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Abstract 

In this paper, we establish proximity coincidence point results using three auxiliary functions, 

which need not be continuous, in partially ordered metric spaces for a pair of maps. We also 

discuss several corollaries and give illustrative examples in support of our results. The results 

presented in this paper generalize the results of Wangkeeree and Sisarat [17].  
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1. INTRODUCTION 

 

The famous Banach’s contraction principle is an important tool to assert the uniqueness of fixed point for 

selfmaps in complete metric spaces. When a map from a metric space into itself has no fixed points, it 

could be interesting to study the existence and uniqueness of some points that minimize the distance 

between an origin and its corresponding image. That is, it may be speculated to determine an element 𝑥 

for which the error 𝑑(𝑥, 𝑇𝑥)  is minimal, in the sense 𝑥 and 𝑇𝑥 are in close proximity to each other. This 

concept gives rise to the best proximity theory. 

 

Let 𝐴 be a nonempty subset of a metric space (𝑋, 𝑑) and 𝑓: 𝐴 → 𝑋  is a map. If the fixed point equation 

𝑓𝑥 = 𝑥 does not possess a solution, then 𝑑(𝑥, 𝑓𝑥) > 0 for all 𝑥 ∈ 𝐴. In such a situation, it is the aim of 

best proximity theory to find an element 𝑥 ∈ 𝐴 such that 𝑑(𝑥, 𝑓𝑥) is minimum in some sense. A point 

𝑥 ∈ 𝐴 is called best proximity point of  𝑇: 𝐴 → 𝐵  if 𝑑(𝑥, 𝑇𝑥) = 𝑑(𝐴, 𝐵) where  

}.×∈),(:),(inf{ =:),( BAyxyxdBAd A best proximity point becomes a fixed point if the underlying 

mapping is a selfmapping. Therefore, it can be concluded that best proximity point theorems generalize 

fixed point theorems in a natural way. 

 

In recent years, the existence and convergence of best proximity points is an interesting topic of 

optimization theory which attracted the attention of many authors [1-3, 5-6, 12, 15]. The best proximity 

point evolves as a generalization of the concept of the best approximation. The authors [7, 9-11, 13-14] 

and reference therein obtained best proximity point theorems under certain contraction conditions for 

non-selfmaps. 
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2.  PRELIMINARIES 

 

We recall the following notations and definitions.  Let  (𝑋, 𝑑, ≼) be a partially ordered metric space and 

let 𝐴 and 𝐵 be nonempty subsets of  𝑋. 

 

𝐴0: = {𝑥 ∈ 𝐴: 𝑑(𝑥, 𝑦) = 𝑑(𝐴, 𝐵) for some 𝑦 ∈ 𝐵}, 

𝐵0: = {𝑦 ∈ 𝐵: 𝑑(𝑥, 𝑦) = 𝑑(𝐴, 𝐵) for some 𝑥 ∈ 𝐴}. 
 

Definition 2.1 [16]  Let  𝐴 and 𝐵 be two nonempty subsets of a metric space (𝑋, 𝑑) with  𝐴0 ≠ ∅ . 

Then the pair (A,B) is said to have the P-property, if for any  𝑥1 , 𝑥2 ∈ 𝐴0 and 𝑦1 , 𝑦2  ∈ 𝐵0, 

𝑑(𝑥1, 𝑦1) = 𝑑(𝐴, 𝐵)

𝑑(𝑥2, 𝑦2) = 𝑑(𝐴, 𝐵 



⟹ 𝑑(𝑥1, 𝑥2) = 𝑑(𝑦1, 𝑦1). 

 

Definition 2.2  A mapping  𝑇: 𝐴 → 𝐴 is said to be increasing if for all  𝑥, 𝑦 ∈ 𝐴, 𝑥 ≼ 𝑦 ⇒ 𝑇𝑥 ≼ 𝑇𝑦.  

Definition 2.3  [8] Let  (𝑋, ≼) be a partially ordered set and 𝐹, 𝑔: 𝑋 → 𝑋 be maps. 
(𝑖) 𝐹 is called 𝑔-nondecreasing if 𝑔𝑥 ≼ 𝑔𝑦 implies 𝐹𝑥 ≼ 𝐹𝑦 for all 𝑥, 𝑦 ∈ 𝑋. 
(𝑖𝑖) 𝐹 is called 𝑔-non-increasing if 𝑔𝑥 ≼ 𝑔𝑦 implies 𝐹𝑦 ≼ 𝐹𝑥 for all 𝑥, 𝑦 ∈ 𝑋. 

Definition 2.4 [6] A mapping  𝑇: 𝐴 → 𝐵 is said to be proximally increasing (nondecreasing)  if for all  

𝑢1, 𝑢2 , 𝑥1, 𝑥2 ∈ 𝐴,  

𝑥1 ≼ 𝑥2

𝑑(𝑢1, 𝑇𝑥1) = 𝑑(𝐴, 𝐵)
𝑑(𝑢2, 𝑇𝑥2) = 𝑑(𝐴, 𝐵

} ⟹ 𝑢1 ≼ 𝑢2. 

Similarly, a mapping  𝑇: 𝐴 → 𝐵 is said to be proximally decreasing (non-increasing)  if for all  𝑢1, 𝑢2 , 𝑥1,

𝑥2 ∈ 𝐴,  

𝑥1 ≼ 𝑥2

𝑑(𝑢1, 𝑇𝑥1) = 𝑑(𝐴, 𝐵)
𝑑(𝑢2, 𝑇𝑥2) = 𝑑(𝐴, 𝐵

} ⟹ 𝑢2 ≼ 𝑢1. 

Definition 2.5 [17] (𝑔-proximally increasing). Suppose ( 𝑋, ≼ ) is a partially ordered set. Let 

𝑓: 𝐴 → 𝐵 and 𝑔: 𝐴 → 𝐴 be maps. A map 𝑓 is said to be 𝑔-proximally increasing if for all 𝑥1, 𝑥2 , 𝑦1,
𝑦2 ∈ 𝐴, 

𝑔𝑦1 ≼ 𝑔𝑦2

𝑑(𝑥1, 𝑓𝑦1) = 𝑑(𝐴, 𝐵)

𝑑(𝑥2, 𝑓𝑦
2) = 𝑑(𝐴, 𝐵

} ⟹ 𝑥1 ≼ 𝑥2. 

Here we note that if  𝑔 is an identity map of 𝐴, then clearly 𝑓 is proximally increasing (nondecreasing) 

and if 𝐴 = 𝐵,  then 𝑓 is 𝑔 increasing (nondecreasing). 
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Definition 2.6  [17] ( Proximity coincidence point).  Let 𝐴  and  𝐵  be nonempty subsets of a metric 

space (𝑋, 𝑑). Let  𝑓: 𝐴 → 𝐵 be a non-selfmap and 𝑔: 𝐴 → 𝐴 be a self map on 𝐴. A point 𝑥 ∈ 𝐴 is 

said to be a proximity coincidence point of 𝑓 and 𝑔 if 𝑑(𝑔𝑥, 𝑓𝑥) = 𝑑(𝐴, 𝐵).  

