\right\}$ is any sequence in $[0, \infty)$ with $x_{n} \rightarrow t>0$ and

$$
\begin{equation*}
\psi(d(f x, f y)) \leq \psi(d(g x, g y))-\theta(d(g x, g y)) \tag{32}
\end{equation*}
$$

for all $x, y \in A$ with $g x \preccurlyeq g y$ and also, $\psi(x) \leq \psi(y) \Rightarrow x \leq y$.
Also, suppose that if $\left\{g x_{n}\right\}$ is a nondecreasing sequence in $g A$ such that $g x_{n} \rightarrow g z$, then $g x_{n} \leqslant g z$ for all $n \geq 0$. Furthermore, assume that there exists an element $x_{0} \in A$ such that $g x_{0} \preccurlyeq f x_{0}$. Then f and g have a coincidence point in A.

If ψ and φ are identity mappings and $\theta(t)=(1-k) t$, where $0 \leq k<1$ in Corollary 4.4, we have the following.

Corollary 4.7 Let (X, d, \preccurlyeq) be a partially ordered complete metric space. Let A be a nonempty subset of X. Let $f: A \rightarrow A$ and $g: A \rightarrow A$ satisfy the following conditions:
(i) f is a g-nondecreasing,
(ii) $g(A)$ is closed and $f(A) \subseteq g(A)$,
(iii) there exists $k \in[0,1)$ such that for all $x, y \in A$ with $g x \preccurlyeq g y$,

$$
\begin{equation*}
d(f x, f y) \leq k d(g x, g y) \tag{33}
\end{equation*}
$$

Also, suppose that if $\left\{\mathrm{g} x_{n}\right\}$ is a nondecreasing sequence in $g A$ such that $g x_{n} \rightarrow g z$, then $g x_{n} \leqslant g z$ for all $n \geq 0$. Furthermore, assume that there exists an element $x_{0} \in A$ such that $g x_{0} \preccurlyeq f x_{0}$.
Then f and g have a coincidence point in A.
The following example is in support of Theorem 3.1.
Example 4.8 Let $X=[0,3] \times[0,3]$ with $d(x, y)=\left|x_{1}-y_{1}\right|+\left|x_{2}-y_{2}\right|$, where $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$. We define a partial order \leqslant on X by:

$$
\begin{aligned}
& \preccurlyeq:=\left\{\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right) \in X \times X \mid x_{1}=y_{1}, x_{2}=y_{2}\right\} \cup\left\{\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right) \in X \times X \mid x_{1}=y_{1}\right. \\
& \left.=0, x_{2}, y_{2} \in(0,1], x_{2} \geq y_{2}\right\} \text {. } \\
& \Lambda \varepsilon \tau A=\{(0, x): 0 \leq x \leq 3\}, \quad B=\{(1, x): 0 \leq x \leq 3\}, \\
& A_{0}=\{(0, x): 0 \leq x \leq 1\}, \quad B_{0}=\{(1, x): 0 \leq x \leq 1\} .
\end{aligned}
$$

We define functions $f: A \rightarrow B$ and $g: A \rightarrow A$ by
$f(0, x)=\left(1, \frac{x^{2}}{2+x}\right)$ and $g(0, x)=\left(1, \frac{3 x}{2+x}\right)$.
Clearly $d(A, B)=1, f\left(A_{0}\right) \subseteq B_{0}, g\left(A_{0}\right)$ is closed and $A_{0} \subseteq g\left(A_{0}\right)$. We now show that the pair (A,B) satisfies the P-property. For this purpose, let $(0, x),(0, y) \in A_{0}$ and $(1, u),(1, v) \in B_{0}$ such that

$$
\begin{align*}
& d((0, x),(1, u))=d(A, B)=1 \text { and } \tag{34}\\
& d((0, x),(1, u))=d(A, B)=1 . \tag{35}
\end{align*}
$$

