	Gazi University	8^{8}
(3)	Journal of Science	¢

On B-Semigroups

Yılmaz ÇEVEN

Süleyman Demirel University Department of Mathematics Isparta/TURKEY

Article Info

Received:10/01/2017
Accepted: 18/09/2017

Abstract

In this paper, we combined B-algebras and semigroups and introduced the notion of Bsemigroups. We obtained some properties of B-semigroups. We also introduced the notion of the homomorphism and ideal on B-semigroups and studied their fundamental properties.

Keywords

B-algebra
semigroup
B-semigroup
B-homomorphism

1. INTRODUCTION

Y. Imai and K. Iseki introduced two classes of abstract algebras called BCK-algebras and BCI-algebras ([7], [9]). It is known that the class of BCK-algebras is a proper subclass of BCI-algebras. In [4], [5], Hu and Li introduced a wide class of abstract algebras called BCH -algebras. They have shown that the class of BCI -algebras is a proper subclass of BCH -algebras. Neggers and Kim ([14]) introduced the notion of a d-algebra which is a generalization of BCK-algebras, and also they introduced the notion of B-algebras ([15], [16]). Jun, Roh and Kim ([10]) introduced a new notion called BH-algebra which is another generalization of $\mathrm{BCH} / \mathrm{BCI} / \mathrm{BCK}$-algebras. Walendziak obtained another equivalent axioms for $\mathrm{B}-$ algebras ([18]). Kim and Kim ([11]) introduced the notion of BM-algebra which is a specialization of Balgebras. They proved that the class of BM-algebras is a proper subclass of B-algebras and also showed that a BM-algebra is equivalent to a 0 -commutative B -algebra. In [12], Kim and Kim introduced the Notion of BE-algebra as a generalization of a BCK-algebra. Using the notion of upper sets they gave an equivalent condition of the filter in BE-algebras. Schein ([17]) considered systems of the form ($\phi ; \circ, \mathrm{l})$, where ϕ is a set of functions closed under the composition " \circ " of functions (and hence ($\phi ; \circ$) is a function semigroup) and the set theoretic subtraction " "" (and hence ($\phi ; \downarrow$) is a subtraction algebra in the sence of [1]. Zelinka ([20]) discussed a problem proposed by Schein concerning the structure of multiplication in a subtraction semigroup. In [2], Ahn and Kim combined BE-algebras and semigroups and introduced the notion of BE-semigroups and investigate some of their properties.
In this paper, we combined B-algebras and semigroups and introduced the notion of B-semigroups. We obtained some properties on B-semigroups. We also introduced the notion of the homomorphism and ideal on B-semigroups and studied their related properties.

2. PRELIMINARIES

Definition 2.1 ([15]) A B-algebra is a non-empty set X with a constant 0 and a binary operation "*" satisfying the following axioms:
(I) $x * x=0$,
(II) $x * 0=x$,
(III) $(x * y) * z=x *(z *(0 * y))$
for all $x, y, z \in X$.
Example 2.1 ([15]) Let $X=\{0, a, b\}$ be a set with the following table:

$*$	0	a	b
0	0	b	a
a	a	0	b
b	b	a	0

Then ($X ; *, 0$) is a B-algebra.
Proposition 2.2 ($[3,15]$) If $(X ; *, 0)$ is a B-algebra, then for all $x, y, z \in X$,
(i) $x * z=y * z$ implies $x=y$,
(ii) $z * x=z * y$ implies $x=y$,
(iii) $x * y=0$ implies $x=y$,
(iv) $0 *(0 * x)=x$.

Definition 2.3 A B-algebra ($X ; *, 0$) is said to be 0 -commutative if

$$
x *(0 * y)=y *(0 * x)
$$

for all $x, y \in X$.
Theorem 2.4 ([15]) If $(X ; *, 0)$ is 0 -commutative B-algebra, then $x *(x * y)=y$ for all $x, y \in X$.
Definition 2.5 A B-algebra ($X ; *, 0$) is said to be associative if

$$
(x * y) * z=x *(y * z)
$$

for all $x, y, z \in X$.
Example 2.2 Let $(G ; *, 0)$ be a group such that $x * x=0$ for all $x \in G$. Then G is an associative and commutative B-algebra.
Proposition 2.6 If ($X ; *, 0$) is an associative B-algebra, then for all $x, y, z \in X$,
(i) $(x * y) * z=(x * z) * y$,
(ii) X commutative iff $x * y=y * x$.