In 2015, Wangkeeree and Sisarat [17] proved some proximity coincidence point for non-selfmap 

and selfmap in partially ordered metric space.   

Theorem 2.7  [17]  Let (𝑋, ≼) be a partially ordered set and suppose that there is a metric d on X 

such that (𝑋, 𝑑) is a complete metric space. Let (𝐴, 𝐵) be a pair of nonempty subsets of X. 

Assume that A0 and B0 are nonempty subsets of A and B respectively.  Let  f : A →B and g : A → A 

satisfy the following conditions. 

  (𝑖) 𝑓 is a g-proximally increasing and (A,B)  satisfy the P-property, 

 (ii) 𝑔(𝐴0)  is closed and 𝑓(𝐴0) ⊆ 𝐵0 , 𝐴0 ⊆ 𝑔(𝐴0), 

(iii) 𝜓(𝑑(𝑓𝑥, 𝑓𝑦)) ≤ 𝛼(𝑑(𝑔𝑥, 𝑔𝑦)) − (𝑑(𝑔𝑥, 𝑔𝑦)) for all 𝑥, 𝑦 ∈ 𝐴 such that 𝑔𝑥 ≼ 𝑔𝑦, where  

       𝜓, α, :[0,∞) → [0, ∞) are such that  is continuous and monotone nondecreasing, α is continuous        

       and  is lower semi-continuous, 𝜓(𝑡) = 0 if and only if  𝑡 = 0, 𝛼(0) = (0) = 0 and  
      𝜓(𝑡) − 𝛼(𝑡) + 𝛽(𝑡) > 0 for all t > 0, 

(iv) there exist elements x0, x1  A0 such that ),(),( 01 BAdfxgxd   and 𝑔𝑥0 ≼ 𝑔𝑥1. 

Also, we assume that if any nondecreasing sequence {xn} in gA0 converges to z, then 𝑥𝑛 ≼ 𝑧  for all  

n ≥ 0. 

Then there exists an element 𝑥∗ ∈ 𝐴 such that 𝑑(𝑔𝑥∗, 𝑓𝑥∗) = 𝑑(𝐴, 𝐵). 
 

     We denote by Ψ the set of all functions 𝜓: [0, ∞) → [0, ∞) such that  

  (𝑖) 𝜓 is nondecreasing, 

 (ii) 𝜓(𝑡) = 0  if and only if 𝑡 = 0 and 

(iii)  if {𝑡𝑛} ⊆ (0, ∞) is any bounded sequence such that 0=)(lim
∞→

n
n

t , then 0=lim
∞→

n
n

t . 

     We denote by Θ the set of all functions 𝜑: [0, ∞) → [0, ∞) such that 

  (𝑖) 𝜑 is bounded on any bounded interval in [0, ∞) and 

 (ii) 𝜑  is continuous at 0 and 𝜑(0) = 0. 

 

      In Section 3 of this paper, we prove our main results by using three auxiliary functions in which we 

drop the continuity assumption from the result of Wangkeeree and Sisarat [17], so that our result is more 

general. In Section 4, we draw some corollaries and provide examples in support of our results. 

 

      We state the following lemma, which we use in our main results.  

 

Lemma 2.8. [4] Suppose that (𝑋, 𝑑) is a metric space. Let {𝑥𝑛} be a sequence in X such that 

𝑑(𝑥𝑛, 𝑥𝑛+1) → 0 as 𝑛 → ∞. If  {𝑥𝑛} is not a Cauchy sequence, then there exists an 𝜀 > 0 and sequences 

of positive integers  {𝑚𝑘} and  {𝑛𝑘} with  𝑛𝑘 > 𝑚𝑘 > k such that 𝑑(𝑥𝑚𝑘
, 𝑥𝑛𝑘

) ≥ 𝜀,  

𝑑(𝑥𝑚𝑘
, 𝑥𝑛𝑘−1) < 𝜀 and  

 

   .=),(lim  )(                         =),(lim  )(

=),(lim  )(                       =),(lim  )(  

1+
∞→k

1-
∞→k

∞→k1+1 -
∞→k





kmknkmkn

kmkn
kmkn

xxdivxxdiii

xxdiixxdi
 

 

3.  MAIN RESULTS 

 

Theorem 3.1 Let (𝑋, 𝑑, ≼) be a partially ordered complete metric space.  Let (𝐴, 𝐵) be a pair of 

nonempty subsets of X. Assume that A0 is a nonempty subset of A. Let  f : A → B and g : A → A 

satisfy the following conditions: 
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  (𝑖) 𝑓 is a g-proximally increasing and (A,B)  satisfy the P-property, 

 (ii) 𝑔(𝐴0)  is closed and 𝑓(𝐴0) ⊆ 𝐵0 , 𝐴0 ⊆ 𝑔(𝐴0), 

(iii) there exist 𝜓 Ψ and 𝜑, 𝜃 𝜖 Θ with the condition  

 

                 ,0)( lim)( lim)(  nn xxt                                                                                       (1) 

 

        where {xn} is any sequence in [0,∞) with xn → 𝑡  > 0 and  

 

          𝜓(𝑑(𝑓𝑥, 𝑓𝑦)) ≤ 𝜑(𝑑(𝑔𝑥, 𝑔𝑦)) − 𝜃(𝑑(𝑔𝑥, 𝑔𝑦))                                                                            (2) 

 

for all x, y   A0  with 𝑔𝑥 ≼ 𝑔𝑦 and also,  

 

              𝜓(𝑥) ≤  𝜑(𝑦) ⇒ 𝑥 ≤ 𝑦.                                                                                                               (3) 

                             

Also, suppose that if {gxn}  is a nondecreasing sequence in gA0  such that gxn → 𝑔𝑧, then g 𝑥𝑛 ≼ 𝑔𝑧  for 

all n ≥ 0. Furthermore, assume that there exist elements 𝑥0, 𝑥1  A0  such that 𝑑(𝑔𝑥1, 𝑓𝑥0) = 𝑑(𝐴, 𝐵) 

and 𝑔𝑥0 ≼ 𝑔𝑥1. 
Then f and g have proximity coincidence point. 

 

Proof.  By our assumpsion, there exist  𝑥0, 𝑥1  A0  such that  

 

                                 𝑑(𝑔𝑥1, 𝑓𝑥0) = 𝑑(𝐴, 𝐵) and 𝑔𝑥0 ≼ 𝑔𝑥1.                                                                   (4) 

 

As  𝑥1  A0   so 𝑓(𝑥1) ⊆ 𝐵0. Hence there exists 𝑧 ∈  𝐴 such that 𝑑(𝑧, 𝑓𝑥1) = 𝑑(𝐴, 𝐵). Therefore   

z  A0. Since 𝐴0 ⊆ 𝑔(𝐴0), there exists  𝑥2  A0  such that z = gx2. Hence  

 

                          𝑑(𝑔𝑥2, 𝑓𝑥1) = 𝑑(𝐴, 𝐵) .                                                                                                   (5) 

 

By 𝑔-proximally increasing property of  𝑓, from (4) and (5) , we obtain 𝑔𝑥1 ≼ 𝑔𝑥2. On continuing this 

process, we get a sequence {gxn}  in gA0  such that  

 

                          𝑑(𝑔𝑥𝑛+1, 𝑓𝑥𝑛) = 𝑑(𝐴, 𝐵) for all 𝑛 ≥ 0,                                                                          (6)   

 

satisfying   

 

                   𝑔𝑥0 ≼ 𝑔𝑥1 ≼ ⋯ ≼ 𝑔𝑥𝑛 ≼ 𝑔𝑥𝑛+1 ≼ ⋯  .                                                                                (7)   

 

By the P- property of (A,B),  from (4) and (5), we obtain  𝑑(𝑔𝑥1, 𝑔𝑥2) = 𝑑(𝑓𝑥0, 𝑓𝑥1). 