Hence from (34) and (35), we have $x=u$ and $y=v$. This implies that
$d((0, x),(0, y))=d((0, u),(0, v))=d((1, u),(1, v))$.
Hence the pair (A, B) satisfies the P-property.
Now, we show that f is g-proximally increasing. In this case, let $(0, x),(0, y),(0, u)$ and $(0, v) \in A$ such that

$$
\left.\begin{array}{c}
g(0, y) \leqslant g(0, v) \\
d((0, x), f(0, y))=1 \\
d((0, u), f(0, v))=1
\end{array}\right\}
$$

Since $g(0, y) \preccurlyeq g(0, v)$, it follows that

$$
\begin{align*}
\left(0, \frac{3 y}{2+y}\right) & \leqslant\left(0, \frac{3 v}{2+v}\right) \Leftrightarrow\left(0, \frac{3 y}{2+y}\right) \geq\left(0, \frac{3 v}{2+v}\right) \Leftrightarrow y \geq v \\
& \Leftrightarrow 2 y^{2}+v y^{2} \geq 2 v^{2}+y v^{2} \Leftrightarrow \frac{y^{2}}{2+y} \geq \frac{v^{2}}{2+v^{*}} . \tag{36}
\end{align*}
$$

From $d((0, x), f(0, y))=d\left((0, x),\left(1, \frac{y^{2}}{2+y}\right)\right)=1$, we have

$$
\begin{equation*}
x=\frac{y^{2}}{2+y} \tag{37}
\end{equation*}
$$

From $d((0, u), f(0, v))=d\left((0, u),\left(1, \frac{v^{2}}{2+v}\right)\right)=1$, we have

$$
\begin{equation*}
u=\frac{v^{2}}{2+v} \tag{38}
\end{equation*}
$$

By (36), (37) and (38), we obtain $x \geq u \Leftrightarrow(0, x) \preccurlyeq(0, u)$. Hence f is g-proximally increasing.
We choose $x_{0}=\left(0, \frac{1}{2}\right), x_{1}=\left(0, \frac{2}{29}\right) \in A_{0}$ such that $d\left(g\left(0, \frac{2}{29}\right), f\left(0, \frac{1}{2}\right)\right)=d(A, B)$ and

$$
g\left(0, \frac{1}{2}\right) \preccurlyeq g\left(0, \frac{2}{29}\right)
$$

We define functions $\psi, \varphi, \theta:[0, \infty) \rightarrow:[0, \infty)$ by

$$
\psi(t)=\left\{\begin{array}{l}
\frac{7}{8} t \quad \text { if } t \in[0,1] \\
\frac{3}{2} t \text { if } t>1,
\end{array} \quad \varphi(t)=\left\{\begin{array}{c}
\frac{5}{6} t \quad \text { if } t \in[0,1] \\
\frac{1}{2} t \text { if } t>1
\end{array} \text { and } \quad \theta(t)= \begin{cases}\frac{1}{16} t \quad \text { if } t \in[0,1] \\
\frac{1}{8} t \text { if } t>1\end{cases}\right.\right.
$$

Let $(0, x),(0, y) \in A$ such that $g(0, x) \preccurlyeq g(0, y)$. i.e., necessarily $x, y \in(0,1]$. Hence

$$
\begin{aligned}
\psi(d(f(0, x), f(0, y))) & =\psi\left(d\left(\left(1, \frac{x^{2}}{2+x}\right),\left(1, \frac{y^{2}}{2+y}\right)\right)\right)=\psi\left(\frac{2 x^{2}+x^{2} y-2 y^{2}-y^{2} x}{(2+x)(2+y)}\right) \\
& =\frac{7}{8}\left(\frac{2 x^{2}+x^{2} y-2 y^{2}-y^{2} x}{(2+x)(2+y)}\right)=\frac{7}{8}\left(\frac{2 x+2 y+x y)(x-y)}{(2+x)(2+y)}\right) \leq \frac{37}{8} \frac{(x-y)}{(2+x)(2+y)} \\
& =\frac{5}{6}\left(\frac{6(x-y)}{(2+x)(2+y)}-\frac{1}{16}\left(\frac{6(x-y)}{(2+x)(2+y)}\right)\right. \\
& =\varphi(d(g(0, x), g(0, y)))-\theta(d(g(0, x), g(0, y)))
\end{aligned}
$$

Hence the inequality (2) holds. Therefore the functions ψ, φ, θ, f and g satisfy all the conditions of Theorem 3.1 and $(0,0),(0,3)$ are the proximity coincidence points of f and g.

