GU J Sci 30(4): 404-411 (2017)

Gazi University

http://dergipark.gov.tr/gujs

In this paper, we combined B-algebras and semigroups and introduced the notion of Bsemigroups. We obtained some properties of B-semigroups. We also introduced the notion of

the homomorphism and ideal on B-semigroups and studied their fundamental properties.

On B-Semigroups

Yılmaz ÇEVEN

Süleyman Demirel University Department of Mathematics Isparta/TURKEY

Article Info

Abstract

Received:10/01/2017 Accepted: 18/09/2017

Keywords

B-algebra semigroup B-semigroup B-homomorphism

1. INTRODUCTION

Y. Imai and K. Iseki introduced two classes of abstract algebras called BCK-algebras and BCI-algebras ([7], [9]). It is known that the class of BCK-algebras is a proper subclass of BCI-algebras. In [4], [5], Hu and Li introduced a wide class of abstract algebras called BCH-algebras. They have shown that the class of BCI-algebras is a proper subclass of BCH-algebras. Neggers and Kim ([14]) introduced the notion of a d-algebra which is a generalization of BCK-algebras, and also they introduced the notion of B-algebras ([15], [16]). Jun, Roh and Kim ([10]) introduced a new notion called BH-algebra which is another generalization of BCH/BCI/BCK-algebras. Walendziak obtained another equivalent axioms for Balgebras ([18]). Kim and Kim ([11]) introduced the notion of BM-algebra which is a specialization of Balgebras. They proved that the class of BM-algebras is a proper subclass of B-algebras and also showed that a BM-algebra is equivalent to a 0-commutative B-algebra. In [12], Kim and Kim introduced the Notion of BE-algebra as a generalization of a BCK-algebra. Using the notion of upper sets they gave an equivalent condition of the filter in BE-algebras. Schein ([17]) considered systems of the form (ϕ ; \circ , \backslash), where ϕ is a set of functions closed under the composition " \circ " of functions (and hence (ϕ ; \circ) is a function semigroup) and the set theoretic subtraction "\" (and hence $(\phi; \mathbf{b})$ is a subtraction algebra in the sence of [1]. Zelinka ([20]) discussed a problem proposed by Schein concerning the structure of multiplication in a subtraction semigroup. In [2], Ahn and Kim combined BE-algebras and semigroups and introduced the notion of BE-semigroups and investigate some of their properties.

In this paper, we combined B-algebras and semigroups and introduced the notion of B-semigroups. We obtained some properties on B-semigroups. We also introduced the notion of the homomorphism and ideal on B-semigroups and studied their related properties.

2. PRELIMINARIES

Definition 2.1 ([15]) A B-algebra is a non-empty set X with a constant 0 and a binary operation "*" satisfying the following axioms:

- (I) x * x = 0,
- (II) $x * \theta = x$,
- (III) (x*y)*z = x*(z*(0*y))

for all $x, y, z \in X$.

Example 2.1 ([15]) Let $X = \{0, a, b\}$ be a set with the following table:

*	0	а	b
0	0	b	а
а	а	0	b
b	b	а	0

Then (X;*,0) is a B-algebra.

Proposition 2.2 ([3,15]) If (X;*,0) is a B-algebra, then for all $x, y, z \in X$,

- (i) x * z = y * z implies x = y,
- (ii) z * x = z * y implies x = y,
- (iii) x * y = 0 implies x = y,
- (iv) 0 * (0 * x) = x.

Definition 2.3 A B-algebra (X;*,0) is said to be 0-commutative if

$$x \ast (0 \ast y) = y \ast (0 \ast x)$$

for all $x, y \in X$.

Theorem 2.4 ([15]) If (X;*,0) is 0-commutative B-algebra, then x*(x*y) = y for all $x, y \in X$.

Definition 2.5 A B-algebra (X;*,0) is said to be associative if

$$(x \ast y) \ast z = x \ast (y \ast z)$$

for all $x, y, z \in X$.

Example 2.2 Let (G;*,0) be a group such that x*x=0 for all $x \in G$. Then *G* is an associative and commutative B-algebra.

Proposition 2.6 If (X;*,0) is an associative B-algebra, then for all $x, y, z \in X$,

- (i) (x*y)*z = (x*z)*y,
- (ii) X commutative iff x * y = y * x.