On continuing this step, we have,  

 

                      𝑑(𝑔𝑥𝑛, 𝑔𝑥𝑛+1) = 𝑑(𝑓𝑥𝑛−1, 𝑓𝑥𝑛) for all 𝑛 ≥ 0.                                                                  (8) 

 

As  𝑔𝑥𝑛 ≼ 𝑔𝑥𝑛+1 for all 𝑛 ≥ 0,  by applyin the inequality (2),  we have  

 

𝜓(𝑑(𝑔𝑥𝑛, 𝑔𝑥𝑛+1)) = 𝜓(𝑑(𝑓𝑥𝑛−1, 𝑓𝑥𝑛)) ≤ 𝜑(𝑑(𝑔𝑥𝑛−1, 𝑔𝑥𝑛)) − 𝜃(𝑑(𝑔𝑥𝑛−1, 𝑔𝑥𝑛))                      

≤ 𝜑(𝑑(𝑔𝑥𝑛−1, 𝑔𝑥𝑛)). 
 

This implies, by (3), that 𝑑(𝑔𝑥𝑛, 𝑔𝑥𝑛+1) ≤ 𝑑(𝑔𝑥𝑛−1, 𝑔𝑥𝑛) and hence { 𝑑(𝑔𝑥𝑛, 𝑔𝑥𝑛+1)} is a decreasing 

sequence of non-negative real numbers. Therefore there exists 𝑟 ≥ 0 such that  

 

                                                                .),(lim 1 rgxgxd nn
n
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Since 𝑑(𝑔𝑥𝑛, 𝑔𝑥𝑛+1) is a decreasing sequence which converges to r , we have  𝑟 ≤ 𝑑(𝑔𝑥𝑛, 𝑔𝑥𝑛+1) for 

all 𝑛 ≥ 0. From nondecreasing property of 𝜓, we get  

 

                                                   𝜓(𝑟) ≤ 𝜓(𝑑(𝑔𝑥𝑛, 𝑔𝑥𝑛+1)). 
 

Suppose r > 0. By applying the inequality (2), using (7) and (8), it follows that  

 

𝜓(𝑟) ≤ 𝜓(𝑑(𝑔𝑥𝑛, 𝑔𝑥𝑛+1)) = 𝜓(𝑑(𝑓𝑥𝑛−1, 𝑓𝑥𝑛)) ≤ 𝜑(𝑑(𝑔𝑥𝑛−1, 𝑔𝑥𝑛)) − 𝜃(𝑑(𝑔𝑥𝑛−1, 𝑔𝑥𝑛)).             (9) 

 

On taking the limit supremum in (9), we have  

 

         𝜓(𝑟) −   ,0 ≤ )),((  lim+)),((  lim
1-  1 -  nnnn

gxgxdgxgxd   

 

a contradiction. Hence  

 

                                        .0),(lim 1 


nn
n

gxgxd                                                                                    (10) 

      We now show that the sequence {gxn} is Cauchy. Let gxn = 𝑦𝑛. Suppose that {yn} is not a Cauchy 

sequence. Then by Lemma 2.8, then there exists an 𝜀 > 0 and sequences of positive integers  {𝑚𝑘} and  
{𝑛𝑘} such that nk is the smallest index  with  𝑛𝑘 > 𝑚𝑘 > k, 

 

                     𝑑(𝑦𝑚𝑘
, 𝑦𝑛𝑘

) ≥ 𝜀  and  𝑑(𝑦𝑚𝑘
, 𝑦𝑛𝑘−1) < 𝜀,                                                                         (11)    

 

satisfying     .=),(lim
∞→


knkm

k
yyd

 
From (11) and by the nondecreasing property of 𝜓, we obtain 𝜓(𝜀) ≤ 𝜓(𝑑(𝑦𝑚𝑘

, 𝑦𝑛𝑘
)). Since 𝑦𝑚𝑘

≤ 𝑦𝑛𝑘
  

for 𝑘 ≥ 0, by applying the inequality (2) and by using (8), we have  

 

𝜓(𝜀) ≤ 𝜓(𝑑(𝑦𝑚𝑘
, 𝑦𝑛𝑘

)) = 𝜓(𝑑(𝑓𝑦𝑚𝑘−1, 𝑓𝑦𝑛𝑘−1)) ≤ 𝜑(𝑑(𝑦𝑚𝑘−1, 𝑦𝑛𝑘−1)) − 𝜃(𝑑(𝑦𝑚𝑘−1, 𝑦𝑛𝑘−1)). 

 

On taking the limit supremum as 𝑘 → ∞ in the above inequality, we obtain  

                        

𝜓(∈) ≤  ,0≤  )),((lim+)),(( lim 
∞→∞→k knkm

k
knkm

yydyyd      

 

a contradiction.  Hence {𝑦𝑛}  is a Cauchy sequence. i.e.  {𝑔𝑥𝑛}  is a Cauchy sequence in 𝑔(𝐴0).    

      Since  𝑔(𝐴0)  is a closed subset of a complete metric space 𝑋 and hence complete, so that there exists 

𝑥∗ ∈ 𝐴0  such that 𝑔𝑥𝑛 → 𝑔𝑥∗ ∈ 𝑔(𝐴0). By the hypothesis of the theorem, we have g 𝑥𝑛 ≼ 𝑔𝑥∗  for all 

𝑛 ∈ ℕ. Since 𝑥∗ ∈ 𝐴0, we have 𝑓𝑥∗ ∈ 𝑓(𝐴0) ⊆ 𝐵0.  Therefore there exists a point 𝑧 ∈ 𝐴0 such that  

 

                                               𝑑(𝑧, 𝑓𝑥∗) = 𝑑(𝐴, 𝐵).                                                                                  (12)       

 

Since the pair (A,B) satisfy the P-property, from (12) and (6), we have 𝑑(𝑔𝑥𝑛+1, 𝑧) = 𝑑(𝑓𝑥𝑛, 𝑓𝑥∗ ). 