Proof. (i) is clear by (III) and (II). (ii) follows from the definition of commutativity and associativity.

3. B-SEMIGGROUPS, HOMOMORPHİSMS AND IDEALS ON B-SEMIGGROUPS

Definition 3.1 An algebraic system ($X ; *, \cdot, 0$) is called a B-semigroup if it satisfies the following:
(IV) $(X ; *, 0)$ is a B-algebra,
(V) ($X ; \cdot$) is a semigroup,
(VI) the operation "." is distributive (on both sides) over the operation "*", that is,

$$
x \cdot(y * z)=(x \cdot y) *(x \cdot z)
$$

for all $x, y, z \in X$.
Definition 3.2 Let $(X ; *, \cdot, 0)$ be a B-semigroup.
(i) If $x \cdot y=y \cdot x$ for all $x, y \in X$ then X is called a commutative B-semigroup,
(ii) If $x *(0 * y)=y *(0 * x)$ for all $x, y \in X$, then X is called a 0 -commutative B-semigroup,
(iii) If there exists an element "1" such that $1 \cdot y=y .1$ for all $x \in X$, then X is said to be a B-semigroup with unity.
Example $3.1(\square ;-, \cdot, 0)$ and $\left(\square_{2} ;+, \cdot, 0\right)$ are commutative B-semigroups with unity.
Example 3.2 Define two operations "*" and "." on a set $X=\{0,1,2,3\}$ as follows:

$*$	0	1	2	3
0	0	2	1	3
1	1	0	3	2
2	2	3	0	1
3	3	1	2	0

.	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	1	3
3	0	3	3	0

It is easy to see that $(X ; *, \cdot, 0)$ is a commutative B -semigroup with unity.
Example 3.3 Define two operations "*" and "." on a set $Y=\{0,1,2,3\}$ as follows:

$*$	0	1	2	3
0	0	3	2	1
1	1	0	3	2
2	2	1	0	3
3	3	2	1	0

.	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

It is easy to see that $(Y ; *, \cdot, 0)$ is a commutative B -semigroup with unity.
Proposition 3.3 Let ($X ; *, \cdot, 0$) be a B-semigroup. Then

$$
x \cdot 0=0 \cdot x=0
$$

for all $x \in X$.
Proof. For all $x \in X$, we have that $x \cdot 0=x \cdot(0 * 0)=(x \cdot 0) *(x \cdot 0)=0 * 0=0 \quad$ and $0 \cdot x=(0 * 0) \cdot x=(0 \cdot x) *(0 \cdot x)=0 * 0=0$.

Definition 3.4 A nonzero element x in a B-semigroup ($X ; *,, 0$) is said to be a left (resp., right) zero divisor if there exists a nonzero $y \in X$ such that $x \cdot y=0$ (resp., $y \cdot x=0$). A zero divisor is an element of X which is both a left and a right zero divisor.
Theorem 3.5 Let $(X ; *, \cdot, 0)$ be a B-semigroup. Then X has no zero divisors if and only if the left and right cancellation laws for the operation "." hold in X; that is, for all $x, y, z \in X$ with $x \neq 0$
(i) $x \cdot y=x \cdot z$ implies $x=y$,
(ii) $y \cdot x=z \cdot x$ implies $x=y$.

Proof. Let X has no zero divisors. Assume that $x \cdot y=x \cdot z$ and $x \neq 0$. Then, we have $(x \cdot y) *(x \cdot z)=0$ by (I). This implies $x \cdot(y * z)=0$. Since X has no zero divisors and $x \neq 0$, we obtain $y * z=0$. By Proposition 2.2 (iii), we get $y=z$. Similarly, $y \cdot x=z \cdot x$ implies $y=z$. Conversely, let the left and right cancellation laws hold in X. Assume that $x \cdot y=0$ and $x \neq 0$. Then since, $x \cdot y=x \cdot 0$, we get $y=0$ using the left cancellation law.

In a B-semigroup X, for an element x and positive integer n , we define $x^{n}=x \cdots x$ (n factors).
Proposition 3.6 Let $(X ; *, \cdot, 0)$ be a B-semigroup and the operation "*" be associative. If $x \cdot y=y \cdot x$, then $(x * y)^{2}=x^{2} * y^{2}$.