Proof. (i) is clear by (III) and (II). (ii) follows from the definition of commutativity and associativity.

3. B-SEMİGROUPS, HOMOMORPHİSMS AND IDEALS ON B-SEMİGROUPS

Definition 3.1 An algebraic system $(X; *, \cdot, 0)$ is called a B-semigroup if it satisfies the following:

(IV) (X;*,0) is a B-algebra,

(V) $(X; \cdot)$ is a semigroup,

(VI) the operation "." is distributive (on both sides) over the operation "*", that is,

$$x \cdot (y * z) = (x \cdot y) * (x \cdot z)$$

for all $x, y, z \in X$.

Definition 3.2 Let $(X; *, \cdot, 0)$ be a B-semigroup.

(i) If $x \cdot y = y \cdot x$ for all $x, y \in X$ then X is called a commutative B-semigroup,

(ii) If x * (0 * y) = y * (0 * x) for all $x, y \in X$, then X is called a 0-commutative B-semigroup,

(iii) If there exists an element "1" such that $1 \cdot y = y \cdot 1$ for all $x \in X$, then X is said to be a B-semigroup with unity.

Example 3.1 (\Box ; -, ·, 0) and (\Box ₂; +, ·, 0) are commutative B-semigroups with unity.

Example 3.2 Define two operations "*" and " \cdot " on a set $X = \{0, 1, 2, 3\}$ as follows:

*	0	1	2	3		0	1	2	3
0	0	2	1	3	0	0	0	0	0
1	1	0	3	2	1	0	1	2	3
2	2	3	0	1	2	0	2	1	3
3	3	1	2	0	3	0	3	3	0

It is easy to see that $(X; *, \cdot, 0)$ is a commutative B-semigroup with unity.

Example 3.3 Define two operations "*" and "." on a set $Y = \{0, 1, 2, 3\}$ as follows:

*	0	1	2	3		0	1	2	3
0	0	3	2	1	0	0	0	0	0
1	1	0	3	2	1	0	1	2	3
2	2	1	0	3	2	0	2	0	2
3	3	2	1	0	3	0	3	2	1

It is easy to see that $(Y; *, \cdot, 0)$ is a commutative B-semigroup with unity.

Proposition 3.3 Let $(X; *, \cdot, 0)$ be a B-semigroup. Then

$$x \cdot 0 = 0 \cdot x = 0$$

for all $x \in X$.

Proof. For all $x \in X$, we have that $x \cdot 0 = x \cdot (0 * 0) = (x \cdot 0) * (x \cdot 0) = 0 * 0 = 0$ and $0 \cdot x = (0 * 0) \cdot x = (0 \cdot x) * (0 \cdot x) = 0 * 0 = 0$.

Definition 3.4 A nonzero element x in a B-semigroup $(X;*,\cdot,0)$ is said to be a left (resp., right) zero divisor if there exists a nonzero $y \in X$ such that $x \cdot y = 0$ (resp., $y \cdot x = 0$). A zero divisor is an element of X which is both a left and a right zero divisor.

Theorem 3.5 Let $(X; *, \cdot, 0)$ be a B-semigroup. Then X has no zero divisors if and only if the left and right cancellation laws for the operation "." hold in X; that is, for all $x, y, z \in X$ with $x \neq 0$

(i) $x \cdot y = x \cdot z$ implies x = y,

(ii) $y \cdot x = z \cdot x$ implies x = y.

Proof. Let X has no zero divisors. Assume that $x \cdot y = x \cdot z$ and $x \neq 0$. Then, we have $(x \cdot y) * (x \cdot z) = 0$ by (I). This implies $x \cdot (y * z) = 0$. Since X has no zero divisors and $x \neq 0$, we obtain y * z = 0. By Proposition 2.2 (iii), we get y = z. Similarly, $y \cdot x = z \cdot x$ implies y = z. Conversely, let the left and right cancellation laws hold in X. Assume that $x \cdot y = 0$ and $x \neq 0$. Then since, $x \cdot y = x \cdot 0$, we get y = 0 using the left cancellation law.

In a B-semigroup X, for an element x and positive integer n, we define $x^n = x \cdots x$ (n factors).

Proposition 3.6 Let $(X;*,\cdot,0)$ be a B-semigroup and the operation "*" be associative. If $x \cdot y = y \cdot x$, then $(x*y)^2 = x^2 * y^2$.