By appling the inequality (2), it follows that  

               

    𝜓(𝑑(𝑔𝑥𝑛+1, 𝑧)) = 𝜓(𝑑(𝑓𝑥𝑛, 𝑓𝑥∗)) ≤ 𝜑(𝑑(𝑔𝑥𝑛, 𝑔𝑥∗)) − 𝜃(𝑑(𝑔𝑥𝑛, 𝑔𝑥∗)).                                     (13) 

 

On taking the limit as 𝑛 → ∞ in (13), using the fact that 𝑔𝑥𝑛 → 𝑔𝑥∗ as 𝑛 → ∞, by the property (ii) of 𝜑  
and 𝜃 and the property of 𝜓, we optain 

 

                                              ∞→
lim
n

𝜓(𝑑(𝑔𝑥𝑛+1, 𝑧)) = 0    

Therefore by hypothesis (iv), we get 𝑑(𝑔𝑥𝑛+1, 𝑧) → 0 as 𝑛 → ∞. i.e. zgx
n

n
=lim 1+

∞→
 which implies 
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by the uniqueness of limit, that 𝑧 = 𝑔𝑥∗. Hence, we have 𝑑(𝑔𝑥∗, 𝑓𝑥∗) = 𝑑(𝐴, 𝐵).  Therefore 𝑥∗ is the 

proximity coincidence point of 𝑓 and 𝑔.                                                                                            
 

Theorem 3.2  In addition to the hypotheses of Theorem 3.1,  assume the following:  

Condition H : Suppose that g is one-to-one and for every x, y ∈ A there exists u ∈  A0  such that gu is 

comparable to gx and gy. Then  f  and g  have a unique proximity coincidence point. 

 

Proof. In view of the proof of Theorem 3.1, the set of proximity coincidence points of  f and g is 

nonempty. Suppose that 𝑥, 𝑦 ∈ 𝐴 are the two distinct proximity coincidence points of f and g That is, 

 

                   𝑑(𝑔𝑥, 𝑓𝑥) = 𝑑(𝐴, 𝐵) and 𝑑(𝑔𝑦, 𝑓𝑦) = 𝑑(𝐴, 𝐵).                                                                  (14) 

 

Case (i) : gx is comparable to gy. i.e., either gx ≼ gy or gy ≼ gx.   

      We assume, without loss of generality, that gx ≼ gy . Since (A,B) satisfies the P-property, from (14),  

it follows that 

 

                 𝑑(𝑔𝑥, 𝑔𝑦) = 𝑑(𝑓𝑥, 𝑓𝑦).                                                                                                            (15) 

 

Since gx ≼ gy, by the inequality (2), we get 

 

                   𝜓(𝑑(𝑔𝑥, 𝑔𝑦)) = 𝜓(𝑑(𝑓𝑥, 𝑓𝑦)) ≤ 𝜑(𝑑(𝑔𝑥, 𝑔𝑦)) − 𝜃(𝑑(𝑔𝑥, 𝑔𝑦)).  
 

Since x and y are distinct and g is one-to-one, it follows that 𝑑(𝑔𝑥, 𝑔𝑦) > 0. Therefore 

 

                   
  ,0≤)),(( lim+)),(( lim -)),(( gygxdgygxdgygxd 

 
 

a contradiction. Hence gx = gy. This implies that x = y. 

                             

Case (ii) : gx is not comparable to gy. 
   

      By assumption, there exists  u ∈  𝐴0 such that gu is comparable to gx and gy. Now, we set gu0 = gu. 

Suppose that either  

 

                     𝑔𝑢0 ≽ 𝑔𝑥 or 𝑔𝑢0 ≼ 𝑔𝑥.                                                                                                      (16) 

 

We assume, without loss of generality, that  

 

                           𝑔𝑢0 ≼ 𝑔𝑥.                                                                                                                      (17) 

 

As u0 = u ∈ 𝐴, so 𝑓(𝐴0) ⊆ 𝐵0. Hence there exists 𝑧 ∈ 𝐴 such that 𝑑(𝑧, 𝑓𝑢0) = 𝑑(𝐴, 𝐵). Therfore 𝑧 ∈ 𝐴0. 
Since 𝐴0 ⊆ 𝑔(𝐴0), there exists 𝑢1 ∈ 𝐴0 such that 𝑧 = 𝑔𝑢1. Hence  

 

                 𝑑(𝑧, 𝑓𝑢0) = 𝑑(𝑔𝑢1, 𝑓𝑢0) = 𝑑(𝐴, 𝐵).                                                                                     (18) 

 

Since f  is g-proximally inceasing, from (14), (17) and (18), we obtain  

 

                           𝑔𝑢1 ≼ 𝑔𝑥.             
 

By using the P-property of the pair (𝐴, 𝐵), from (14) and (18), we have 

 

                 𝑑(𝑔𝑥, 𝑔𝑢1) = 𝑑(𝑓𝑥, 𝑓𝑢0).         
 

On continuing this process, we can constract a sequence {𝑔𝑢𝑛}  in 𝑔𝐴0 such that 

 

                𝑑(𝑔𝑥, 𝑔𝑢𝑛+1) = 𝑑(𝑓𝑥, 𝑓𝑢𝑛)   and   𝑔𝑢𝑛 ≼ 𝑔𝑥 for all 𝑛 ≥ 0.                                                 (19)  
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Hence by using (19) and the inequality (2), we have 

                                                               

𝜓(𝑑(𝑔𝑥, 𝑔𝑢𝑛+1)) = 𝜓(𝑑(𝑓𝑥, 𝑓𝑢𝑛)) ≤ 𝜑(𝑑(𝑔𝑥, 𝑔𝑢𝑛)) − 𝜃(𝑑(𝑔𝑥, 𝑔𝑢𝑛)) 

 .                                                                                               

                                                          ≤ 𝜑(𝑑(𝑔𝑥, 𝑔𝑢𝑛).                                                                            (20)  

 

Therefore by condition (3), it follows that 𝑑(𝑔𝑥, 𝑔𝑢𝑛+1) ≤ 𝑑(𝑔𝑥, 𝑔𝑢𝑛) so that {𝑑(𝑔𝑥, 𝑔𝑢𝑛)}  is a 

decreasing sequence of non-negative real numbers. Hence there exists 𝑡 ≥ 0 such that  

 

                                                               .=),(lim 1+
∞→

tgugxd
n

n
                                                                  (21) 

 

Suppose that t > 0. Since {𝑑(𝑔𝑥, 𝑔𝑥𝑛)} is a decreasing sequence which converges to t, we have  

 𝑡 ≤ 𝑑(𝑔𝑥, 𝑔𝑢𝑛+1)  for all 𝑛 ≥ 0. Hence by nondecreasing property of 𝜓, it follows that  

 

                                          𝜓(𝑡) ≤ 𝜓(𝑑(𝑔𝑥, 𝑔𝑥𝑛+1)).                                                                             (22) 

 

Combinig (20), (22) and on taking limit supremum, we get  

 

𝜓(𝑡) ≤ lim sup 𝜑(𝑑(𝑔𝑥, 𝑔𝑢𝑛) + lim sup  (−𝜃(𝑑(𝑔𝑥, 𝑔𝑢𝑛))).  i.e., 

𝜓(𝑡) − lim sup 𝜑(𝑑(𝑔𝑥, 𝑔𝑢𝑛) + lim inf (𝜃(𝑑(𝑔𝑥, 𝑔𝑢𝑛))) ≤ 0,  
 

which is a contradiction. Hence t = 0. 

