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Abstract. In this paper, new Sturmian comparison results and oscillatory properties of linear impul-

sive hyperbolic equations are obtained on a rectangular prism under fixed moment of impulse effects.

Besides the Kreith’s results [9,10], this paper represents an extension of earlier findings obtained on the
rectangular domain in the plane to the results obtained in rectangular prism in space.
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1. Introduction

In 1969, Kreith [9] obtained a remarkable analogue of the Sturm comparison theorem between the pair
of hyperbolic boundary value problems of the form

utt − uxx + p(x, t)u = 0
ux(xj , t) + (−1)jrj(t)u(xj , t) = 0; (j = 1, 2)

(1)

and

vtt − vxx + q(x, t)v = 0,
vx(xj , t) + (−1)jsj(t)v(xj , t) = 0; (j = 1, 2)

(2)

on the rectangular domain:

D = {(x, t) : x1 < x < x2, t1 < t < t2)}.

Theorem 1. Let z1 be a solution of problem (1) satisfying

z1(x, t1) = z1(x, t2) = 0; x1 ≤ x ≤ x2,

which is positive for (x, t) ∈ [x1, x2]× (t1, t2). If q ≥ p on D and sj ≥ rj (j = 1, 2) on [t1, t2], then every
solution z2 of problem (2) has a zero in

D̄ = {(x, t) : x1 ≤ x ≤ x2, t1 ≤ t ≤ t2)}.

For the proof of Theorem 1, we address the readers [9, Theorem 1]. See also the monograph by
Kreith [10, pp. 24–26].

Impulsive differential equations have been an interesting area for mathematics, physics, biology, chem-
istry, engineering, medicine etc. As far as impulsive ordinary differential equations are considered, there
are many studies in terms of the existence of periodic solutions, asymptotic behavior, stability, Sturmian
theory and oscillatory behavior of their solutions, see for example the book by Lakshmikantham, Bainov
and Simeonov [11]. When partial differential equations under the impulse effect is considered, there are
fewer publications compared to ordinary impulsive differential equations. Some of the noteworthy contri-
butions have been made by Bainov et al. [1–4] for the first order impulsive partial differential inequalities,
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by Fu et al. [7] for the oscillation of impulsive hyperbolic systems, by Bainov and Simeonov [5] for the
oscillatory behavior of impulsive differential equations, by Minchev [14] for the oscillation criteria of
nonlinear hyperbolic differential and difference equations under impulse effect, by Cui et al. [6] for some
problems on oscillation of impulsive hyperbolic differential systems with several retarded arguments, by
Luo et al. [12] for oscillatory behavior of nonlinear impulsive partial functional differential equations, by
Zhu et al. [18] for oscillation criteria of impulsive neutral hyperbolic equations, by Hernández et al. [8] for
the existence of solutions of impulsive partial functional differential equations, by Ning et al. [15] for the
oscillation of system of impulsive hyperbolic equations and by Luo et al. [13] for oscillatory solutions of
impulsive quasilinear hyperbolic systems with delay. Oscillation theory for impulsive partial differential
equations has received great attention and has been developing quite rapidly in recent years. As far as
the Sturm theory is concerned, it seems there is only a single work [16] for impulsive hyperbolic equations
in the literature. Recently, present authors [16] give some Sturm-type comparison criteria for impulsive
hyperbolic equations on a rectangular domain. They attempted to give analogical comparison results for
the couple of impulsive hyperbolic problems{

utt(x, t)− uxx(x, t) + f(x, t)u(x, t) = 0; (x, t) ∈ Γ \ Γimp,
∆ut(x, t) + fk(x, t)u(x, t) = 0; (x, t) ∈ Γimp

(3)

satisfying the boundary conditions

ux(xj , t) + (−1)jrj(t)u(xj , t) = 0; (j = 1, 2) (4)

and {
vtt(x, t)− vxx(x, t) + g(x, t)v(x, t) = 0; (x, t) ∈ Γ \ Γimp,

∆vt(x, t) + gk(x, t)v(x, t) = 0; (x, t) ∈ Γimp
(5)

satisfying the boundary conditions

vx(xj , t) + (−1)jsj(t)v(xj , t) = 0; (j = 1, 2), (6)

where

Γ :={(x, t) : x ∈ (x1, x2), t ∈ (t1, t2)} and

Γimp :={(x, t) ∈ Γ : t = τk, k ∈ N},

rj , sj ∈ C([t1, t2],R) for j = 1, 2, and f, g, fk, gk ∈ C(Γ,R) for k ∈ N. Here {τk} is real-valued sequence
such that

τ1 < τ2 < · · · < τk < τk+1 < · · · (k ∈ N)
with limn→∞ τn = ∞, and the operator ∆ is the impulse operator defined as ∆ν(x, τ) = ν(x, τ+) −
ν(x, τ−), where

ν(x, τ±) = lim
(x,t)→(x,τ±)

ν(x, τ).

