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Abstract 

In this paper, a Linear Quadratic Regulator (LQR) based PI controller is proposed for the 

Integrator plus Time Delay Process (IPTD). In LQR PI controller design process the selection 

of weight matrices ‘Q’ plays a key role in order to minimize settling time, peak overshoot and 

Integral Errors. So, In order to improve the system performance, a new feedback gain matrix is 

proposed for the optimal selection of weight matrices in the controller design.  First, the LQR PI 

controller is designed for First order Time Delay Process (FOPDT) and then grabbed the 

formulas for IPTD process by assuming the state variable as zero. The simulation results are 

presented to validate the proposed method by using different IPTD process. The proposed 

controller is also experimentally validated on a temperature control process.  
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1. INTRODUCTION 

 

Integrating plus time delay (IPTD) processes, in a system have at least one pole at the origin combined 

with time delay [1-2]. Some examples of these type integrating processes are liquid storage tank, 

bioreactors, distillation column, pressure flowing to a turbine generator in power plant, isothermal 

copolymerization [3-5] etc. This type of integrating systems has open loop stability and unbounded output 

for a bounded input. Thus controlling of integrating time delay systems is a really difficult task. In recent 

times, many researchers are focused on the integrating systems to achieve the better performance with 

advanced controlling techniques [6-8]. The PI/PID controller tuning was first proposed by Ziegler- 

Nichols [9], and has been improved by many researchers. The overview of various methods to tune the 

PI/PID controller gain values for the integrator, first and second order time delay process which is in 

recent literature are presented in the introduction. Some noticeable methods are nonlinear PD controller 

[1], IMC methods [10-14], Direct synthesis method [15-19], Smith predictor controller [20-24], sliding 

mode controller [25], 2 Degree of Freedom controller [26-28], time optimal plug & control [29,30] and 

frequency domain method [31,32]. 

 

In recent trends, researchers also following the optimization technique to optimize the controller gain 

values using various algorithms. In [33], authors proposed the online tuning PI controller based on the 

minimization of Integral Square Errors. In [34], authors applied the genetic algorithm to tune the PID 

controllers for Integrator and unstable process. Here the authors taken the objective function subjected to 

the minimization Integral Square Error (ISE), Integral Time Square Error (ITSE), Integral Square Time 

error (ISTE). In [35,36], authors proposed the optimal tuning of PID controllers using a genetic algorithm 

with objective function as Integral Absolute Error (IAE), ISE and constraints of maximum sensitivity, set-

point tracking, and disturbance rejection. But disadvantages of [34-36], is genetic optimization algorithm 

purely depends on the size of the population.  In [37], authors used the advanced optimization algorithm 

http://dergipark.gov.tr/gujs
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called Bacterial foraging criteria to get optimal PI/PID controllers. In these, the authors considered the 

objective function as minimization of ISTE, IST2E, and IST3E to get optimal gain values.  In [38-40], 

authors used the differential evaluation algorithm to tune the optimal values of PID controller. The 

differential evolution algorithm is advanced than a genetic algorithm, which is used to minimize the IAE 

and ISE errors as the objective function. 

 

The disadvantages of sequential quadratic model programming have heavy computational time and it 

purely depends on the size of the population. The design techniques based on LQR are well recognized in 

modern control theory. To overcome above problems authors proposed the LQR solution to obtain 

optimal gain values. However, two main constraints of LQR problem have been the subject of 

investigation since the 1960s and the constraints are not only the choice of Q and R weighting matrices 

but also solutions of Algebraic Riccati Equation (ARE) [41]. The two problems are strongly time 

dependent, under certain operational conditions. Even if all of the control strategies are optimal in nature, 

different values of Q and R will ultimately end up with a different system response, which indicates that 

the response is non-optimal in the true sense [41-42].  In [43] authors proposed the LQR PI controller for 

first order time delay process. The normal feedback gain matrix is used to find the optimal weight 

matrices. In [44] the authors proposed the LQR PID controller for second order time delay process by 

considering the dominant pole placement method. In this paper we proposed a new feedback gain matrix 

based to obtain the optimal values of Q and R. The organization of paper is as follows section-1 deals the 

introduction and literature survey of a paper, section-2 describes the design of LQR PI controller for 

integrator time delay process, section-3 explains the effect of weight matrices, proposed feedback gain 

matrix based optimal selection of weight matrices, section 4 shows the simulation and experimental 

results of proposed technique and finally section 5 gives the conclusions of the paper. 

