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Nonlinear models are usually encountered in various areas including experimental studies such
as physics, chemistry, biology etc. Ordinary least squares is one of the most widely used
methods for parameter estimation in different types of nonlinear models. However, there are
some regression assumptions need to be satisfied for obtaining efficient parameter estimates. In
this paper, the parameter estimation process is evaluated carefully for some bleaching reactions
by using chicken egg albumin (OVA) and some precautions are taken in the presence of
violations of the assumptions (heteroscedasticity, autocorrelation, the presence of outliers). In
this way, robust logged nonlinear least squares approaches are examined and compared under
different conditions of reactions. It can be concluded that logged and robust analyses are
preferable together in nonlinear regression in order to obtain efficient parameter estimates and
reliable results. However, the best weight function in robust nonlinear least squares can vary for
each condition.

1. INTRODUCTION

Nonlinear regression analysis is an inevitable process for most researchers examining the relationship
among several variables obtained from scientific experimental studies. In recent years, the use of
nonlinear models has been a requirement in most scientific areas. Therefore, the analysis of nonlinear
models should be performed carefully in order to obtain efficient results. One of the most widely used
methods is known as ordinary least squares (OLS) for nonlinear parameter estimation. Over many years,
OLS based approaches have been used for different aims in many scientific areas dealing with nonlinear
models [1-9]. Some assumptions should be satisfied in order to obtain efficient parameter estimates by
using OLS in linear and nonlinear models. In literature, these assumptions are given in detail and some
approaches are proposed in the presence of violations of them.

Variance-stabilizing transformations and robust estimation methods are used in the presence of
heteroscedastic errors in linear models [10,11]. Some new approaches are also proposed to detect and
correct different types of heteroscedasticity in linear regression [12,13]. Moreover, the problem of
heteroscedasticity is examined in nonlinear models and some modified methods are given [14,15]. The
problem of autocorrelated errors is also evaluated in linear and nonlinear regression models basically [16-
18]. Some modified approaches related with two-stage least squares method are examined in nonlinear
regression in the presence of errors derived from different wide-sense stationary autoregressive models
[19,20]. One another problem is that OLS analysis can be totally disrupted in the presence of outliers.
Therefore, such observations should be examined in each model carefully and the use of M/S-estimators
can have a high importance to obtain robust parameter estimates [21]. Some modified robust estimators in
nonlinear regression with autocorrelated errors are also investigated [22,23].
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In some areas, the violations of assumptions can be ignored in the analysis stage. Thus, the results of the
analysis can have a breakdown. Especially, nonlinear models including complexity are required attention
for parameter estimation to achieve consistent results. One type of these nonlinear models known as
compartmental models is usually encountered in physical or chemical reactions. They are defined as a
system which consists of a finite number of macroscopic subsystems [24].

In this paper, an experimental data related with bleaching reactions under different pH level and different
chicken egg albumin (OVA) concentration is fitted by a compartmental model with four compartments.
The assumptions are examined after OLS and some approaches are used as alternative to OLS in order to
hinder the violations of assumptions. In this way, robust nonlinear least squares method with different
robust weight functions is investigated. The selection of the best and plausible one is discussed with the
comparison of efficient parameter estimation. The rest of this paper is organized as follows. The data and
model description, the theoretical overview of OLS and the robust approaches are given in section 2. The
results are presented in section 3. The conclusion and discussion are provided in section 4.

2. MATERIALS AND METHODS
2.1. A General View of Nonlinear Least Squares Analysis
A nonlinear regression model can be defined by

yi=f(x,0)+s, i=12 ..,n (1)

where @ is a px1 vector of unknown parameters and ¢; is the random error term satisfying assumptions.
The least squares function is

SO =Y (%~ T (x:,0)) @
i=1
and the normal equations
n of (x;, 0) _
2= 0= =] =0 =L 2..p ©
=1 I lo-d

should be solved in order to obtain the OLS estimate 6 . Because of the difficulty of solving them some
numerical methods can be used. Equation (3) can be given in matrix form

F@OY-r©],,=0 *
where F(0)=0f(0)/a0' . By using the linear Taylor approximation about a vector of initial values 6°,

of (00)
o0’

f(0)~r(6°)+ (0-6°) ()

and considering equation (4) again,

0-0° {F'(aO)F(aO )TF’(&O)[Y— r(e° )} = o° ©)
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is obtained. Here, 6* =6° +4° and it provides an iterative scheme for determining the OLS estimate 4 .
Equation (6) is known as the Gauss-Newton method [25].