Proof. Since $x \cdot y=y \cdot x$ and by (I), we have

$$
\begin{aligned}
(x * y)^{2} & =(x * y) \cdot(x * y) \\
& =((x * y) \cdot x) *((x * y) \cdot y) \\
& =\left(x^{2} *(y \cdot x)\right) *\left((x \cdot y) * y^{2}\right) \\
& =x^{2} *(y \cdot x) *(y \cdot x) * y^{2} \\
& =x^{2} * 0 * y^{2} \\
& =x^{2} * y^{2} .
\end{aligned}
$$

Proposition 3.7 Let $(X ; *, \cdot, 0)$ be a B-semigroup and the operation "*" be associative. If $x \cdot y=y \cdot x$ then $(x * y)^{2^{n}}=x^{2^{n}} * y^{2^{n}}$.
Proof. It is easily seen by induction on n .
Definition 3.8 Let $(X ; *, \cdot, 0)$ be a B-semigroup and $A \subseteq X$. If, for all $x, y \in A$,
(i) $x * y \in A$,
(ii) $x \cdot y \in A$
then A is called a B-subsemigroup of X.
Example 3.4 In Example 3.2, the set $A=\{0,3\}$ and the set $B=\{0,2\}$ in Example 3.3 are the Bsubsemigroups of X and Y, respectively.
Definition 3.9 Let ($X ; *, \cdot, 0$) and ($Y ; *^{\prime},,^{\prime}, 0^{\prime}$) be two B-semigroups. A mapping $f: X \rightarrow Y$ is called a Bhomomorphism if for all $x, y \in X$,
(i) $f(x * y)=f(x) *^{\prime} f(y)$,
(ii) $f(x \cdot y)=f(x) \cdot{ }^{\prime} f(y)$.

Proposition 3.10 Let $f: X \rightarrow Y$ be a B-homomorphism. Then $f(0)=0$.
Proof. Using (I), we get $f(0)=f(0 * 0)=f(0) *^{\prime} f(0)=0$.
Let $f: X \rightarrow Y$ be a B-homomorphism. If f is injective, then f is said to be a B-monomorphism. If f is surjective, then f is called an B-epimorphism. If f is bijective, then f is called an B -isomorphism. For any B-homomorphism $f: X \rightarrow Y$, the kernel of f (denoted by Kerf) is the set $\{x \in X: f(x)=0\}$. If A is a subset of A, then $f(A)=\{f(x): x \in A\}$ is the image of A. The set $f(X)$ is called the image set of f and denoted $\operatorname{Im} f$. If B is a subset of $Y, f^{-1}(B)=\{x \in X: f(x) \in B\}$ is the inverse image of B.

Example 3.5 Consider the B-semigroups in Example 3.1. Define $f: \square \rightarrow \square \square_{2}$ such that

$$
f(x)=\left\{\begin{array}{l}
0, \text { if } x \text { is an even number } \\
1, \text { if } x \text { is an odd number } .
\end{array}\right.
$$

Then it is easily seen that f is an B-homomorphism.
Example 3.6 For the B-semigroups in Example 3.2 and Example 3.3, the function $f: X \rightarrow Y$ defined by $f(0)=0, f(1)=1, f(2)=3$ and $f(3)=2$ is an B-homomorphism.

Example 3.7 Let $(X ; *, \cdot, 0)$ be a commutative B-semigroup and the operation "*" be associative. The function $f: X \rightarrow X$ defined by $f(x)=x^{2^{n}}$ is a homomorphism.

Theorem 3.11 Let X and Y be B-semigroups and $f: X \rightarrow Y$ be a B-homomorphism. Then
(i) Kerf is a B-subsemigroup of X,
(ii) If A is a B-subsemigroup of X, then $f(A)$ is a B-subsemigroup of Y,
(iii) If B is a B-subsemigroup of Y, then $f^{-1}(B)$ is a B-subsemigroup of X,
(iv) If X is a commutative and f is an epimorphism, then Y is also a commutative B-semigroup,
(v) If X is a B-semigroup with unity if f is an epimorphism, then Y is a B-semigroup with unity and $f(1)=1$.
Proof It is easily seen as similar the proofs of the ring theory.
Theorem 3.12 Let X and Y be B-semigroups and $f: X \rightarrow Y$ be a B-homomorphism. Then f is one-toone if and only if $\operatorname{Kerf}=\{0\}$.
Proof. Let f is one-to-one and $a \in \operatorname{Kerf}$. Then $f(a)=0$. We know that $f(0)=0$. Hence $f(a)=f(0)$. Since f is one to one, we get $a=0$. So $\operatorname{Kerf}=\{0\}$. Conversely, let $\operatorname{Kerf}=\{0\}$ and $f(a)=f(b)$. Then $f(a) * f(b)=f(a * b)=0$. Hence we have $a * b \in \operatorname{Kerf}$ and $a * b=0$. So we get $a=b$ by Proposition 2.2 (iii).