 

2. LQR BASED OPTIMAL PI CONTROLLER FOR PURE INTEGRATOR TIME DELAY 

PROCESS 

 

In this section, the design of the LQR based PI controller is presented. In general, industrial process is 

modeled by transfer function with integrator time delay process. In order to design an LQR based PI 

controller, a pure integrator time delay process is considered. The transfer function model G(s) of IPTD is 

shown in Eq. (1) [1].    

Lse
s

b
)s(G        (1) 

First, we designed the LQR PI controller for first order time delay process, from the formulas of FOPDT, 

derive the tuning formulas for IPTD process. 

A linear plant with time delay can be represented as 

)Lt(Bu)t(Ax)t(x   0t        (2) 

Where ‘A’ is state transition matrix, ‘B’ is control matrix, ‘X’ is state matrix and ‘L’ represents time 

delay.   

When 0 ≤ t< L, u(t-L) =0; There is no input signal to process 

When, t≥L; the eq. (2) has to the valid non-zero input signal. 

 

Then the two cases are derived from Eq.(2), as obtained as Eq.(3) and Eq.(4) 

            ),t(Ax)t(x  when L<t0        (3) 

)t(Bu)t(Ax)t(x n ,when 𝑡 ≥ 𝐿    (4) 
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When u
n
(t) = u(t-L);  Eq. (3) and Eq. (4) are  free dead time, standard LQR method could be easily 

applied. 

To find the optimal control vector )t(un  subjected to minimize the cost function, ‘J’ given in Eq. (5). 

dt))t(uR)t(u)t(xQ)t(x(J T

0

T  


     (5) 

Where ‘Q’ is semi-positive definite state weight matrix and ‘R’ is positive definite control weight matrix.  

The LQR solution for the cost function is given in Eq. (6) 

)t(PxBR)t(u T1n            (6) 

Where ‘P’ is the positive symmetric definite solution of the Algebraic Riccati equation [42], which is 

shown in Eq. (7) 

0PBPBRQPAPA T1T               (7) 

 

By Converting u
n
(t) in Eq. (6) back to u(t), we obtain the LQR solution to the original process Eq. (3) 

with the index Eq. (5)  as  u(t) = u
n
(t+L) = -R

-1
B

T
Px(t+L) . 

 

Here u(t) gives the control signal in the overall time bound t 0. However x(t+L) is not directly known. 

Using the Eqs. (3), (4) and (6) the x(t+L) is expressed as x(t) [43]. The optimal control vector of the 

x(t+L) can be expressed in following Eqs. (8) and (9). 

)t(XePeBR)t(u )TL(A)t(AT1 c   ;       Lt0           (8) 

       )t(XPeBR)t(u
LAT1 c ;                   Lt                    (9) 

Where, Ac = A - BR
-1

B
T
P i.e. feedback gain matrix.  

 

The order of the weight matrices depends on the order of the system. In the design of PI controller, the 

selection of weight matrices in the diagonal form will not affect the performance of LQR based PI 

controller [45]. The Eqs.(10) and (11) shows the diagonal form of R value and weight matrices. 

)q.......,.........q,q(diagQ n21         (10) 

)r..............r,r(diagR n,21         (11) 

2.1. PI Controller Tuning for Integrator Time Delay Process 

 

A Systematic block diagram of closed loop system with the PI Controller for FOPDT is shown in Figure 

1. 

 
 Figure 1. LQR based PI Controller for Pure Integrator time delay process 

 

The PI Controller has two variables known as proportional gain kp and integral gain ki. The transfer 

function of PI controller is stated in Eq. (12). 

s

k
k)s(C i

p          (12) 
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The two controller gains are considered as state variables to design the LQR PI controller for delay 

process. The state variables are given in Eq. (13). 

 dt)t(ek)t(ek)t(u ip           (13) 

 

The state model of the first order process is given by the Eq. (14). 