Here we observe that $g(0,2)$ and $g\left(0, \frac{5}{6}\right)$ are not comparable, but there is no $u \in A$ such that $g(u)$ is comparable to both $g(0,2)$ and $g\left(0, \frac{5}{6}\right)$. Therefore condition H in Theorem 3.2 fails to hold and f and g have more than one proximity coincidence point.

Remark 4.9 The functions ψ, φ and θ in Example 4.8 are not continuous, so that Theorem 2.7 is not applicable. Hence our result is more general than the result of Wangkeeree and Sisarat [17] in which continuous control functions are considered.

The following example is in support of Theorem 3.2.
Example 4.10 Let $X=\left[0, \frac{1}{2}\right] \times\left[0, \frac{1}{2}\right] \cup\{(0,1),(0,2),(1,1),(1,2)\}$, with the Euclidean metric d. We define a partial order \leqslant on X by

```
\preccurlyeq:={((\mp@subsup{x}{1}{},\mp@subsup{x}{2}{}),(\mp@subsup{y}{1}{},\mp@subsup{y}{2}{}))\inX\timesX|\mp@subsup{x}{1}{}=\mp@subsup{y}{1}{},\mp@subsup{x}{2}{}=\mp@subsup{y}{2}{}}\cup{((\mp@subsup{x}{1}{},\mp@subsup{x}{2}{}),(\mp@subsup{y}{1}{},\mp@subsup{y}{2}{}))\inX\timesX|\mp@subsup{x}{1}{}=\mp@subsup{y}{1}{}=0,
```



```
x
```

Let $A=\left\{(0, x): 0 \leq x \leq \frac{1}{2}\right\} \cup\{(0,1),(0,2)\}=A_{0}$ and $B=\left\{(1, x): 0 \leq x \leq \frac{1}{2}\right\} \cup\{(1,1),(1,2)\}=B_{0}$.
We define $f: A \rightarrow B$ and $g: A \rightarrow A$ by

$$
\begin{gathered}
f(0, x)=\left(1, \frac{x^{2}}{2}\right) \text { for all } 0 \leq x \leq \frac{1}{2}, f(0,1)=f(0,2)=\left(1, \frac{1}{4}\right) \text { and } g(0, x)=\left(0,2 x^{2}\right) \text { for all } 0 \leq x \leq \frac{1}{2}, \\
\qquad g(0,1)=(0,1), \quad g(0,2)=(0,2) .
\end{gathered}
$$

Clearly $\left.d(A, B)=1, f\left(A_{0}\right) \subseteq B_{0}\right)$ and $A_{0} \subseteq g A_{0}$. We choose $x_{0}=\left(0, \frac{1}{2}\right)$ and $x_{1}=\left(0, \frac{1}{4}\right)$. Then clearly $d\left(g\left(0, \frac{1}{4}\right), f\left(0, \frac{1}{2}\right)\right)=d(A, B)$ and $g\left(0, \frac{1}{2}\right) \leqslant g\left(0, \frac{1}{4}\right)$.

We now show that the pair (A, B) satisfies P-property. For this purpose, let $\left(0, x_{1}\right),\left(0, y_{1}\right) \in A_{0}$ and $\left(1, u_{1}\right),(1, v) \in B_{0}$ such that $d\left(\left(0, x_{1}\right),\left(1, u_{1}\right)\right)=d(A, B)=1$ and $d\left(\left(0, y_{1}\right),\left(1, v_{1}\right)\right)=d(A, B)=1$. Then $x_{1}=u_{1}$ and $y_{1}=v_{1}$. Hence $d\left(\left(0, x_{1}\right),\left(0, y_{1}\right)\right)=d\left(\left(1, u_{1}\right),\left(1, v_{1}\right)\right)$ so that the pair (A, B) satisfies the P-property.