      Similarly, we can show that have  we,inequality eby triangl Hence .0=),(lim
∞→

n
n

gugyd
  

𝑑(𝑔𝑥, 𝑔𝑦) ≤ 𝑑(𝑔𝑥, 𝑔𝑢𝑛) + 𝑑(𝑔𝑢𝑛, 𝑔𝑦) → 0 as 𝑛 → ∞.  Hence gx = gy. Since g is one-to-one, we have  

x = y. 

 

4.  COROLLARIES AND EXAMPLES 

 

If  𝜓 is the identity mapping and 𝜃(𝑡) = 0 for all 𝑡 ∈ [0, ∞) in Theorem 3.1, we have the following. 

 

Corollary 4.1 Let (𝑋, 𝑑, ≼) be a partially ordered complete metric space.  Let (𝐴, 𝐵) be a pair of 

nonempty subsets of X. Assume that A0 is a nonempty subset of A. Let  f : A →B and g : A → A 

satisfy the following conditions: 

  (𝑖) 𝑓 is a g-proximally increasing and (A,B)  satisfy the P-property, 

 (ii) 𝑔(𝐴0)  is closed, 𝑓(𝐴0) ⊆ 𝐵0  and  𝐴0 ⊆ 𝑔(𝐴0), 

(iii) there exists 𝜑 𝜖 Θ with the condition  

 

                                                       tx
n

<)( lim                                                                                      (23) 

 

        where {xn} is any sequence in [0,∞) with xn→ 𝑡  > 0 and  

 

          𝑑(𝑓𝑥, 𝑓𝑦) ≤ 𝜑(𝑑(𝑔𝑥, 𝑔𝑦))                                                                                                            (24) 

 

for all x, y   A0  with 𝑔𝑥 ≼ 𝑔𝑦. 

Also, suppose that if {gxn}  is a nondecreasing sequence in gA0  such that gxn→ 𝑔𝑧, then g 𝑥𝑛 ≼ 𝑔𝑧  for 

all n ≥ 0. Furthermore, assume that there exist elements x0, x1  A0  such that 𝑑(𝑔𝑥1, 𝑓𝑥0) = 𝑑(𝐴, 𝐵) and 

𝑔𝑥0 ≼ 𝑔𝑥1. 
Then f and g have proximity coincidence point. 

 

     If 𝜓(𝑡) = 𝜑(𝑡) for all 𝑡 ∈ [0, ∞) in Theorem 3.1, we have the following. 
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Corollary 4.2 Let (𝑋, 𝑑, ≼) be a partially ordered complete metric space.  Let (𝐴, 𝐵) be a pair of 

nonempty subsets of X. Assume that A0 is a nonempty subset of A. Let  f : A →B and g : A → A 

satisfy the following conditions: 

  (𝑖) 𝑓 is a g-proximally increasing and (A,B)  satisfy the P-property, 

 (ii) 𝑔(𝐴0)  is closed, 𝑓(𝐴0) ⊆ 𝐵0 and  𝐴0 ⊆ 𝑔(𝐴0), 

(iii) there exists 𝜓 ∈ Ψ 𝑎𝑛𝑑  𝜑 𝜖 Θ with the condition  

 

                                                       ,0>)( lim
n

x                                                                                     (24) 

 

        where {xn} is any sequence in [0,∞) with xn→ 𝑡  > 0 and  

 

          ψ(𝑑(𝑓𝑥, 𝑓𝑦)) ≤ ψ(𝑑(𝑔𝑥, 𝑔𝑦)) − θ(𝑑(𝑔𝑥, 𝑔𝑦))                                                                          (25) 

 

for all x, y   A0  with 𝑔𝑥 ≼ 𝑔𝑦. 

Also, suppose that if {gxn}  is a nondecreasing sequence in gA0  such that gxn→ 𝑔𝑧, then g 𝑥𝑛 ≼ 𝑔𝑧  for 

all n ≥ 0. Furthermore, assume that there exist elements x0, x1  A0  such that 𝑑(𝑔𝑥1, 𝑓𝑥0) = 𝑑(𝐴, 𝐵) and 

𝑔𝑥0 ≼ 𝑔𝑥1. 
Then f and g have proximity coincidence point. 

 

     If 𝜓 and 𝜑 are identity mappings and 𝜃(𝑡) = (1 − 𝑘)𝑡, where 0 ≤ 𝑘 < 1 in Theorem 3.1, we have the 

following. 

 

Corollary 4.3 Let (𝑋, 𝑑, ≼) be a partially ordered complete metric space.  Let (𝐴, 𝐵) be a pair of 

nonempty subsets of X. Assume that A0 is a nonempty subset of A. Let  f : A →B and g : A → A 

satisfy the following conditions: 

  (𝑖) 𝑓 is a g-proximally increasing and (A,B)  satisfy the P-property, 

 (ii) 𝑔(𝐴0)  is closed, 𝑓(𝐴0) ⊆ 𝐵0 and  𝐴0 ⊆ 𝑔(𝐴0). 

Suppose that there exists 𝑘 ∈ [0,1) such that for all x, y ∈ 𝐴0 with 𝑔𝑥 ≼ 𝑔𝑦, 

          

                    𝑑(𝑓𝑥, 𝑓𝑦) ≤ 𝑘𝑑(𝑔𝑥, 𝑔𝑦),    for all x, y   A0 .                                                                     (26) 

                 

Also, suppose that if {gxn}  is a nondecreasing sequence in gA0  such that gxn→ 𝑔𝑧, then g 𝑥𝑛 ≼ 𝑔𝑧  for 

all n ≥ 0. Furthermore, assume that there exist elements x0, x1  A0  such that 𝑑(𝑔𝑥1, 𝑓𝑥0) = 𝑑(𝐴, 𝐵) and 

𝑔𝑥0 ≼ 𝑔𝑥1. 
Then f and g have proximity coincidence point. 

 

     Since, for any nonempty subset A of X, the pair (𝐴, 𝐴) satisfies the P-property if 𝐴 = 𝐵 in Theorem 

3.1, we have the following fixed point result. 

 

Corollary 4.4 Let (𝑋, 𝑑, ≼) be a partially ordered complete metric space.  Let A be a nonempty 

subset of X. Let  f : A →A and g : A → A satisfy the following conditions: 

  (𝑖) 𝑓 is a g-nondecreasing, 

 (ii) 𝑔(𝐴)  is closed and 𝑓(𝐴) ⊆ 𝑔(𝐴), 

(iii) there exist 𝜓 Ψ and 𝜑, 𝜃 𝜖 Θ with the condition  

 

                 ,0)( lim)( lim)(  nn xxt                                                                                         (27) 

 

        where {xn} is any sequence in [0,∞) with xn→ 𝑡  > 0 and  

 

          𝜓(𝑑(𝑓𝑥, 𝑓𝑦)) ≤ 𝜑(𝑑(𝑔𝑥, 𝑔𝑦)) − 𝜃(𝑑(𝑔𝑥, 𝑔𝑦))                                                                          (28) 
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for all x, y   A  with 𝑔𝑥 ≼ 𝑔𝑦 and also, 𝜓(𝑥) ≤  𝜑(𝑦) ⇒ 𝑥 ≤ 𝑦.                                                                                                            
                             

Also, suppose that if {gxn}  is a nondecreasing sequence in gA  such that gxn→ 𝑔𝑧, then g 𝑥𝑛 ≼ 𝑔𝑧  for 

all n ≥ 0. Furthermore, assume that there exists an element 𝑥0 ∈ A  such that  𝑔𝑥0 ≼ 𝑓𝑥0. 
Then f and g have a coincidence point in A. 