)Lt(u
b

0
x

a0

10
x 





















                   (14) 

 

The model emphasized that both the variables are available and state feedback matrix is simplified by 

ki∫ e dt + kP
t

0
e. 

 

To derive the gain value of the PI controller, the control matrix, state transition matrix, weight matrices 

and P matrix is substituted in Riccati Equation is as shown in Eq. (7). 
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Where  

A = state transition matrix i.e. 








 a0

10
 

B = Control Matrix i.e 








b

0
 

Q = Weight matrices considering diagonal matrix i.e. 








2

1

q0

0q
 

P = 








2212

1211

PP

PP
 

 

From Eq. (16), 11P , 12P  and 22P are derived and is shown in Eqs. (16) - (18).  

 

b

Rq
P

1
12         (16) 

 

 

2

212
222

22
b

qP2RbaRRa

P







 

        (17) 

 

2212
21

1211 PPbRaPP 
                  (18) 

 

For IPTD process the constant ‘a’ = 0 then the modified formulas of P11, P12 and P22 is given as shown in 

Eqs. (19)- (22) 

b

Rq
P

1
12           (19) 

2

2
2

12
2

22
b

)qRbpRb2(
P


               (20)     

2212
21

11 PPbRP 
               (21) 

 

The feedback gain matrix of the LQR solution in Eq. (7) is given in Eq. (22). 

BFAAc            (22) 
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Where A = 








 a0

10
; B = 









b

0
and  F is the feedback matrix, shown in Eq.  (23). 

      2212
1 PPRF           (23) 

 

Matrices A, B, and F are substituted in Eq. (22) to get Eq. (24) 

 2212
1

c PPbR
b

0

a0

10
A 






















             (24) 

 

Solving the above equation with substituting P22 shown in Eq. (17) then Eq. (25) is obtained

 











  )qp2(bRapbR

10
A

212
212

12
21c        (25) 

 

For the IPTD process, the modified feedback matrix is given in Eq. (25) considering ‘a’ value as zero. 











  )qP2(bRPbR

10
A

212
21

12
21c          

 

For the time delay process, the tuning formulae for the LQR based PI controller [45] is given as  

𝑈(𝑡) = {
−𝐹𝑒𝐴𝑐𝑡𝑒𝐴(𝐿−𝑇)𝑥(𝑡);   0 ≤ 𝑡 ≤ 𝐿

−𝐹𝑒𝐴𝑐𝑡𝑥(𝑡);         𝑡 ≥ 𝐿
              (26) 

 

Here  
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And tAce  = 







 

)t(Z)t(Z

)t(Z)t(Z
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2221

12111
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1                        (28) 

 

Where  

  t12
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1
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To set optimal controller gains stated in Eq. (12), then Eqs. (27),(28)  are substituted in Eq. (25).  

For the interval Lt0  , 

 )t(ZP)t(ZPbR)t(k 21221112
1

i              (29a) 

















  )TL(a

2122221112121221221112
1

p e)t(Z
a

1
)t(ZP)t(ZP

a

1
)t(ZP)t(ZP

a

1
)t(ZP

a

1
bR)t(k   

                                    

(29b) 

For the interval Lt  , 

)L(ZP)L(ZP(bR)t(k 21221112
1

i   )      (30a) 
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)L(ZP)L(ZP(bR)t(k 22222112
1

p   )                  (30b) 

Where the constants P12 and P22 are given in Eq. (19) and Eq. (20). From  Eq. (19) and Eq.(20) , LQR 

based PI controller performance depends on the weight matrices Q and R. It would be computationally 

simple If ‘R’ value is assumed as 1[43].  Finally, the PI controller parameter for Lt0  obtained using 

the Eqs. (29a) and (29b). The PI parameters for Lt  , calculated from Eqs. (30a) and (30b). At the 

interval between Lt0  the PI gain parameters is time varying. This leads to larger control efforts. It 

may cause actuator saturation. Hence, for time varying samples, implementing PI controller is difficult.  