2.2. Robust Nonlinear Least Squares Analysis

If there are outliers in the dataset, a robust estimation method can be necessary. Instead of minimizing the
sum of squared residuals, an appropriate loss function

h(0)=ip{%(x"”)} )

i=1
is minimized in order to find a robust estimator. A class of robust estimators is known as M-estimators.
The M-estimate @ is the solution of

[y —f(x,0) 6f(xi,0)| ,
- =0, =1 2, .., 8
;1//[ = J 0, | J P (8)

where w = p’ is an influence function and & is a robust estimate of dispersion [25]. The weight function
is defined by

wW(z)=y(z)/ 9)

where z, =(yi —f (xi : 0))/&. By using the positive diagonal matrix of weights W, equation (6) can be
rewritten as

0-6° =[F'(0°)W°F(0°)TF'(BO)WO [Y— f(ao)] =0 (10)

This modified Gauss-Newton method becomes an iteratively reweighted least squares algorithm [25].
Some robust loss functions and the corresponding weight functions are given in Table 1 [26].

Table 1. Some common robust functions

Name Loss Function p(z;) Weight Function w(z; ) Weight Graph
. J/" B
{l—cos(zi /1339) if |z]<1339n sin(z,/1.339) if |z]<1.339z
Andrews _ 2;,/1.339
2 if |z|>1339x _
0 if |z]>1.339n
4.685" 2 V] 2
—|1- 1_[_ij if |7]<4.685 z Y|
_ 6 4,685 1-| ——| | if |z|<4.685
Bisquare 4.685 [
2 |
4-6685 i[5> 4685 0 if |z|>4685 |
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2 2 1 !
2.385 Z, — /o
Cauchy Inf1+ 7 / \
2 2.385 1+ ?;35 / \

1 {\
Fair 1.4? H—|n 1+H |z]
1.4 1.4 1+ / \
1.4

2 /2 if |z]<1.345 1 if |z]<1345

Huber 13452 1.345 _..-"l \'-.\_

1'345|Zi|_T if |z]>1.345 W if |z]>1.345 / \

Logistic 1.205" In(cosh(z, /1.205)) % // \ \

/2 if |z|<2.795 1 if |z,]<2.795 |
2.795° /2 if |z]>2.795 0 if |z|>2795 |

Talwar

2.3. Data and Model Description

Chicken egg albumin called ovalbumin (OVA) is the major protein found in egg white. It is a non-
inhibitory member of the serpin superfamily [27]. The OVA effect is requested to be investigated on the
nonphotochemical bleaching of malachite green in aqueous solution and therefore, a part of data used in
[8] is tried to be evaluated. OVA and other related materials are provided from Sigma Chemical Co.,
USA [8]. The reactions are carried out under different and adequate conditions in order to observe the
bleaching process. In this paper, there are nine different experimental datasets about the bleaching process
according to time (min) which are tried to be fitted on a nonlinear compartmental model. Two different
conditions are handled in these bleaching reactions. The first one is the pH level and the second one is the
OVA concentration. The bleaching reactions occur at two different pH levels; 10 and 8. Moreover, the
reactions include six different OVA concentrations; 100mL, 200mL, 400mL, 800mL, 1500mL and
3000mL. The scatter plots concerned with the bleaching reactions obtained under two different pH levels
are given in Figure 1.