Theorem 2 ([16]). Let u be a solution of problem (3)–(4) which is positive on Γ and satisfies u(x, t1) =
u(x, t2) = 0 for all x ∈ [x1, x2]. If g > f on Γ, sj > rj (j = 1, 2) in [t1, t2], and gk > fk (k ∈ N) on Γimp,
then every solution v of problem (5)–(6) has a zero in closure Γ̄ of Γ.

Fix x0, y0, t0 ∈ R. Let I = (x1, x2) ⊂ [x0,∞), J = (y1, y2) ⊂ [y0,∞) and K = (t1, t2) ⊂ [t0,∞) be
non-degenerate intervals.

Define the rectangular prism

Ω = I × J ×K,

and the domains

Kimp := {t ∈ K : t = τk, k ∈ N} and

Ωimp := I × J ×Kimp,

where {τk} is as defined previously.
Denote by Cimp

(
Ω̄,R

)
the set of functions w : Ω̄ → R satisfying the following properties:

(i) w(x, y, t) is a continuous function for (x, y, t) ∈ Ω̄ \ Ω̄imp
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(ii) There exist limits

lim
(x,y,t)→(x,y,τk)

t>τk

w(x, y, t) = w(x, y, τ+k ) (k ∈ N)

and

lim
(x,y,t)→(x,y,τk)

t<τk

w(x, y, t) = w(x, y, τ−k ) (k ∈ N)

for all (x, y) ∈ Ī × J̄ .
(iii) ν(x, y, t) is piecewise left continuous function at each τk, k ∈ N, i.e.

lim
(x,y,t)→(x,y,τk)

t<τk

ν(x, y, t) = ν(x, y, τk)

for each k ∈ N and (x, y) ∈ Ī × J̄ .

In this work, we give some Sturm-type comparison results for solutions of the couple of impulsive hyper-
bolic problems of the form{

utt −△u+ f(x, y, t)u = 0; (x, y, t) ∈ Ω \ Ωimp

∆ut + fk(x, y, t)u = 0; (x, y, t) ∈ Ωimp
(7)

satisfying the boundary conditions

ux(xj , y, t) + (−1)jrj(t)u(xj , y, t) = 0; (y, t) ∈ J̄ × K̄,
uy(x, yj , t) + (−1)jrj+2(t)u(x, yj , t) = 0; (x, t) ∈ Ī × K̄,

(8)

and {
vtt −△v + g(x, y, t)v = 0; (x, y, t) ∈ Ω \ Ωimp

∆vt + gk(x, y, t)v = 0; (x, y, t) ∈ Ωimp
(9)

satisfying the boundary conditions

vx(xj , y, t) + (−1)jsj(t)v(xj , y, t) = 0; (y, t) ∈ J̄ × K̄,
vy(x, yj , t) + (−1)jsj+2(t)v(x, yj , t) = 0; (x, t) ∈ Ī × K̄ (10)

for j = 1, 2, where f, g : Ω̄ → R, rℓ, sℓ : K̄ → R are continuous functions for ℓ = 1, 2, 3, 4,

∆w(x, y, t) = w(x, y, t+)− w(x, y, t−),

and △ is the usual Laplace operator:

△ =
∂2

∂x2
+

∂2

∂y2
.

A function z ̸= 0 is defined to be a solution of (7)–(8) (respectively (9)–(10)) if

• z ∈ C
(
Ω̄,R

)
(i.e., ∆z(x, y, τk) = 0 for all k ∈ N) and zt ∈ Cimp

(
Ω̄,R

)
;

• there exist second-order partial derivatives ztt, zxx and zyy satisfying the first equation in (7) for
each (x, y, t) ∈ Ω \ Ωimp;

• z satisfies the second equation in (7) in Ωimp and the boundary conditions given in (8).

Recently, present authors [17] considered the pair of Problems (7)–(8) and (9)–(10) without impulse
effect, i.e. fk(x, y, t) ≡ 0 ≡ gk(x, y, t), and they obtained some Sturm-type comparison results between
them.

Motivated by Theorems 1 and 2, and the results given in [17], we consider impulsive hyperbolic
equations on a rectangular prism and their oscillatory properties. The results obtained in this work are
conceivable as impulsive extension of those given in [17].