Therefore, PI parameters are constant throughout the performance time. For the ease of practical 

implementation, we consider only for all the time Lt   for the examples.  The output response for 

condition t ≥ L only the optimal response will be obtained. The output performance of the process 

depends upon the natural frequency and damping ratio. If these parameters are not selected properly the 

performance of the controller will be poor.  

 

3. SELECTION OF WEIGHT MATRICES USING NEW FEEDBACK GAIN MATRIX 

 

In this section, the effect of weight matrices on the response of the time delay process is analyzed. The 

weight matrices Q and R will affect the output performance of the time delay system to a larger extent.  If 

weight matrices ‘Q’ values are selected randomly, the system illustrates a poor performance, it shows the 

higher settling time, which necessitates the selection of Q values in the context of the defined system. For 

better understanding, let us consider an example with the performance of different weight matrices as 

shown in Figure.2.  

 

The output response for q1= q2=1 settles at 7 sec with IAE of 1.174.  When q1= q2=2, the response 

settles at 6.7 sec, error IAE is 1.043. For q1=3 and q2= 1, settling time is 18 sec and error IAE is 2.4, It 

has an oscillatory response when it is settled. By observing these variations of output response for 

different weight matrices, it is evident that the Integral error IAE, other time domain specifications of the 

system will solely depend on the selection of weight matrices. 

 
Figure 2.  Output response of the time delay system for different weight matrixes 

 

As both Q and R both influence the system, it would be computationally simple, if R value is assumed as 

1[43]. 

 

3.1. Selection of weight matrices for Pure Integrator time delay process 

 

To find the selection of weight matrices the modified feedback gain matrix is used. The general formula 

for the feedback gain matrix is given in following Eq.(31). 
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Ac= FBA         (31) 

 

Here consider the value of BF is modified as 2(A-BF) to get optimal weight matrices for integrator time 

delay process. 


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212
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12
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So the final modified equation is given in Eq.(33). 

A-(2(A-BF))        (33) 

 

Then substitute the values of A and B,F values in the above equations. 
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The characteristic equation of a matrix is given in Eq. (36). 
2
ppp

2
c s2sASI)s(       (36) 

 

To find the characteristic equation for the modified feedback matrix is given Eq. (35) is shown in Eq.(37) 























)qP2(ba2aPb2

10

s0

0s

212
22

12
2     (37) 














)qP2(ba2aPb2

1s

212
22

12
2      (38) 

12
2

12212
222

c Pb))qP2(ba(2a(ssASI     (39) 

 

The Eq. (39) is compared to the general characteristics equation of Eq. (36) to get the suitable values of 

weight matrixes for time delay models derived in Eqs. (40) and (41) by substituting the values of P12 and 

P22. 

2
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4
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22
pp
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q

 
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Here for integrator time delay systems, the value ‘an’ is zero then the modified weight matrices ‘q1’ and 

‘q2’ are written in Eq. (32) and Eq. (33). 

2

4
m

1
b4

q

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2

4
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2
p

2
m

2
b4

)*24(
q

 
           (39) 

 

The parameters of weight matrices are obtained in the form of damping ratio ( p ) and natural frequency (

p ). The selection of these parameters are specified in the range of  p  = [0.7 to 1.0] and Lp  = [0.1 to 

0.4] [43] & [44]. Here, done the simulations for various natural frequency and damping ratio values, then 

we consider the best value of WpL and ξp to get the PI controller values. The proposed method is used to 

tune only the PI controller.   
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4. SIMULATION RESULTS 

 

The proposed design formulas are tested with various process models, and in each case study observed 

that the proposed controller gives the better performance than the existing methods. In order to validate 

the proposed controller method, three examples of IPTD process systems are considered and shows the 

mathematical and simulation results. The proposed controller is also implemented in the practical 

temperature process station to validate the real time implementation.   