Now, we show that f is g-proximally increasing on A. In this case, let $(0, x),(0, u)$ and $(0, v) \in A$ such that

$$
\left.\begin{array}{c}
g(0, y) \preccurlyeq g(0, v) \\
d((0, x), f(0, y))=1 \\
d((0, u), f(0, v))=1
\end{array}\right\}
$$

Case (i): $y, v \in\left[0, \frac{1}{2}\right]$.

$$
\begin{equation*}
g(0, y) \preccurlyeq g(0, v) \Leftrightarrow y^{2} \geq v^{2} \tag{39}
\end{equation*}
$$

From $d((0, x), f(0, y))=1$, we get

$$
\begin{equation*}
x=\frac{y^{2}}{2} . \tag{40}
\end{equation*}
$$

Similarly, from $d((0, u), f(0, v))=1$, we get

$$
\begin{equation*}
u=\frac{v^{2}}{2} . \tag{41}
\end{equation*}
$$

From (39), (40) and (41), we obtain $(0, x) \leqslant(0, u)$.
Case (ii): $g(0,1) \leqslant g(0,0)$.
If $d((0, x), f(0,1))=1$, we obtain

$$
\begin{equation*}
x=\frac{1}{4} . \tag{42}
\end{equation*}
$$

If $d((0, u), f(0,0))=1$, we have

$$
\begin{equation*}
u=0 . \tag{43}
\end{equation*}
$$

From (42) and (43), we obtain $(0, x)=\left(0, \frac{1}{4}\right) \leqslant(0,0)=(0, u)$.
Case (iii): $g(0,2) \leqslant g(0,0)$.
From $d((0, x), f(0,2))=1$ and $d((0, u), f(0,0))=1$, we have $x=\frac{1}{4}$ and $u=0$. Therefore $(0, x) \preccurlyeq(0, u)$. Hence from all the above cases, we have f is g-proximally increasing on A.

Now, we define functions $\psi, \varphi, \theta:[0, \infty) \rightarrow:[0, \infty)$ by
$\psi(t)=\left\{\begin{array}{l}t \quad \text { if } t \in[0,1] \\ \frac{3}{2} t^{2} \text { if } t>1,\end{array} \quad \varphi(t)=\left\{\begin{array}{cc}\frac{3}{4} t \quad \text { if } t \in[0,1] \\ \frac{1}{2} t^{2} \text { if } & t>1\end{array}\right.\right.$ and $\quad \theta(t)=\left\{\begin{array}{l}\frac{1}{4} t \text { if } t \in[0,1] \\ \frac{1}{8} t^{2} \text { if } t>1 .\end{array}\right.$
With these ψ, φ and θ, we verify that f and g satisfy the inequality (2). In the verification of the inequality (2), the following three cases are possible.

Case (i): $x, y \in\left[0, \frac{1}{2}\right]$ such that $g(0, x) \preccurlyeq g(0, y)$.

$$
\begin{aligned}
\psi(d(f(0, x), f(0, y))) & =\psi\left(d\left(\left(1, \frac{x^{2}}{2}\right),\left(1, \frac{y^{2}}{2}\right)\right)\right)=\psi\left(\sqrt{\frac{x^{2}}{2}-\frac{y^{2}}{2}}\right)=\sqrt{\frac{x^{2}}{2}-\frac{y^{2}}{2}}=\frac{\sqrt{2}}{2} \sqrt{x^{2}-y^{2}} \\
& =\frac{3}{4} \sqrt{2 x^{2}-2 y^{2}}-\frac{1}{4} \sqrt{2 x^{2}-2 y^{2}} \\
& =\varphi(d(g(0, x), g(0, y)))-\theta(d(g(0, x), g(0, y)))
\end{aligned}
$$

Case (ii) : $g(0,1) \preccurlyeq g(0,0)$.

$$
\begin{aligned}
\psi(d(f(0,1), f(0,0))) & =\psi\left(d\left(\left(1, \frac{1}{4}\right),(1,0)\right)\right)=\psi\left(\sqrt{\frac{1}{4}}\right)=\sqrt{\frac{1}{4}}=\frac{1}{2}=\frac{3}{4}-\frac{1}{4} \\
& =\varphi(d(g(0,1), g(0,0)))-\theta(d(g(0,1), g(0,0)))
\end{aligned}
$$