 

If  𝜓 is the identity mapping and 𝜃(𝑡) = 0 for all 𝑡 ∈ [0, ∞) in Corollary 4.4, we have the following. 

 

Corollary 4.5 Let (𝑋, 𝑑, ≼) be a partially ordered complete metric space.  Let A be a nonempty 

subset of X.  Let  f : A →A and g : A → A satisfy the following conditions: 

  (𝑖) 𝑓 is a g-nondecreasing, 

 (ii) 𝑔(𝐴)  is closed, 𝑓(𝐴) ⊆ 𝑔(𝐴), 

(iii) there exists 𝜑 𝜖 Θ with the condition  

 

                                                       tx
n

<)( lim                                                                                      (29) 

 

        where {xn} is any sequence in [0,∞) with xn→ 𝑡  > 0 and  

 

          𝑑(𝑓𝑥, 𝑓𝑦) ≤ 𝜑(𝑑(𝑔𝑥, 𝑔𝑦))                                                                                                            (30) 

 

for all x, y   A0  with 𝑔𝑥 ≼ 𝑔𝑦. 

Also, suppose that if {gxn}  is a nondecreasing sequence in gA  such that gxn→ 𝑔𝑧, then g 𝑥𝑛 ≼ 𝑔𝑧  for 

all n ≥ 0. Furthermore, assume that there exists an element 𝑥0 ∈ A  such that  𝑔𝑥0 ≼ 𝑓𝑥0. 
Then f and g have a coincidence point in A. 

 

     If 𝜓(𝑡) = 𝜑(𝑡) for all 𝑡 ∈ [0, ∞) in Corollary 4.4, we have the following. 

 

Corollary 4.6 Let (𝑋, 𝑑, ≼) be a partially ordered complete metric space.  Let A be a nonempty 

subset of X. Let  f : A →A and g : A → A satisfy the following conditions: 

  (𝑖) 𝑓 is a g-nondecreasing, 

 (ii) 𝑔(𝐴)  is closed and 𝑓(𝐴) ⊆ 𝑔(𝐴), 

(iii) there exist 𝜓 Ψ and 𝜑 𝜖 Θ with the condition  

 

                 ,0>)( lim
n

x                                                                                                                           (31) 

 

        where {xn} is any sequence in [0,∞) with xn→ 𝑡  > 0 and  

 

          𝜓(𝑑(𝑓𝑥, 𝑓𝑦)) ≤ 𝜓(𝑑(𝑔𝑥, 𝑔𝑦)) − 𝜃(𝑑(𝑔𝑥, 𝑔𝑦))                                                                          (32) 

 

for all x, y   A  with 𝑔𝑥 ≼ 𝑔𝑦 and also, 𝜓(𝑥) ≤ 𝜓 (𝑦) ⇒ 𝑥 ≤ 𝑦.                                                                                                            
                             

Also, suppose that if {gxn}  is a nondecreasing sequence in gA  such that gxn→ 𝑔𝑧, then g 𝑥𝑛 ≼ 𝑔𝑧  for 

all n ≥ 0. Furthermore, assume that there exists an element 𝑥0 ∈ A  such that  𝑔𝑥0 ≼ 𝑓𝑥0. 
Then f and g have a coincidence point in A. 

 

If 𝜓 and 𝜑 are identity mappings and 𝜃(𝑡) = (1 − 𝑘)𝑡, where 0 ≤ 𝑘 < 1 in Corollary 4.4, we have the 

following. 

 

Corollary 4.7 Let (𝑋, 𝑑, ≼) be a partially ordered complete metric space.  Let A be a nonempty 

subset of X. Let  f : A →A and g : A → A satisfy the following conditions: 
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  (𝑖) 𝑓 is a g-nondecreasing, 

 (ii) 𝑔(𝐴)  is closed and 𝑓(𝐴) ⊆ 𝑔(𝐴), 

(iii) there exists 𝑘 ∈ [0,1) such that for all x, y ∈ 𝐴 with 𝑔𝑥 ≼ 𝑔𝑦, 

          

                    𝑑(𝑓𝑥, 𝑓𝑦) ≤ 𝑘𝑑(𝑔𝑥, 𝑔𝑦),                                                                                                     (33)  

 

Also, suppose that if {gxn}  is a nondecreasing sequence in gA  such that gxn→ 𝑔𝑧, then g 𝑥𝑛 ≼ 𝑔𝑧  for 

all n ≥ 0. Furthermore, assume that there exists an element 𝑥0 ∈ A  such that  𝑔𝑥0 ≼ 𝑓𝑥0. 
Then f and g have a coincidence point in A. 

 

The following example is in support of Theorem 3.1. 

 

Example 4.8  Let 𝑋 = [0,3] × [0,3] with 𝑑(𝑥, 𝑦) = |𝑥1 – y1| + |𝑥2 – y2|, where 𝑥 = (𝑥1, 𝑥2) and 

𝑦 = (𝑦1, 𝑦2). We define a partial order ≼ on X by: 

 

≼≔ {((𝑥1, 𝑥2)(𝑦1, 𝑦2)) ∈ 𝑋 × 𝑋|𝑥1 = 𝑦1,  𝑥2 = 𝑦2  ((𝑥1, 𝑥2)(𝑦1, 𝑦2)) ∈ 𝑋 × 𝑋|𝑥1 = 𝑦1

= 0,  𝑥2, 𝑦2  ∈ (0,1],  𝑥2 ≥ 𝑦2

 𝐴 = {(0, 𝑥): 0 ≤ 𝑥 ≤ 3}𝐵 = {(1, 𝑥): 0 ≤ 𝑥 ≤ 3}

𝐴0 = {(0, 𝑥): 0 ≤ 𝑥 ≤ 1}𝐵0 = {(1, 𝑥): 0 ≤ 𝑥 ≤ 1}
We define functions 𝑓: 𝐴 → 𝐵 and  𝑔: 𝐴 → 𝐴 by 

 

𝑓(0, 𝑥) = (1,
𝑥2

2+𝑥
)  and  𝑔(0, 𝑥) = (1,

3𝑥

2+𝑥
). 

  

Clearly 𝑑(𝐴, 𝐵) = 1,   𝑓(𝐴0) ⊆ 𝐵0,  𝑔(𝐴0) is closed and  𝐴0 ⊆ 𝑔(𝐴0).  We now show that the pair 

(A,B) satisfies the P-property.   For this purpose, let (0, 𝑥), (0, 𝑦) ∈ 𝐴0 and (1, 𝑢), (1, 𝑣) ∈ 𝐵0 such that 

 

          𝑑((0, 𝑥), (1, 𝑢)) = 𝑑(𝐴, 𝐵) = 1  and                                                                                             (34) 

 

𝑑((0, 𝑥), (1, 𝑢)) = 𝑑(𝐴, 𝐵) = 1.                                                                                                    (35) 

 

Hence from (34) and (35), we have 𝑥 = 𝑢 and 𝑦 = 𝑣. This implies that  

 

𝑑((0, 𝑥), (0, 𝑦)) = 𝑑((0, 𝑢), (0, 𝑣)) = 𝑑((1, 𝑢), (1, 𝑣)).  
 