2. Linear Comparison Results

Based on the Kreith’s comparison result obtained on the rectangular domain in the plane, we interfere
to obtain an analogic result for the solutions of the couple of impulsive problems (7)–(8) and (9)–(10) on
a rectangular prism in three-space.

Main result of the paper is the following.
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Theorem 3 (Sturm comparison theorem). Let u be a solution of problem (7)–(8) satisfying the initial
conditions

u(x, y, t1) = u(x, y, t2) = 0; (x, y) ∈ Ī × J̄ , (11)

which is positive on Ω. If the inequalities

g(x, y, t) ≥ f(x, y, t); (x, y, t) ∈ Ω, (12)

sj(t) ≥ rj(t); t ∈ K̄ (j = 1, 2, 3, 4), (13)

and

gk(x, y, t) ≥ fk(x, y, t); (x, y, t) ∈ Ωimp (k ∈ N) (14)

hold, then every solution v of problem (9)–(10) has a zero in Ω̄.

Proof. Suppose to contrary that v has no zero in Ω̄. Without loss of generality we may assume that v > 0
in Ω̄. The proof of the case that v < 0 in Ω̄ is similar.

Multiplying the first equations in (7) and (9) by v and u respectively, and subtracting, we see that the
identity [

uvx − vux

]
x
+
[
uvy − vuy

]
y
+

[
vut − uvt

]
t
=

[
g(x, y, t)− f(x, y, t)

]
uv (15)

holds for all (x, y, t) ∈ Ω̄. Integrating both sides of (15) over Ω, we obtain
y

Ω

[
g(x, y, t)− f(x, y, t)

]
uvdV

=
y

Ω

{[
uvx − vux

]
x
+

[
uvy − vuy

]
y
+
[
vut − uvt

]
t

}
dV, (16)

where dV is the volume element. The functions under integral signs have discontinuities of first kind at
the jump points τk, so we divide the domain Ω into (n+ 1) sub-domains in the following way:

Ω0 := {(x, y, t) : (x, y) ∈ I × J , t ∈ (t1, τ1]},
Ωk := {(x, y, t) : (x, y) ∈ I × J , t ∈ (τk, τk+1]}; k = 1, 2, . . . , n− 1,

Ωn := {(x, y, t) : (x, y) ∈ I × J , t ∈ (τn, t2)}.

This allows us to apply the divergence theorem to each triple integral
y

Ωm

{[
uvx − vux

]
x
+

[
uvy − vuy

]
y
+

[
vut − uvt

]
t

}
dV (17)

for m = 0, 1, . . . , n. We also note that each partition defined above satisfy

(i)

n⋂
ℓ=0

Ωℓ = ∅;

(ii) Ω =

n⋃
ℓ=0

Ωℓ.

Clearly, we have from (i) and (ii) that
y

Ω

[
g(x, y, t)− f(x, y, t)

]
uvdV

=
y

Ω0

[
g(x, y, t)− f(x, y, t)

]
uvdV +

n−1∑
k=1

y

Ωk

[
g(x, y, t)− f(x, y, t)

]
uvdV

+
y

Ωn

[
g(x, y, t)− f(x, y, t)

]
uvdV. (18)

We note that each Ωm, m = 0, 1, . . . , n, is a simple solid region with the piecewise smooth boundary Sm.
Applying divergence theorem to the smooth vector field

F(x, y, t) := (uvx − vux)i+ (uvy − vuy)j+ (vut − uvt)k, (19)
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on Ωm, m = 0, 1, . . . , n, the integral given in (17) turns out to be
y

Ωm

{[
uvx − vux

]
x
+

[
uvy − vuy

]
y
+
[
vut − uvt

]
t

}
dV

=
y

Ωm

div FdV

=
y

Ωm

∇ • FdV


=

{

Sm

F • N̂dS (20)

for m = 0, 1, . . . , n, where N̂ is the unit outward normal to the surface Sm and the ∇ is the usual nabla
(gradient) operator defined by

∇ =
∂

∂x
i+

∂

∂y
j+

∂

∂t
k.