Proof. Since $x \cdot y = y \cdot x$ and by (I), we have

$$(x*y)^{2} = (x*y) \cdot (x*y)$$

= $((x*y) \cdot x) * ((x*y) \cdot y)$
= $(x^{2} * (y \cdot x)) * ((x \cdot y) * y^{2})$
= $x^{2} * (y \cdot x) * (y \cdot x) * y^{2}$
= $x^{2} * 0 * y^{2}$
= $x^{2} * y^{2}$.

Proposition 3.7 Let $(X;*,\cdot,0)$ be a B-semigroup and the operation "*" be associative. If $x \cdot y = y \cdot x$ then $(x*y)^{2^n} = x^{2^n} * y^{2^n}$.

Proof. It is easily seen by induction on n.

Definition 3.8 Let $(X; *, \cdot, 0)$ be a B-semigroup and $A \subseteq X$. If, for all $x, y \in A$,

(i) $x * y \in A$,

(ii) $x \cdot y \in A$

then A is called a B-subsemigroup of X.

Example 3.4 In Example 3.2, the set $A = \{0,3\}$ and the set $B = \{0,2\}$ in Example 3.3 are the B-subsemigroups of X and Y, respectively.

Definition 3.9 Let $(X; *, \cdot, 0)$ and $(Y; *', \cdot', 0')$ be two B-semigroups. A mapping $f: X \to Y$ is called a B-homomorphism if for all $x, y \in X$,

- (i) f(x * y) = f(x) *' f(y),
- (ii) $f(x \cdot y) = f(x) \cdot f(y)$.

Proposition 3.10 Let $f: X \to Y$ be a B-homomorphism. Then f(0) = 0.

Proof. Using (I), we get f(0) = f(0*0) = f(0)*' f(0) = 0.

Let $f: X \to Y$ be a B-homomorphism. If f is injective, then f is said to be a B-monomorphism. If f is surjective, then f is called an B-epimorphism. If f is bijective, then f is called an B-isomorphism. For any B-homomorphism $f: X \to Y$, the kernel of f (denoted by *Kerf*) is the set $\{x \in X : f(x) = 0\}$. If A is a subset of A, then $f(A) = \{f(x) : x \in A\}$ is the image of A. The set f(X) is called the image set of f and denoted Im f. If B is a subset of Y, $f^{-1}(B) = \{x \in X : f(x) \in B\}$ is the inverse image of B.

Example 3.5 Consider the B-semigroups in Example 3.1. Define $f:\square \rightarrow \square_2$ such that

 $f(x) = \begin{cases} 0 & , & if x is an even number \\ 1 & , & if x is an odd number. \end{cases}$

Then it is easily seen that f is an B-homomorphism.

Example 3.6 For the B-semigroups in Example 3.2 and Example 3.3, the function $f: X \to Y$ defined by f(0) = 0, f(1) = 1, f(2) = 3 and f(3) = 2 is an B-homomorphism.

Example 3.7 Let $(X;*,\cdot,0)$ be a commutative B-semigroup and the operation "*" be associative. The function $f: X \to X$ defined by $f(x) = x^{2^n}$ is a homomorphism.

Theorem 3.11 Let X and Y be B-semigroups and $f: X \to Y$ be a B-homomorphism. Then

(i) *Kerf* is a B-subsemigroup of *X*,

(ii) If A is a B-subsemigroup of X, then f(A) is a B-subsemigroup of Y,

(iii) If B is a B-subsemigroup of Y, then $f^{-1}(B)$ is a B-subsemigroup of X,

(iv) If X is a commutative and f is an epimorphism, then Y is also a commutative B-semigroup,

(v) If X is a B-semigroup with unity if f is an epimorphism, then Y is a B-semigroup with unity and f(1) = 1.

Proof It is easily seen as similar the proofs of the ring theory.

Theorem 3.12 Let X and Y be B-semigroups and $f: X \to Y$ be a B-homomorphism. Then f is one-toone if and only if *Kerf* = {0}.

Proof. Let f is one-to-one and $a \in Kerf$. Then f(a) = 0. We know that f(0) = 0. Hence f(a) = f(0). Since f is one to one, we get a = 0. So $Kerf = \{0\}$. Conversely, let $Kerf = \{0\}$ and f(a) = f(b). Then f(a)*f(b) = f(a*b) = 0. Hence we have $a*b \in Kerf$ and a*b = 0. So we get a = b by Proposition 2.2 (iii).