Proposition 3.13 Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be two B-homomorphisms. Then the function $g \circ f$ is a B-homomorphism.
Proof. It is easily seen as similar the proof of the ring theory.
Definition 3.14 Let X be a B-semigroup. A nonempty subset of I of X is called a left (resp. right) ideal of X if it satisfies:
(I1) $(\forall a \in I)(\forall x \in X) a * x \in I$ implies $x \in I$,
(I2) $(\forall a \in I)(\forall x \in X) x \cdot a \in I$ (resp. $a \cdot x \in I)$.
If I is both left and right ideal, then I is said to be an ideal of X.
Example 3.8 The set $2 \square$ for the B-semigroup ($\square ;-,, 0$), the set $\{0,3\}$ for the B-semigroup X in Example 3.2 and the set $\{0,2\}$ for the B-semigroup Y in Example 3.3 are ideals.
Theorem 3.15 Let X and Y be B-semigroups and $f: X \rightarrow Y$ be a B-homomorphism. Then
(i) Kerf is an ideal of X,
(ii) If I is an ideal of X and f is an epimorphism, then $f(I)$ is an ideal of Y.

Proof. (i) Let $a \in \operatorname{Kerf}$ and $x \in X$. Assume that $a * x \in \operatorname{Kerf}$. Since $f(a * x)=f(a) * f(x)=0$, and $a \in \operatorname{Kerf}$, we have $f(x)=f(a)=0$. Then we get $x \in \operatorname{Kerf}$. Secondly, since $f(x \cdot a)=f(x) \cdot f(a)=f(x) \cdot 0=0$, and similarly $f(a \cdot x)=0$, we see that $x \cdot a, a \cdot x \in \operatorname{Kerf}$.
(ii) Let $b \in f(I)$ and $y \in Y$. Assume that $b * y \in f(I)$. There exist $a, x \in X$ such that $f(a)=b$ and $f(x)=y$ since f is an epimorphism. Then since $b * y=f(a) * f(x)=f(a * x) \in f(I)$ we have $a * x \in I$. Hence we get $x \in I$ since I is an ideal. So $f(x)=y \in f(I)$. Similarly it can be seen that $y \cdot b, b \cdot y \in f(I)$.

Let $(X ; *, \cdot, 0)$ be a B-semigroup and let $x \in X$. Define $n x=(n-1) x *(0 * x)$ if n is a positive integer, $n x=0 *(-n) x$ if n is a negative integer and $0 x=0$. For example, $x=1 x=0 *(0 * x), 2 x=x *(0 * x),(-1) x=0 * x,(-2) x=0 * 2 x$.

Proposition $3.16(X ; *, \cdot 0)$ be a B-semigroup and $x, a \in X$. Then $(n x) \cdot a=n(x \cdot a)$ and $a \cdot(n x)=n(a \cdot x)$ for all $n \in \square$.

Proof. Let $n=1$. Then we have ($1 x) \cdot a=(x *(0 * x)) \cdot a=x \cdot a *(0 * x \cdot a)=1(x \cdot a)$. Now let $1<n \in \square$. Assume that, for $n=k-1$, the equality is true. That is, let $((k-1) x) \cdot a=(k-1)(x \cdot a)$. Then we get, for $n=k$,

$$
\begin{aligned}
(k x) \cdot a & =((k-1) x *(0 * x)) \cdot a \\
& =((k-1) x) \cdot a *((0 * x) \cdot a) \\
& =((k-1)(x \cdot a)) *((0 \cdot a) *(x \cdot a)) \\
& =((k-1)(x \cdot a)) *(0 *(x \cdot a)) \\
& =k(x \cdot a) .
\end{aligned}
$$

Hence the equality $(n x) \cdot a=n(x \cdot a)$ is true for all $b \in \square^{+}$. Now let $n<0$. Then we have

$$
\begin{aligned}
(n x) \cdot a & =(0 *(-n) x) \cdot a \\
& =(0 \cdot a) *((-n) x) \cdot a, \quad-n>0 \\
& =0 *(-n)(x \cdot a) \\
& =n(x \cdot a) .
\end{aligned}
$$