Since Sm (= ∂Ωm), m = 0, 1, . . . , n, is the union of six regions, it can be expressed as

Sm =

6⋃
µ=1

Smµ, (21)

where each Smµ, µ = 1, . . . , 6, are disjoint, rectangular, oriented, closed surfaces. It follows from the fact
(21) that, the integral on the right-hand side of (20) can be expressed as

y

Ωm

{[
uvx − vux

]
x
+

[
uvy − vuy

]
y
+
[
vut − uvt

]
t

}
dV

=

6∑
µ=1

x

Smµ

F • N̂mµdS, (m = 0, 1, . . . , n), (22)

where each N̂mµ are the unit outward normal vectors to each surface Smµ and defined by

N̂m1 = −i, N̂m2 = i, N̂m3 = −j

N̂m4 = j, N̂m5 = −k, N̂m6 = k
(23)

for m = 0, 1, . . . , n, and F is defined in (19).
Now, we start with the first integral in the right-hand side on (18). Taking m = 0 in (22) and using

(15) and (23), it can be expressed as

y

Ω0

[
g(x, y, t)− f(x, y, t)

]
uvdV =

{

S0

F • N̂dS =

6∑
µ=1

x

S0µ

F • N̂0µdS, (24)

where each surfaces S0µ are defined by

S01 = {(x, y, t) : x = x1, y ∈ J , t ∈ (t1, τ1]},
S02 = {(x, y, t) : x = x2, y ∈ J , t ∈ (t1, τ1]},
S03 = {(x, y, t) : y = y1, x ∈ I, t ∈ (t1, τ1]},
S04 = {(x, y, t) : y = y2, x ∈ I, t ∈ (t1, τ1]},
S05 = {(x, y, t) : t = t1, (x, y) ∈ I × J }

and

S06 = {(x, y, t) : t = τ1, (x, y) ∈ I × J }.

Then by using the initial conditions (8) and (10), each integral on the right-hand side of (24) turn out
to be

x

S01

F • N̂01dS = −
x

S01

F • idS

= −
∫ τ1

t1

∫ y2

y1

[uvx − vux](x1, y, t)dydt
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=

∫ τ1

t1

∫ y2

y1

[r1(t)− s1(t)]u(x1, y, t)v(x1, y, t)dydt, (25)

x

S02

F • N̂02dS =
x

S02

F • idS

=

∫ τ1

t1

∫ y2

y1

[uvx − vux](x2, y, t)dydt

=

∫ τ1

t1

∫ y2

y1

[r2(t)− s2(t)]u(x2, y, t)v(x2, y, t)dydt, (26)

x

S03

F • N̂03dS = −
x

S03

F • jdS

= −
∫ τ1

t1

∫ x2

x1

[uvy − vuy](x, y1, t)dxdt

=

∫ τ1

t1

∫ x2

x1

[r3(t)− s3(t)]u(x, y1, t)v(x, y1, t)dxdt, (27)

x

S04

F • N̂04dS =
x

S04

F • jdS

=

∫ τ1

t1

∫ x2

x1

[uvy − vuy](x, y2, t)dxdt

=

∫ τ1

t1

∫ x2

x1

[r4(t)− s4(t)]u(x, y2, t)v(x, y2, t)dxdt, (28)

x

S05

F • N̂05dS = −
x

S05

F • kdS = −
∫ y2

y1

∫ x2

x1

[vut − uvt](x, y, t1)dxdy (29)

and
x

S06

F • N̂06dS =
x

S06

F • kdS =

∫ y2

y1

∫ x2

x1

[vut − uvt](x, y, τ1)dxdy. (30)

Summing up equations (25)–(30), equation (24) turns out to be
y

Ω0

[
g(x, y, t)− f(x, y, t)

]
uvdV

=

∫ τ1

t1

∫ y2

y1

{
[r1(t)− s1(t)]u(x1, y, t)v(x1, y, t)

+ [r2(t)− s2(t)]u(x2, y, t)v(x2, y, t)

}
dydt

+

∫ τ1

t1

∫ x2

x1

{
[r3(t)− s3(t)]u(x, y1, t)v(x, y1, t)

+ [r4(t)− s4(t)]u(x, y2, t)v(x, y2, t)

}
dxdt

+

∫ y2

y1

∫ x2

x1

{
[vut − uvt](x, y, τ1)− [vut − uvt](x, y, t1)

}
dxdy. (31)

Similarly, by taking m = n in (22) and using (15) and (23), the last integral in the right-hand side on
(18) can be expressed as

y

Ωn

[
g(x, y, t)− f(x, y, t)

]
uvdV =

{

Sn

F • N̂dS =

6∑
µ=1

x

Snµ

F • N̂nµdS, (32)
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where

Sn1 = {(x, y, t) : x = x1, y ∈ J , t ∈ (τn, t2]},
Sn2 = {(x, y, t) : x = x2, y ∈ J , t ∈ (τn, t2]},
Sn3 = {(x, y, t) : y = y1, x ∈ I, t ∈ (τn, t2]},
Sn4 = {(x, y, t) : y = y2, x ∈ I, t ∈ (τn, t2]},
Sn5 = {(x, y, t) : t = τn, (x, y) ∈ I × J }

and

Sn6 = {(x, y, t) : t = t2, (x, y) ∈ I × J }.