Hence the pair (A,B) satisfies the P-property. 

      Now, we show that 𝑓 is g-proximally increasing. In this case, let (0, 𝑥), (0, 𝑦), (0, 𝑢) and (0, 𝑣) ∈ 𝐴 

such that 

 
𝑔(0, 𝑦) ≼ 𝑔(0, 𝑣)

𝑑((0, 𝑥), 𝑓(0, 𝑦)) = 1

𝑑((0, 𝑢), 𝑓(0, 𝑣)) = 1.

} 

Since 𝑔(0, 𝑦) ≼ 𝑔(0, 𝑣), it follows that  

(0,
3𝑦

2 + 𝑦
) ≼ (0,

3𝑣

2 + 𝑣
) ⟺ (0,

3𝑦

2 + 𝑦
) ≥ (0,

3𝑣

2 + 𝑣
) ⟺ 𝑦 ≥ 𝑣 

                                                      ⇔ 2𝑦2 + 𝑣𝑦2 ≥ 2𝑣2 + 𝑦𝑣2 ⟺
𝑦2

2+𝑦
≥

𝑣2

2+𝑣
.                                 (36) 

From 𝑑((0, 𝑥), 𝑓(0, 𝑦)) = 𝑑 ((0, 𝑥), (1,
𝑦2

2+𝑦
)) = 1, we have 



 
484 Venkata Ravindranadh Babu Gutti,  Leta Bekere Kumssa/ GU J Sci, 30(4): 474-487 (2017) 

 

 

                                                                           𝑥 =  
𝑦2

2+𝑦
.                                                                         (37)    

From 𝑑((0, 𝑢), 𝑓(0, 𝑣)) = 𝑑 ((0, 𝑢), (1,
𝑣2

2+𝑣
)) = 1, we have 

                                                                           𝑢 =  
𝑣2

2+𝑣
.                                                                         (38)    

By (36), (37) and (38), we obtain 𝑥 ≥ 𝑢 ⟺ (0, 𝑥) ≼ (0, 𝑢). Hence 𝑓 is g-proximally increasing. 

      We choose 𝑥0 = (0,
1

2
),  𝑥1 = (0,

2

29
) ∈ 𝐴0 such that 𝑑 (𝑔 (0,

2

29
) , 𝑓 (0,

1

2
)) = 𝑑(𝐴, 𝐵) and   

𝑔 (0,
1

2
) ≼ 𝑔 (0,

2

29
). 

      We define functions 𝜓, 𝜑, 𝜃: [0, ∞) →: [0, ∞) by 

𝜓(𝑡) = {
7

8
𝑡      𝑖𝑓   𝑡 ∈ [0,1]

3

2
𝑡  𝑖𝑓    𝑡 > 1 ,       

     𝜑(𝑡) = {  
5

6
𝑡      𝑖𝑓   𝑡 ∈ [0,1]

1

2
𝑡  𝑖𝑓    𝑡 > 1              

and    𝜃(𝑡) = {
1

16
𝑡      𝑖𝑓   𝑡 ∈ [0,1]

1

8
𝑡  𝑖𝑓    𝑡 > 1.       

 

Let (0, 𝑥), (0, 𝑦) ∈ 𝐴 such that 𝑔(0, 𝑥) ≼ 𝑔(0, 𝑦). i.e., necessarily 𝑥, 𝑦 ∈ (0,1]. Hence  

𝜓 (𝑑(𝑓(0, 𝑥), 𝑓(0, 𝑦))) = 𝜓 (𝑑 ((1, 𝑥2

2+𝑥
), (1, 𝑦2

2+𝑦
))) = 𝜓 (

2𝑥2+𝑥2𝑦−2𝑦2−𝑦2𝑥

(2+𝑥)(2+𝑦)
) 

                                                              = 
7

8
(

2𝑥2+𝑥2𝑦−2𝑦2−𝑦2𝑥

(2+𝑥)(2+𝑦)
) =

7

8
(

2𝑥+2𝑦+𝑥𝑦)(𝑥−𝑦)

(2+𝑥)(2+𝑦)
) ≤37

8
 

(𝑥−𝑦)
(2+𝑥)(2+𝑦)

 

                                                             = 5

6
(

6(𝑥−𝑦)

(2+𝑥)(2+𝑦)
− 1

16
(

6(𝑥−𝑦)

(2+𝑥)(2+𝑦)
) 

                                                             = 𝜑 (𝑑(𝑔(0, 𝑥), 𝑔(0, 𝑦))) − 𝜃 (𝑑(𝑔(0, 𝑥), 𝑔(0, 𝑦))). 

Hence the inequality (2) holds. Therefore the functions 𝜓, 𝜑, 𝜃, f and g satisfy all the conditions of 

Theorem 3.1 and (0, 0), (0, 3) are the proximity coincidence points of f and g. 

      Here we observe that g(0,2) and g(0,5

6
 ) are not comparable, but there is no u ∈ 𝐴 such that g(u) is 

comparable to both g(0,2) and g(0,5

6
). Therefore condition H in Theorem 3.2 fails to hold and f and g have 

more than one proximity coincidence point. 

 

Remark 4.9 The functions  𝜓, 𝜑 and  𝜃 in Example 4.8 are not continuous, so that Theorem 2.7 is not 

applicable. Hence our result is more general than the result of Wangkeeree and Sisarat [17] in which 

continuous control functions are considered. 

      The following example is in support of Theorem 3.2. 

Example 4.10 Let 𝑋 = [0, 1

2
] × [0, 1

2
] ∪ {(0,1), (0,2), (1,1), (1,2)}, with the Euclidean metric d. We 

define a partial order ≼ on X by 

≼≔ {((𝑥1, 𝑥2),(𝑦1, 𝑦2)) ∈ 𝑋 × 𝑋|𝑥1 = 𝑦1,  𝑥2 = 𝑦2 }  {((𝑥1, 𝑥2),(𝑦1, 𝑦2)) ∈ 𝑋 × 𝑋|𝑥1 = 𝑦1 = 0,
  𝑥2, 𝑦2  ∈ [0, 1

2
],  𝑥2 ≥ 𝑦2}  {((0,1),(0,0)),((0,2),(0,0)) with (𝑥1, 𝑥2) ≼ (𝑦1, 𝑦2) ⟺ 𝑥1 = 𝑦1 = 𝑦2 = 0, 

 𝑥2 ≥ 𝑦2, where 𝑥2 ∈ {1,2}}. 
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Let 𝐴 = {(0, 𝑥): 0 ≤ 𝑥 ≤ 1

2
}∪ {(0,1), (0,2)} = 𝐴0 and 𝐵 = {(1, 𝑥): 0 ≤ 𝑥 ≤ 1

2
}∪ {(1,1), (1,2)} = 𝐵0. 