The other equality can be prove similarly.
The following Theorem is obtained from Theorem 2.12 in [15].
Theorem 3.17 Let $(X ; *, 0)$ be a B-algebra and $x \in X$. Then

$$
m x * n x=(m-n) x
$$

where m and n are positive integers.
Definition 3.18 Let $(X ; *, 0)$ be a B-algebra and $x \in X$. The set $\langle x\rangle$ defined by

$$
<x>=\{n x: n \in \square\}
$$

is called the set generated by x.
Example 3.9 For the B-algebra $(\square ;-, 0)$, we see that $<2>=\{n 2: n \in \square\}=2 \square$. For the B-algebra in
Example 3.2, $\langle 0\rangle=\{0\},<1>=<2>=X$ and $<3>=\{0,3\}$.
Theorem 3.19 Let $(X ; *,,, 0)$ be a 0 -commutative B-semigroup and $x \in X$. Then set $\langle x\rangle$ is an ideal of X.
Proof. Let $a \in<x>, y \in X$ and $a * y \in\langle x\rangle$. Then for any $m, n \in \square$, we have $a=m x$ and $a * y=n x$. Hence using Theorem 2.4 and Theorem 3.16, we get

$$
y=a *(a * y)=a * n x=m x * n x=(m-n) x \in<x>.
$$

Also for $a \in\langle x\rangle, y \in X$, we obtain $a \cdot y=(m x) \cdot y=m(x . y) \in\langle x\rangle$ and similarly $y \cdot a \in\langle x\rangle$.

CONFLICTS OF INTEREST

No conflict of interest was declared by the author.

REFERENCES

[1] Abbott, J. C., "Sets, Lattices and Boolean Algebras", Allyn and Bacon, Boston, (1969).
[2] Ahn, S.S., Kim, Y.H., "On BE-Semigroups", International Journal of Mathematics and Mathematical Sciences, , ID 676020: 8 pages, (2011).
[3] Cho, J.R. and Kim, H.S., "On B-algebras and quasigroups", Quasigroups and Related Systems 8: 1-6, (2001).
[4] Hu, Q. P. and Li, X., "On BCH-algebras", Math. Sem. Notes, Kobe Univ., 11, no.2, part 2: 313-320, (1983).
[5] Hu, Q. P. and Li, X., "On proper BCH-algebras", Math. Japon., 30,no.4: 659-661, (1985).
[6] Meng, J. and Jun, Y. B., "BCK-algebras", Kyung Moon Sa. Co. Seoul-Korea, (1994).
[7] Imai, Y. and Iseki, K., "On axiom system of propositional calculi", XIV, Proc. Japan Acad. 42: 19-22, (1966).
[8] Iseki, K. and Tanaka, S., "An introduction to the theory of BCK-Algebras", Math. Japon., 23 no. 1:126, (1978/79).
[9] Iseki, K., "On BCI-algebras", Math. Sem. Notes, Kobe Univ., 8, no. 1: 125-130, (1980).
[10] Jun, Y. B., Roh, E. H. and Kim, H. S., "On BH-algebras", Sci. Math. Japon. 1, no.3:347-354, (1998).
[11] Kim, C. B. and Kim, H. S., "On BM-algebras", Sci. Math. Japon. 63, no. 3: 421-427, (2006).
[12] Kim, H. S. and Kim, Y. H., "On BE-algebras", Sci. Math. Japon. 66, no. 1: 113-116, (2007).
[13] Kim, H. S. and Yon, Y. H., "Dual BCK-algebra and MV-algebra", Sci. Math. Japon., 66, no. 2: 247353, (2007).
[14] Neggers, J. and Kim, H. S., "On d-algebras", Math. Slovaca, 49, no. 1: 19-26, (1999).
[15] Neggers, J., "On B-algebras", Mat. Vesnik, 54, no. 1-2: 21-29, (2002).
[16] Neggers, J., "A fundamental theorem of B-homomorphism for B-algebras", Int. Math. J., 2, no. 3: 215-219, (2002).
[17] Schein, B. M., "Difference Semigroups", Communications in Algebra, 20: 445-447, (1995).
[18] Walendziak , A., "Some axiomatizations of B-algebras", Math. Slovaca, 56, no. 3: 301-306, (2006).
[19] Walendziak , A., "On commutative BE-algebras", Sci. Math. Japon., 69, no. 2: 281-284, (2009).
[20] Zelinka, B., "Subtraction Semigroups", Math. Bohemica, 120: 445-447, (1995).