Boundary conditions (8) and (10) imply that each integral on the right-hand side of (32) turn out to be
x

Sn1

F • N̂n1dS = −
x

Sn1

F • idS

= −
∫ t2

τ+
n

∫ y2

y1

[uvx − vux](x1, y, t)dydt

=

∫ t2

τ+
n

∫ y2

y1

[r1(t)− s1(t)]u(x1, y, t)v(x1, y, t)dydt, (33)

x

Sn2

F • N̂n2dS =
x

Sn2

F • idS

=

∫ t2

τ+
n

∫ y2

y1

[uvx − vux](x2, y, t)dydt

=

∫ t2

τ+
n

∫ y2

y1

[r2(t)− s2(t)]u(x2, y, t)v(x2, y, t)dydt, (34)

x

Sn3

F • N̂n3dS = −
x

Sn3

F • jdS

= −
∫ t2

τ+
n

∫ x2

x1

[uvy − vuy](x, y1, t)dxdt

=

∫ t2

τ+
n

∫ x2

x1

[r3(t)− s3(t)]u(x, y1, t)v(x, y1, t)dxdt, (35)

x

Sn4

F • N̂n4dS =
x

Sn4

F • jdS

=

∫ t2

τ+
n

∫ x2

x1

[uvy − vuy](x, y2, t)dxdt

=

∫ t2

τ+
n

∫ x2

x1

[r4(t)− s4(t)]u(x, y2, t)v(x, y2, t)dxdt, (36)

x

Sn5

F • N̂n5dS = −
x

Sn5

F • kdS = −
∫ y2

y1

∫ x2

x1

[vut − uvt](x, y, τ
+
n )dxdy (37)

and
x

Sn6

F • N̂n6dS =
x

Sn6

F • kdS =

∫ y2

y1

∫ x2

x1

[vut − uvt](x, y, t2)dxdy. (38)

By addition of integrals (33)–(38), equation (32) can be expressed as
y

Ωn

[
g(x, y, t)− f(x, y, t)

]
uvdV
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=

∫ t2

τ+
n

∫ y2

y1

{
[r1(t)− s1(t)]u(x1, y, t)v(x1, y, t)

+ [r2(t)− s2(t)]u(x2, y, t)v(x2, y, t)

}
dydt

+

∫ t2

τ+
n

∫ x2

x1

{
[r3(t)− s3(t)]u(x, y1, t)v(x, y1, t)

+ [r4(t)− s4(t)]u(x, y2, t)v(x, y2, t)

}
dxdt

+

∫ y2

y1

∫ x2

x1

{
[vut − uvt](x, y, t2)− [vut − uvt](x, y, τ

+
n )

}
dxdy. (39)

Finally, we will examine the integrals in the mid part of (18), i.e.

y

Ωk

[
g(x, y, t)− f(x, y, t)

]
uvdV =

{

Sk

F • N̂dS =

6∑
µ=1

x

Skµ

F • N̂kµdS, (40)

where

Sk1 = {(x, y, t) : x = x1, y ∈ J , t ∈ (τk, τk+1]},
Sk2 = {(x, y, t) : x = x2, y ∈ J , t ∈ (τk, τk+1]},
Sk3 = {(x, y, t) : y = y1, x ∈ I, t ∈ (τk, τk+1]},
Sk4 = {(x, y, t) : y = y2, x ∈ I, t ∈ (τk, τk+1]},
Sk5 = {(x, y, t) : t = τk, (x, y) ∈ I × J }

and

Sk6 = {(x, y, t) : t = τk+1, (x, y) ∈ I × J }

for k = 1, 2, . . . , n− 1.
Then integrals on the right-hand side of (40) become

x

Sk1

F • N̂k1dS = −
x

Sk1

F • idS

= −
∫ τk+1

τ+
k

∫ y2

y1

[uvx − vux](x1, y, t)dydt

=

∫ τk+1

τ+
k

∫ y2

y1

[r1(t)− s1(t)]u(x1, y, t)v(x1, y, t)dydt, (41)

x

Sk2

F • N̂k2dS =
x

Sk2

F • idS

=

∫ τk+1

τ+
k

∫ y2

y1

[uvx − vux](x2, y, t)dydt

=

∫ τk+1

τ+
k

∫ y2

y1

[r2(t)− s2(t)]u(x2, y, t)v(x2, y, t)dydt, (42)

x

Sk3

F • N̂k3dS = −
x

Sk3

F • jdS

= −
∫ τk+1

τ+
k

∫ x2

x1

[uvy − vuy](x, y1, t)dxdt

=

∫ τk+1

τ+
k

∫ x2

x1

[r3(t)− s3(t)]u(x, y1, t)v(x, y1, t)dxdt, (43)
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x