Case (iii) : $g(0,2) \preccurlyeq g(0,0)$.

$$
\begin{aligned}
\psi(d(f(0,2), f(0,0))) & =\psi\left(d\left(\left(1, \frac{1}{4}\right),(1,0)\right)\right)=\psi\left(\sqrt{\frac{1}{4}}\right)=\sqrt{\frac{1}{4}}=\frac{1}{2} \leq \frac{3}{4}=\frac{1}{2} \sqrt{2^{2}}-\frac{1}{8} \sqrt{2^{2}} \\
& =\varphi(d(g(0,2), g(0,0)))-\theta(d(g(0,2), g(0,0)))
\end{aligned}
$$

Therefore f and g satisfy the inequality (2). Also, it is trivial to see that condition H holds. Hence f and g satisfy all the hypotheses of Theorem 3.2 and $(0,0)$ is the unique proximity coincidence point of f and g in A.

CONFLICTS OF INTEREST

No conflict of interest was declared by the authors.

REFERENCES

[1] Abkar, A. and Gabeleh, M.," Global optimal solutions of noncyclic mappings in metric spaces," J. Optim. Theory Appl. 153, 298-305, (2012).
[2] Abkar, A. and Gabeleh, M., "Best proximity points of non-selfmappings," Top 21, 287-295, (2013).
[3] Al-Thaga, M.A and Shahzad, N., "Convergence and existence results for best Proximity points," Nonlinear Anal. 70, 3665-3671, (2009).
[4] Babu, G. V. R. and Sailaja, P. N., A fixed point theorem of generalized weak contractive maps in orbitally complete metric spaces," Thai Journal of Mathematics. 9(1), 1-10, (2011).
[5] Basha, S. S.," Best proximity points: optimal solutions," J. Optim. Theory Appl. 151, 210-216, (2011).
[6] Basha, S. S.," Discrete optimization in partially ordered sets," J. Glob. Optim. 54, 511-517, (2012).
[7] Caballero, J., Harjani, J. and Sadarangani, K., A "best proximity point theorem for Geraghtycontractions," Fixed Point Theory Appl. 2012, Article ID 231 (2012).
[8] Ciric, L., Cakic, N., Rajovic, M., Ume, J. S. and Nieto, J. J., "Monotone generalized nonlinear contractions in partially ordered metric spaces," Fixed Point Theory Appl. 1-28, (2008).
[9] Choudhury, B. S., Metiya, N., Postolache, M. and Konar, P.," A discussion on best proximity point and coupled best proximity point in partially ordered metric space," Fixed Point Theory and Applications (2015) 2015:170 DOI 10.1186/s13663-015-0423-1, 17 pages.
[10] Choudhury, B. S., Maity, P. and Konar, P., "A global optimality result using nonself mappings," Opsearch51, 312-320, (2014).
[11] Choudhury, B. S., Maity, P. and Metiya, N., "Best proximity point theorems with cyclic mappings in set valued analysis," Indian J. Math. 57, 79-102, (2015).
[12] Eldred, A. A. and Veeramani, P., Existence and convergence of best proximity points. J. Math. Anal. Appl. 323, 1001-1006, (2006).
[13] Karapinar, E., "On best proximity point of -Geraghty contractions," Fixed Point Theory Appl. 2013, Article ID 200 (2013).
[14] Karpagam, S., Agrawal, S., "Best proximity points for cyclic Meir-Keeler contraction maps," Nonlinear Anal. 74, 1040-1046, (2011).
[15] Mongkolkeha, C. and Sintunavarat, W., "Best proximity points for multiplicative proximal contraction mapping on multiplicative metric spaces," J. Nonlinear Sci. Appl. 8(6), 1134-1140, (2015).
[16] Sankar Raj, V.,"A best proximity point theorem for weakly contractive non-selfmappings," Nonlinear Anal. 74, 4804-4808 , (2011).
[17] Wangkeeree, R. and Sisarat, N., "Some Proximally Coincidence Points for Non-Self Mappings and Self Mappings in Partially Ordered Metric Spaces," Thai Journal of Mathematics 13 (3), 613-625, (2015) .