 

Example 1 

 

In Example 1 the transfer function G1 (s) is considered with process (k) = 1, delay time (L) = 1. Then the 

pure integrator time delay process is obtained as shown in Eq. (40). 

s
1 e

s

1
)s(G          (40) 

For the proposed method we considered the desired closed loop parameters i.e damping ratio   p = 0.91, 

the natural frequency with delay Lp = 0.4. The simulation results of proposed method for this example 

are compared with Ali et.al [32] stated in the literature. The gain values of the proposed and Ali et.al [32] 

methods are listed in Table.1. To validate the performance of the controller the settling time, IAE, 

Integral Square Error(ISE), Integral Absolute Error (ITAE) are tabulated in Table.2 

 
Figure 3. Closed loop response for nominal plant in Example 1 

 

The simulation results of the plant are shown in Figure 3. The input disturbance of the magnitude -0.2 is 

applied at 30 sec to evaluate the performance of the system. 

 

Robustness Analysis with a perturbation of 10% in the process gain (k), delay time (L) and both k and L 

are shown in Figure 4, 5 and 6 respectively. The existing method Ali et.al [32] has more rise time than 

proposed method. When 10% mismatch occurs in the process then the existing method shows the drastic 

improvement in rise time but proposed method rise time quite same as a normal response. And also using 

the proposed method we achieved the good tracking response than Ali et.al [32] method which is more 

oscillations. This result shows the proposed method yields the better robustness property than the existing 

method with respect to a mismatch in the process 
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Figure 4. Closed loop response for example 1 with +10% perturbation in process gain  

 

 
Figure 5. Closed loop response for example 1 with +10% perturbation in delay time 

 

 
Figure 6. Closed loop performance for example 1 with +10% perturbation in both process gain and 

delay time 

 

The figure 7 shows the closed loop responses for different values of natural frequency and damping ratio. 

Here, done the simulations for various of natural frequency values and we consider the best value of WpL 

and ξp to get the PI controller values. 
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Figure 7.  Closed loop performance for example 1 with different values of ωpL and ξp 

 

Example 2 

 

For Example 1 the transfer function G2(s) is considered with process (k) = 1, delay time (L) = 5. Then the 

integrator time delay process is obtained as shown in Eq. (41). 

s5
1 e

s

1
)s(G         (41) 

For the proposed method we considered the desired closed loop parameters, damping ratio   p = 0.91, the 

natural frequency with delay Lp = 0.1. The simulation results of proposed method for this example are 

compared with M. Chidambaram et.al [36] stated in the literature. The gain values of the proposed and M. 

Chidambaram et.al [36] methods are listed in Table.1. To validate the performance of the controller the 

settling time and performance indices are tabulated in Table.2. The simulation results of the plant are 

shown in Figure 8. The input disturbance of the magnitude -0.2 is applied at 150 sec to evaluate 

performance. 

 
Figure 8. Closed loop response for nominal plant in Example 2  

 

Robustness Analysis with a perturbation of 10% in the process gain (k), delay time (L) and both k and L 

are shown in Figure 9, 10 and 11 respectively. The existing method M. Chidambaram et.al [36] has more 

rise time than proposed method. When 10% mismatch occurs in the process the existing method shows 

the high rise time, but proposed method rise time has quite same as a normal response.  The existing 

method also has the oscillatory waveform and its take long time to settle down. The proposed method has 

achieved the good tracking response than Chidambaram et.al [36] method.  The existing method has more 

oscillations when set to mismatch the process. This result shows the proposed method yields the better 

robustness property than the existing method with respect to a mismatch in the process. 
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Figure 9. Closed loop response for example 2 with +10% perturbation in process gai 

 

 
Figure 10.  Closed loop response for example 2 with +10% perturbation in delay time 

 

 
Figure 11. Closed loop response for example2 with +10% perturbation in both process gain and delay 

time  

 

Example 3 

 

Next, for Example 3 the transfer function G3(s) is considered with considered as process gain (k) = 1, 

delay time (L) = 4. Then the integrator time delay process is obtained as shown in Eq (42). 

s4
1 e

s

01.0
)s(G         (42) 

For the proposed method we considered the desired closed loop parameters i.e damping ratio   p = 0.97, 

the natural frequency with delay Lp = 0.15. The simulation results of proposed method for this example 

are compared with M. Chidambaram et.al [36] and Ali et.al [32] methods stated in the literature. The gain 
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values of the proposed and existing methods are listed in Table.1. To validate the performance of the 

controller, the settling time and performance indices are tabulated in Table.2. 