Sk4

F • N̂k4dS =
x

Sk4

F • jdS

=

∫ τk+1

τ+
k

∫ x2

x1

[uvy − vuy](x, y2, t)dxdt

=

∫ τk+1

τ+
k

∫ x2

x1

[r4(t)− s4(t)]u(x, y2, t)v(x, y2, t)dxdt (44)

x

Sk5

F • N̂k5dS = −
x

Sk5

F • kdS = −
∫ y2

y1

∫ x2

x1

[vut − uvt](x, y, τ
+
k )dxdy (45)

and
x

Sk6

F • N̂k6dS =
x

Sk6

F • kdS =

∫ y2

y1

∫ x2

x1

[vut − uvt](x, y, τk+1)dxdy (46)

for k = 1, 2, . . . , n− 1. Integrals (41)–(46) yield
y

Ωk

[
g(x, y, t)− f(x, y, t)

]
uvdV

=

∫ τk+1

τ+
k

∫ y2

y1

{
[r1(t)− s1(t)]u(x1, y, t)v(x1, y, t)

+ [r2(t)− s2(t)]u(x2, y, t)v(x2, y, t)

}
dydt

+

∫ τk+1

τ+
k

∫ x2

x1

{
[r3(t)− s3(t)]u(x, y1, t)v(x, y1, t)

+ [r4(t)− s4(t)]u(x, y2, t)v(x, y2, t)

}
dxdt

+

∫ y2

y1

∫ x2

x1

{
− [vut − uvt](x, y, τ

+
k ) + [vut − uvt](x, y, τk+1)

}
dxdy (47)

for k = 1, 2, . . . , n− 1.
Finally we add the integrals (31), (39) and (47) to obtain the main integral (18) as

y

Ω

[
g(x, y, t)− f(x, y, t)

]
uvdV

=

{∫ τ1

t1

+

∫ τ2

τ+
1

+ · · ·+
∫ τn

τ+
n−1

+

∫ t2

τ+
n

}∫ y2

y1

{
[r1(t)− s1(t)]u(x1, y, t)v(x1, y, t)

+ [r2(t)− s2(t)]u(x2, y, t)v(x2, y, t)

}
dydt

+

{∫ τ1

t1

+

∫ τ2

τ+
1

+ · · ·+
∫ τn

τ+
n−1

+

∫ t2

τ+
n

}∫ x2

x1

{
[r3(t)− s3(t)]u(x, y1, t)v(x, y1, t)

+ [r4(t)− s4(t)]u(x, y2, t)v(x, y2, t)

}
dxdt

+

∫ y2

y1

∫ x2

x1

{
[vut − uvt](x, y, t2)− [vut − uvt](x, y, t1) + [vut − uvt](x, y, τ1)

+

n−1∑
k=1

{
− [vut − uvt](x, y, τ

+
k ) + [vut − uvt](x, y, τk+1)

}
− [vut − uvt](x, y, τ

+
n )

}
dxdy. (48)
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Noting that ∆u(x, y, τk) = ∆v(x, y, τk) = 0, k ∈ N, the impulse conditions for the functions ut and vt in
the second lines of (7) and (9), respectively, imply that the related impulse terms in (48) can be picked
up as

− [vut − uvt](x, y, τ1) +

n−1∑
k=1

{
[vut − uvt](x, y, τ

+
k )− [vut − uvt](x, y, τk+1)

}
+ [vut − uvt](x, y, τ

+
n )

=

n∑
k=1

∆[vut − uvt](x, y, τk)

=
∑

t1≤τk<t2

∆[vut − uvt](x, y, τk)

=
∑

t1≤τk<t2

{
v(x, y, τk)∆ut(x, y, τk)− u(x, y, τk)∆vt(x, y, τk)

}
=

∑
t1≤τk<t2

[
gk(x, y, τk)− fk(x, y, τk)

]
u(x, y, τk)v(x, y, τk). (49)

Using initial conditions (11) and imposing impulse terms obtained in (49) into (48), we obtain the
following handy identity

y

Ω

[
(g − f)uv

]
(x, y, t)dV +

∑
t1≤τk<t2

[
(gk − fk)uv

]
(x, y, τk)