Proposition 3.13 Let $f: X \to Y$ and $g: Y \to Z$ be two B-homomorphisms. Then the function $g \circ f$ is a B-homomorphism.

Proof. It is easily seen as similar the proof of the ring theory.

Definition 3.14 Let X be a B-semigroup. A nonempty subset of I of X is called a left (resp. right) ideal of X if it satisfies:

- (I1) $(\forall a \in I) (\forall x \in X) a * x \in I \text{ implies } x \in I,$
- (I2) $(\forall a \in I) (\forall x \in X) x \cdot a \in I \text{ (resp. } a \cdot x \in I \text{).}$

If I is both left and right ideal, then I is said to be an ideal of X.

Example 3.8 The set $2\square$ for the B-semigroup $(\square; -, \cdot, 0)$, the set $\{0,3\}$ for the B-semigroup X in Example 3.2 and the set $\{0,2\}$ for the B-semigroup Y in Example 3.3 are ideals.

Theorem 3.15 Let X and Y be B-semigroups and $f: X \to Y$ be a B-homomorphism. Then

- (i) Kerf is an ideal of X,
- (ii) If I is an ideal of X and f is an epimorphism, then f(I) is an ideal of Y.

Proof. (i) Let $a \in Kerf$ and $x \in X$. Assume that $a * x \in Kerf$. Since f(a * x) = f(a) * f(x) = 0, and $a \in Kerf$, we have f(x) = f(a) = 0. Then we get $x \in Kerf$. Secondly, since $f(x \cdot a) = f(x) \cdot f(a) = f(x) \cdot 0 = 0$, and similarly $f(a \cdot x) = 0$, we see that $x \cdot a, a \cdot x \in Kerf$.

(ii) Let $b \in f(I)$ and $y \in Y$. Assume that $b * y \in f(I)$. There exist $a, x \in X$ such that f(a) = b and f(x) = y since f is an epimorphism. Then since $b * y = f(a) * f(x) = f(a * x) \in f(I)$ we have $a * x \in I$. Hence we get $x \in I$ since I is an ideal. So $f(x) = y \in f(I)$. Similarly it can be seen that $y \cdot b, b \cdot y \in f(I)$.

Let $(X;*,\cdot,0)$ be a B-semigroup and let $x \in X$. Define nx = (n-1)x*(0*x) if *n* is a positive integer, nx = 0*(-n)x if *n* is a negative integer and 0x = 0. For example, x = 1x = 0*(0*x), 2x = x*(0*x), (-1)x = 0*x, (-2)x = 0*2x.

Proposition 3.16 (*X*;*,.,0) be a B-semigroup and $x, a \in X$. Then $(nx) \cdot a = n(x \cdot a)$ and $a \cdot (nx) = n(a \cdot x)$ for all $n \in \Box$.

Proof. Let n = 1. Then we have $(1x) \cdot a = (x * (0 * x)) \cdot a = x \cdot a * (0 * x \cdot a) = 1(x \cdot a)$. Now let $1 < n \in \square$. Assume that, for n = k - 1, the equality is true. That is, let $((k - 1)x) \cdot a = (k - 1)(x \cdot a)$. Then we get, for n = k,

 $(kx) \cdot a = ((k-1)x * (0 * x)) \cdot a$ = ((k-1)x) \cdot a * ((0 * x) \cdot a) = ((k-1)(x \cdot a)) * ((0 \cdot a) * (x \cdot a)) = ((k-1)(x \cdot a)) * (0 * (x \cdot a)) = k(x \cdot a).

Hence the equality $(nx) \cdot a = n(x \cdot a)$ is true for all $b \in \square^+$. Now let n < 0. Then we have

$$(nx) \cdot a = (0 * (-n)x) \cdot a$$

= (0 · a) * ((-n)x) · a, -n > 0
= 0 * (-n)(x · a)
= n(x · a).

The other equality can be prove similarly.

The following Theorem is obtained from Theorem 2.12 in [15].

Theorem 3.17 Let (X;*,0) be a B-algebra and $x \in X$. Then

$$mx * nx = (m - n)x$$

where m and n are positive integers.