 

 

Table 1. Controller parameters for Example 1-4 

 

System Transfer Function Method Controller Parameters 

kp ki kd 

1. s1
1 e

s

1
)s(G   

Ali et.al [32] 1.03 0.3280 0.5047 

Proposed Method 0.3671 0.0052 - 

2. s5
2 e

s

1
)s(G   

M. Chidambaram et.al [36 ] 0.25 0.0152 0.6 

Proposed Method 0.0782 0.0025 - 

3. s4
4 e

s

01.0
)s(G   

Ali et.al Method [ 32] 25.76 2.03 50.489 

M. Chidambaram et.al [36] 30.86 1.7144 55.548 

Proposed Method 8.7 0.32 - 

4. Temperature Process 

Station 

Z.N Method 2 0.01 - 

Proposed Method 1.24 0.016 - 

 

 
Figure12. Closed loop response for nominal plant in Example 3  

 

The simulation results of nominal plant are shown in Figure 12. The input disturbance of the magnitude -

2 is applied at 150 sec to evaluate performance. Robustness analysis with a perturbation of 20% in the 

process gain (k), delay time (L) and both k and L are shown in Figure 13, 14 and 15 respectively. The 

existing method M. Chidambaram et.al [36] has more rise time than proposed method.  

 
Figure13. Closed loop responses for Example 3 with +20% perturbation in process gain 



244 K Harshavardhana REDDY, Prabhu RAMANATHAN/ GU J Sci, 30(4): 232-251 (2017) 

 

 

When 20% mismatch occurs in the process the existing method shows the very high rise time but 

proposed method output response has less rise time and quite similar to the nominal performances. The 

existing method also has the oscillatory wave form and it’s take a long time to settle down. The proposed 

method has achieved the good tracking response than Chidambaram et.al [36] & Ali [32] et.al methods. 

For the condition, +20 perturbation in both process and time delay the existing method Chidambaram 

et.al [36] has more oscillatory which becomes to nearly critically damped response, But the proposed 

method as good minimal response for this condition. This result shows the proposed method yields the 

better robustness property than the existing method with respect to a mismatch in the process.  

 

 
Figure14.  Closed loop responses for Example 3 with +20% perturbation in time delay 

 
Figure 15. Closed loop Response for Example 3 with +20% perturbation in both process gain and delay 

time  

 

Example 4 – Temperature Process Station 

 

To show the effectiveness of the proposed controller a real time experiment has been carried out on 

temperature control station. The hardware setup of pressure process station is available in process control 

laboratory in VIT University, Vellore, India. The diagram of the process description are shown in Figure 

16. The technical specifications of the temperature process are shown in Table 3. The process setup 

consists heating tank fitted with thyristor controlled heated for on-line heating of the water. The flow of 

the water can be manipulated and measured by rotameter. The temperature transmitter (RTD) type sensor 

and transmits the signals (4-20mA) to unit/control module. The PPI diagram of the temperature process 

station are shown in Figure 17. 
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Here the control objective is to maintain a constant temperature to regulate the hot water flow. The 

system identification tool is used to derive the integrator delay process model for temperature control 

plant. Initially, constant step input is applied to the process to get the input and output data. 

Then the obtained data is loaded in the system identification tool in MATLAB to obtain the process 

model.  The temperature process is a very slow process, it is modeled from input-output data is shown in 

Eq. (43). 

 

127.10e
s

028767.0
)s(G         (43) 

 

 

Table. 2. Performance indices for proposed and existing methods of Example 1-4. 

Sl.No
 

Process Model Controller 

Method
 Time Domain Specifications

 

Ts(s) ISE ITAE IAE 

1. Example 1 

[32] 
s

1 e
s

1
)s(G   

Ali et.al [32 ] 24.2 4.92 65.58 3.652 

Proposed Method 25.05 4.782 68.42 2.456 

2. Example 2 

[32] 
s5

2 e
s

1
)s(G   

M. Chidambaram 

et.al [36 ] 

175.2 40.26 3343 7.524 

Proposed Method 145.2 39.5 3335 6.534 

3. Example  3 

 
s4

3 e
s

01.0
)s(G   

Ali et.al Method 

[32 ] 