=

∫ t2

t1

∫ y2

y1

{
[r1(t)− s1(t)]u(x1, y, t)v(x1, y, t)

+ [r2(t)− s2(t)]u(x2, y, t)v(x2, y, t)

}
dydt

+

∫ t2

t1

∫ x2

x1

{
[r3(t)− s3(t)]u(x, y1, t)v(x, y1, t)

+ [r4(t)− s4(t)]u(x, y2, t)v(x, y2, t)

}
dxdt

+

∫ y2

y1

∫ x2

x1

{
(vut)(x, y, t2)− (vut)(x, y, t1)

}
dxdy. (50)

Conditions (12), (13) and (14) of Theorem 3 imply that left-hand side of (50) is nonnegative which is
possible only when ∫ y2

y1

∫ x2

x1

{
v(x, y, t1)ut(x, y, t1)− v(x, y, t2)ut(x, y, t2)

}
dxdy ≤ 0 (51)

for all x ∈ Ī and y ∈ J̄ . However, (51) is not possible since u(x, y, t1) = u(x, y, t2) = 0 and u(x, y, t) > 0
for (x, y, t) ∈ Ω̄, ut(x, y, t1) > 0 and ut(x, y, t2) < 0. This contradiction yields that v can not be a positive
solution of problem (9)–(10) on Ω̄.

The proof of the case that v < 0 in Ω̄, we let v = −z in Ω̄. Then z becomes a positive solution of
problem (9)–(10) in Ω̄. Repeating the same proof for z, we obtain that v can not be a negative solution
of problem (9)–(10) on Ω̄. Therefore v must has a zero in Ω̄. The proof of Theorem 3 is complete. □

Remark 1. If the impulse effects are dropped from (7) and (9), i.e. fk(x, y, t) ≡ 0 and gk(x, y, t) ≡ 0,
respectively, then Theorem 3 reduces to [17, Theorem 2.1].

Remark 2. If inequalities (12), (13) and (14) in Theorem 3 are replaced by the strict ones;

g(x, y, t) > f(x, y, t); (x, y, t) ∈ Ω, (52)

sj(t) > rj(t); t ∈ K̄ (j = 1, 2, 3, 4), (53)
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and

gk(x, y, t) > fk(x, y, t); (x, y, t) ∈ Ωimp, k ∈ N, (54)

Then it can be easily proved that v has a zero in interior of Ω̄.

Proposition 1 (Sturm comparison theorem). Let u be a positive solution of problem (7)–(8) on Ī×J̄ ×K
satisfying the initial conditions (11). If inequalities (52), (53) and (54) hold, then every solution v of
problem (9)–(10) has a zero in Ω.

Proof. The proof is similar with those of Theorem 3 up to inequality (50). Under conditions (11), (52),
(53) and (54) on Ī × J̄ × K, left-hand side of (50) is positive, and possible only when∫ y2

y1

∫ x2

x1

{
v(x, y, t1)ut(x, y, t1)− v(x, y, t2)ut(x, y, t2)

}
dxdy < 0 (55)

for all x ∈ Ī and y ∈ J̄ . Then we have the analogous contradiction as in the proof of Theorem 3. Namely
v must has a zero in Ω. □

Remark 3. Inequalities (52), (53) and (54) can be weakened and Proposition 1 can be commuted by
the following result:

Proposition 2 (Sturm comparison theorem). Assume that inequalities (12), (13) and (14) hold. Let u
be a positive solution of problem (7)–(8) on Ī × J̄ × K satisfying the initial conditions (11). If either

{(x, y, t) ∈ Ω : g(x, y, t)− f(x, y, t) > 0} ≠ ∅ (56)

or

{t ∈ K̄ : sj(t)− rj(t) > 0, j = 1, 2, 3, 4} ≠ ∅, (57)

or that

gk0
(x, y, τk0

) > fk0
(x, y, τk0

) (58)

for some k0 ∈ N for which (x, y, τk0
) ∈ Ωimp, then every solution v of problem (9)–(10) has a zero in Ω.

Proof. Clearly conditions (12)–(14) and (56)–(58) imply inequality (55). □

The following oscillation criterion is immediate.