       We define 𝑓: 𝐴 → 𝐵 and 𝑔: 𝐴 → 𝐴 by 

𝑓(0, 𝑥) = (1, 𝑥2

2
) for all 0 ≤ 𝑥 ≤ 1

2
, 𝑓(0,1) = 𝑓(0,2) = (1, 1

4
) and 𝑔(0, 𝑥) = (0,2𝑥2) for all 0 ≤ 𝑥 ≤ 1

2
, 

𝑔(0,1) = (0,1), 𝑔(0,2) = (0,2). 

Clearly 𝑑(𝐴, 𝐵) = 1, 𝑓(𝐴0) ⊆ 𝐵0) and 𝐴0 ⊆ 𝑔𝐴0. We choose 𝑥0 = (0, 1

2
) and 𝑥1 = (0, 1

4
). Then clearly 

𝑑 (𝑔(0, 1

4
), 𝑓(0, 1

2
)) = 𝑑(𝐴, 𝐵) and 𝑔(0, 1

2
) ≼ 𝑔(0, 1

4
). 

      We now show that the pair (𝐴, 𝐵) satisfies P-property. For this purpose, let (0, 𝑥1), (0, 𝑦1) ∈ 𝐴0 and  

(1, 𝑢1), (1, 𝑣) ∈ 𝐵0 such that 𝑑((0, 𝑥1), (1, 𝑢1)) = 𝑑(𝐴, 𝐵) = 1 and 𝑑((0, 𝑦1), (1, 𝑣1)) = 𝑑(𝐴, 𝐵) = 1. 

Then 𝑥1 = 𝑢1 and 𝑦1 = 𝑣1. Hence 𝑑((0, 𝑥1), (0, 𝑦1)) = 𝑑((1, 𝑢1), (1, 𝑣1)) so that the pair (𝐴, 𝐵) 

satisfies the P-property. 

      Now, we show that f is g-proximally increasing on A. In this case, let (0, 𝑥), (0, 𝑢) and (0, 𝑣) ∈ 𝐴 

such that  

𝑔(0, 𝑦) ≼ 𝑔(0, 𝑣)

𝑑((0, 𝑥), 𝑓(0, 𝑦)) = 1

𝑑((0, 𝑢), 𝑓(0, 𝑣)) = 1.

} 

Case (i): 𝑦, 𝑣 ∈ [0, 1

2
]. 

                                                    𝑔(0, 𝑦) ≼ 𝑔(0, 𝑣) ⟺ 𝑦2 ≥ 𝑣2.                                                            (39) 

From 𝑑((0, 𝑥), 𝑓(0, 𝑦)) = 1, we get  

                                                  𝑥 = 𝑦2

2
.                                                                                                     (40) 

Similarly, from 𝑑((0, 𝑢), 𝑓(0, 𝑣)) = 1, we get  

                                                  𝑢 = 𝑣2

2
.                                                                                                     (41) 

From (39), (40) and (41), we obtain (0, 𝑥) ≼ (0, 𝑢). 

Case (ii): 𝑔(0,1) ≼ 𝑔(0,0). 

If 𝑑((0, 𝑥), 𝑓(0,1)) = 1, we obtain 

                                                  𝑥 = 1

4
.                                                                                                       (42) 

If 𝑑((0, 𝑢), 𝑓(0,0)) = 1, we have 

                                                  𝑢 = 0.                                                                                                      (43) 

From (42) and (43), we obtain (0, 𝑥) = (0,
1

4
) ≼ (0,0) = (0, 𝑢). 

Case (iii): 𝑔(0,2) ≼ 𝑔(0,0). 

From  𝑑((0, 𝑥), 𝑓(0,2)) = 1 and 𝑑((0, 𝑢), 𝑓(0,0)) = 1, we have 𝑥 = 1

4
 and 𝑢 = 0. Therefore 

 (0, 𝑥) ≼ (0, 𝑢). Hence from all the above cases, we have f is g-proximally increasing on A. 

      Now, we define functions 𝜓, 𝜑, 𝜃: [0, ∞) →: [0, ∞) by 
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𝜓(𝑡) = {
𝑡      𝑖𝑓   𝑡 ∈ [0,1]

3

2
𝑡2  𝑖𝑓    𝑡 > 1 ,       

     𝜑(𝑡) = {  
3

4
𝑡      𝑖𝑓   𝑡 ∈ [0,1]

1

2
𝑡2 𝑖𝑓    𝑡 > 1              

and    𝜃(𝑡) = {

1

4
𝑡      𝑖𝑓   𝑡 ∈ [0,1]

1

8
𝑡2 𝑖𝑓    𝑡 > 1.       

 

With these 𝜓, 𝜑 and 𝜃, we verify that f and g satisfy the inequality (2). In the verification of the inequality 

(2), the following three cases are possible. 

Case (i) : 𝑥, 𝑦 ∈ [0, 1

2
] such that 𝑔(0, 𝑥) ≼ 𝑔(0, 𝑦). 

𝜓 (𝑑(𝑓(0, 𝑥), 𝑓(0, 𝑦))) = 𝜓 (𝑑 ((1,
𝑥2

2
) , (1,

𝑦2

2
))) = 𝜓 (√𝑥2

2
−

𝑦2

2
 ) = √𝑥2

2
−

𝑦2

2
=

√2

2
√𝑥2 − 𝑦2 

                                              =  
3

4
 √2𝑥2 − 2𝑦2 −

1

4
 √2𝑥2 − 2𝑦2 

                                              = 𝜑 (𝑑(𝑔(0, 𝑥), 𝑔(0, 𝑦))) − 𝜃 (𝑑(𝑔(0, 𝑥), 𝑔(0, 𝑦))). 

Case (ii) : 𝑔(0,1) ≼ 𝑔(0,0). 

𝜓 (𝑑(𝑓(0,1), 𝑓(0,0))) = 𝜓 (𝑑 ((1,
1

4
) , (1,0))) = 𝜓 (√

1

4
 ) = √

1

4
=

1

2
=

3

4
−

1

4
 

                                                          = 𝜑 (𝑑(𝑔(0,1), 𝑔(0,0))) − 𝜃 (𝑑(𝑔(0,1), 𝑔(0,0))). 

Case (iii) : 𝑔(0,2) ≼ 𝑔(0,0). 

𝜓 (𝑑(𝑓(0,2), 𝑓(0,0))) = 𝜓 (𝑑 ((1,
1

4
) , (1,0))) = 𝜓 (√

1

4
 ) = √

1

4
=

1

2
≤

3

4
=

1

2
√22 −

1

8
√22 

                                               = 𝜑 (𝑑(𝑔(0,2), 𝑔(0,0))) − 𝜃 (𝑑(𝑔(0,2), 𝑔(0,0))). 

Therefore f and g satisfy the inequality (2). Also, it is trivial to see that condition H holds. Hence f and g 

satisfy all the hypotheses of Theorem 3.2 and (0,0) is the unique proximity coincidence point of f and g in 

A. 
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