73.76 7376 9609 6.169 

M. Chidambaram 

et.al [ 36] 

60.5 7258 9525 8.521 

Proposed Method 56.2 7215 9517 6.2456 

4. Example-4 

 

Temperature 

Process Station 

Z.N Method 550 7.89e05 6.27e0

5 

8257 

Proposed Method 280 5.678e0

5 

5.7e05 7583 

 

 
Figure 16. Temperature process description 
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Figure 17.  PPI Diagram of Temperature Process 

 

The open loop response for the temperature process for both simulation and experiment are shown in 

Figure 18. From the observation of Figure 18, the results of process model simulation and piratical are 

closely match each other. As per process model from Eq. (37), the proposed LQR PI controller is 

designed for the temperature process. The obtained PI controller gain values are Kp is 1.24 and Ki is 

0.0164. For the validation of the results of proposed controller is compared with the Manual tuning called 

Z-N method. The controller gain values of the Z-N method is Kp is 2 and Ki  is 0.01.  These gain values of 

both methods are tabulated in Table.1.  

 
Figure 18. Open loop response of the temperature process at 75% valve opening. 

 

The experimental results are shown in Figure 19 with the setpoint 200 C. To validation of results the 

control value position is fixed at 75%.  The settling time and Integral errors of the both the methods are 

tabulated in Table 2.  

 

Table 3. Technical Specifications of Temperature Process 

 

Part name Details 

Process tank 

 

 

 

 

Temperature 

Transmitter 

Rotameter 

Thyristor 

Interfacing Unit 

SS, 0.5 litre capacity, insulated     

Electrically heated 2 x 1.5 kW heaters 

for on-line water heating. 

Make Rixy/ Bajaj, Type-3.0 kW, 2 coil, size  

1.25 BSPx10” length  

Input 2 wire PT100 RTD, output 4 -20mA for 0 -100 

deg C 

Range 10 -100 LPH 

Capacity 2kW 

one input, one output with RS232Cfacility computer 

Programmable p controller with RS 485- RS 232 

converter.         
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Figure 19. Experimental Results for Temperature Control Process 

 

From comparison of performance output of both the controllers the proposed controller as settled at 350 

sec, existing method settles at 55 sec. The IAE and ISE are also very lower than the existing Z-N Method.   

 

4.1 Performance indices  

 

It is important to note that IAE, ITAE, ISE and settling time are used as performance indices for 

comparisons of proposed study with existing methods.  The definitions of parameters are given as 

follows. 

 
 

 Integral Absolute error (IAE) 

 

To evaluate closed–loop performance, the IAE criterion is considered here for both disturbance rejection 

and set point tracking it is defined as  

                IAE = dt)t(e
0




          (38) 

IAE value should be as small as possible. 

Integral Square Error (ISE) 

ISE = dt)t(e
0

2




       (39) 

Integral Time Absolute Error 

   ITAE = 


0

dt)t(et        (40) 

Settling time (Ts) : The time required for response to reach steady state value . 

Ts= 
nn ω*ξ

4
         (41) 

 

The performance indices of the proposed and existing methods for the examples are noted in the Table 2. 

From the Observation, the proposed control method yields better settling time, IAE, ISE and ITAE. 
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5. CONCLUSION 

 

The LQR PI controller is designed for pure IPTD process is presented in this paper. The gain formulas for 

the LQR PI controller, are design in terms of state feedback gain matrix. The modified feedback gain 

matrix is used to find the optimal values of weight matrices. The proposed controller design is based on 

the natural frequency ( p ) and damping ratio ( p ). A numerical example along with simulation results 

has been presented, and it shows the lesser settling time, low ISE and IAE values. The proposed 

controller also achieves the good robustness with respect to mismatching in processes and time dealy. The 

practical validation of proposed controller is done by considering the temp process station. From the 

observation of temperature process results, the proposed controller is applicability even in larger delay 

and small process gains. The proposed method is also applicable for second order time delay process by 

assuming larger pole of the process is consider as kd. But the proposed method is not applicable for the 

higher order integrator time delay process because it will give worse outputs. 
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