Corollary 1 (Sturm oscillation theorem). If the inequalities

g(x, y, t) ≥ f(x, y, t); (x, y, t) ∈ Ω∗, (59)

sj(t) ≥ rj(t); t ∈ [t∗,∞) (j = 1, 2, 3, 4) (60)

and

gk(x, y, t) ≥ fk(x, y, t); (x, y, t) ∈ Ω∗
imp (k ∈ N), (61)

hold for every t∗ ≥ t0, then every solution of problem (9)–(10) is oscillatory whenever problem (7)–(8) is
oscillatory, where

Ω∗ = {(x, y, t) : x ∈ I, y ∈ J , t ∈ [t∗,∞)} (62)

and

Ω∗
imp = {(x, y, t) : x ∈ I, y ∈ J , t ∈ [t∗,∞), t = τk, k ∈ N}. (63)
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3. Nonlinear Comparison Results

The results obtained for linear equations in previous section can be extended to the nonlinear hyperbolic
equations of the form {

utt −△u+ F(u, x, y, t) = 0; (x, y, t) ∈ Ω,
∆ut(x, y, t) + Fk(u, x, y, t) = 0; (x, y, t) ∈ Ωimp

(64)

and {
vtt −△v + G(v, x, y, t) = 0; (x, y, t) ∈ Ω,

∆vt(x, y, t) + Gk(v, x, y, t) = 0; (x, y, t) ∈ Ωimp
(65)

satisfying the boundary conditions (8) and (10), respectively. The functions rj(t) and sj(t), j = 1, 2, 3, 4,
are as previously defined. We assume without further mention that

(i) u(x, y, t) and v(x, y, t) are continuous functions for (x, y, t) ∈ Ω̄ \ Ω̄imp, and that F(u, x, y, t),
Fk(u, x, y, t), G(v, x, y, t) and Gk(v, x, y, t), k ∈ N are real valued continuous functions defined on
Ω̄ \ Ω̄imp;

(ii) p(t), q(t) : K̄ → R and (µ, x, y, t) ∈ R× Ω̄ are continuous functions for which

µF(µ, x, y, t) ≤ p(t)µ2 and µG(µ, x, y, t) ≥ q(t)µ2;

(iii) {pk} and {qk} are sequences of real numbers for which

µFk(µ, x, y, t) ≤ pkµ
2 and µGk(µ, x, y, t) ≥ qkµ

2

for all t ≥ t0.
Now, we have the following nonlinear comparison result.

Theorem 4 (Sturm comparison theorem). Let u be a positive solution of problem (64)–(8) on Ī × J̄ ×K
satisfying the initial conditions (11). If the inequalities

q(t) ≥ p(t) and sj(t) ≥ rj(t) (j = 1, 2, 3, 4) (66)

hold for t ∈ K̄, and that

qk ≥ pk (67)

for all k ∈ N for which τk ∈ K̄, then every solution v of problem (65)–(10) has a zero in Ω̄.

Proof. The proof is based on the inequality[
uvx − vux

]
x
+
[
uvy − vuy

]
y
+
[
vut − uvt

]
t
=

[
uG(v, x, y, t)− vF(u, x, y, t)

]
≥

[
q(t)− p(t)

]
uv

for u ∈ C
(
Ī × J̄ × K,R

)
, v ∈ C

(
Ω̄,R

)
, and can be done following the same steps those in Theorem 3.

Therefore it is left to the reader. □

Remark 4. If the inequalities given in (66) and (67) are replaced by the strict ones;

q(t) > p(t) and sj(t) > rj(t) (j = 1, 2, 3, 4), (68)

and that

qk > pk (69)

for all k ∈ N for which τk ∈ K̄, then we have the following comparison result.

Proposition 3 (Sturm comparison theorem). Let u be a positive solution of problem (64)–(8) on Ī×J̄ ×K
satisfying the initial conditions (11). If the inequalities in (68) and (69) hold for t ∈ K̄, then every solution
v of problem (65)–(10) has a zero in Ω.

Proposition 3 can be weakened by the following result.
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Proposition 4 (Sturm comparison theorem). Assume that the inequalities in (66) and (67) hold for
t ∈ K̄. Let u be a positive solution of problem (64)–(8) on Ī × J̄ × K satisfying the initial conditions
(11). If either {

t ∈ K̄ : q(t)− p(t) > 0
}
̸= ∅

or {
t ∈ K̄ : sj(t)− rj(t) > 0, j = 1, 2, 3, 4

}
̸= ∅

or that
qk0

> pk0

for some k0 ∈ N, then every solution v of problem (65)–(10) has a zero in Ω.

The following oscillation criterion is immediate.

Corollary 2 (Sturm oscillation theorem). If the inequalities given in (68) and (67) are satisfied for t ∈
[t∗,∞), for every t∗ ≥ t0, then every solution of problem (65)–(10) is oscillatory whenever problem (64)–
(8) is oscillatory.
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