Definition 3.18 Let (X;*,0) be a B-algebra and $x \in X$. The set $\langle x \rangle$ defined by

$$\langle x \rangle = \{nx : n \in \Box\}$$

is called the set generated by x.

Example 3.9 For the B-algebra $(\Box; -, 0)$, we see that $\langle 2 \rangle = \{n2: n \in \Box\} = 2\Box$. For the B-algebra in Example 3.2, $\langle 0 \rangle = \{0\}, \langle 1 \rangle = \langle 2 \rangle = X$ and $\langle 3 \rangle = \{0,3\}$.

Theorem 3.19 Let $(X;*,\cdot,0)$ be a 0-commutative B-semigroup and $x \in X$. Then set $\langle x \rangle$ is an ideal of *X*.

Proof. Let $a \in \langle x \rangle, y \in X$ and $a * y \in \langle x \rangle$. Then for any $m, n \in \Box$, we have a = mx and a * y = nx. Hence using Theorem 2.4 and Theorem 3.16, we get

 $y = a * (a * y) = a * nx = mx * nx = (m - n)x \in <x>.$

Also for $a \in \langle x \rangle$, $y \in X$, we obtain $a.y = (mx).y = m(x.y) \in \langle x \rangle$ and similarly $y \cdot a \in \langle x \rangle$.

CONFLICTS OF INTEREST

No conflict of interest was declared by the author.

REFERENCES

- [1] Abbott, J. C., "Sets, Lattices and Boolean Algebras", Allyn and Bacon, Boston, (1969).
- [2] Ahn, S.S., Kim, Y.H., "On BE-Semigroups", International Journal of Mathematics and Mathematical Sciences, ID 676020: 8 pages, (2011).
- [3] Cho, J.R. and Kim, H.S., "On B-algebras and quasigroups", Quasigroups and Related Systems 8: 1-6, (2001).
- [4] Hu, Q. P. and Li, X., "On BCH-algebras", Math. Sem. Notes, Kobe Univ., 11, no.2, part 2: 313-320, (1983).
- [5] Hu, Q. P. and Li, X., "On proper BCH-algebras", Math. Japon., 30, no.4: 659-661, (1985).
- [6] Meng, J. and Jun, Y. B., "BCK-algebras", Kyung Moon Sa. Co. Seoul-Korea, (1994).
- [7] Imai, Y. and Iseki, K., "On axiom system of propositional calculi", XIV, Proc. Japan Acad. 42: 19-22, (1966).
- [8] Iseki, K. and Tanaka, S., "An introduction to the theory of BCK-Algebras", Math. Japon., 23 no. 1: 1-26, (1978/79).
- [9] Iseki, K., "On BCI-algebras", Math. Sem. Notes, Kobe Univ., 8, no. 1: 125-130, (1980).
- [10] Jun, Y. B., Roh, E. H. and Kim, H. S., "On BH-algebras", Sci. Math. Japon. 1, no.3:347-354, (1998).
- [11] Kim, C. B. and Kim, H. S., "On BM-algebras", Sci. Math. Japon. 63, no. 3: 421-427, (2006).
- [12] Kim, H. S. and Kim, Y. H., "On BE-algebras", Sci. Math. Japon. 66, no. 1: 113-116, (2007).
- [13] Kim, H. S. and Yon, Y. H., "Dual BCK-algebra and MV-algebra", Sci. Math. Japon., 66, no. 2: 247-353, (2007).
- [14] Neggers, J. and Kim, H. S., "On d-algebras", Math. Slovaca, 49, no. 1: 19-26, (1999).
- [15] Neggers, J., "On B-algebras", Mat. Vesnik, 54, no. 1-2: 21-29, (2002).
- [16] Neggers, J., "A fundamental theorem of B-homomorphism for B-algebras", Int. Math. J., 2, no. 3: 215-219, (2002).
- [17] Schein, B. M., "Difference Semigroups", Communications in Algebra, 20: 445-447, (1995).
- [18] Walendziak, A., "Some axiomatizations of B-algebras", Math. Slovaca, 56, no. 3: 301-306, (2006).
- [19] Walendziak, A., "On commutative BE-algebras", Sci. Math. Japon., 69, no. 2: 281-284, (2009).
- [20] Zelinka, B., "Subtraction Semigroups", Math. Bohemica, 120: 445-447, (1995).