It is proposed that the bleaching process can be analyzed by a compartmental model including four
compartments given by

Yi =0 eXP(=Pit;) + ap €XP(=Pot;) + 03 €XP(=Pst)) + o, €XP(=fyti) +&i,  i=1, 2, ..., n (11)

where ¢; should be identically independently distributed with zero mean and constant variance. Equation
(11) shows the relationship between milli absorbance (mA) units and time (min).
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Figure 1. Scatter plot of different bleaching reactions at; a) pH 10 b) pH 8

3. RESU

LTS

Time {min)

The aim of this study is to make comparison of several nonlinear approaches on a real, highly nonlinear
and difficult for depth analyzable datasets. Therefore, the datasets arranged under different conditions are
examined in view of non-robust and robust approaches by using MATLAB R2015b. Firstly, OLS is used
for parameter estimation and the results obtained from this analysis are given in Table 2. According to
Table 2, except for some parameter estimates the others seem significant. However, standart errors (SE)
and the other statistics obtained from OLS are doubtful because of the violations of assumptions shown in

Table 2. The results of OLS analysis

oy By
Bleaching | OVA o By
bH concentration 4 SE t p-value ,3 SE t p-value
3 3
Q4 By
10 100mL 36.473 20.409 1.787 0.089 2.717 1.375 1.976 0.062
187.792 15.624 12.020 | 1.3e-10** | 0.634 0.097 6.517 | 2.4e-06**
454.457 21.213 21.423 | 2.9e-15** | 0.032 0.006 | 5.154 | 4.8e-05**
4.335 29.852 0.145 0.886 -0.036 | 0.121 | -0.296 0.770
200mL 121.655 14.436 8.427 | 3.5e-08** | 10.014 | 2.301 | 4.352 | 2.8e-04**
133.812 31.354 4.268 | 3.4e-04** | 1.685 0.443 | 3.806 0.001**
218.044 36.001 6.057 | 5.2e-06** | 0.545 0.076 7.151 | 4.7e-07**
278.424 6.703 41539 | 1.2e-21** | 0.033 0.002 | 15.644 | 4.8e-13**
400mL 159.154 36.616 4.347 | 1.9e-04** | 16.917 | 5.595 | 3.023 0.006**
274.830 35.834 7.669 | 3.9e-08** | 1.723 0.275 | 6.257 | 1.3e-06**
115.392 42.024 2.746 0.011* 0.496 0.138 | 3.589 0.001**
125.699 4.651 27.027 | 1.5e-20** | 0.031 0.002 | 17.274 | 9.1e-16**
800mL 226.132 12.007 18.833 | 3.4e-14** | 10.933 | 1.230 | 8.886 | 2.2e-08**
298.323 11.464 26.022 | 6.7e-17** | 2.710 0.223 | 12.151 | 1.1e-10**
75.069 15.150 4955 | 7.6e-05** | 0.742 0.113 6.555 | 2.2e-06**
45.241 1.893 23.904 | 3.5e-16** | 0.048 0.004 | 12.311 | 8.6e-11**
1500mL 6395.695 | 22559.98 | 0.283 0.782 69.227 | 45.302 | 1.528 0.155
247.615 10.964 22.584 | 1.4e-10** | 6.652 0.588 | 11.306 | 2.1e-07**
79.773 10.934 7.296 | 1.6e-05** | 1.532 0.191 | 8.016 | 6.4e-06**
26.954 1.754 15.365 | 8.8e-09** | 0.091 0.011 | 8.402 | 4.1e-06**
8 400mL 206.020 | 425.672 0.484 0.633 0.011 0.008 1.346 0.191
39.876 26.527 1.503 0.146 0.389 0.138 | 2.824 0.009**
101.357 20.652 4908 | 5.9e-05** | 0.118 0.051 2.331 0.029*
320.691 | 390.469 0.821 0.420 0.023 0.015 1.585 0.127
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800mL 72.030 5.843 12.328 | 1.7e-13** | 0.997 0.115 | 8.649 | 9.1e-10**
157.805 15.980 9.875 | 4.3e-11** | 0.153 0.019 7.989 | 5.1e-09**
348.955 23.847 14.633 | 1.8e-15** | 0.033 0.004 7.754 | 9.5e-09**
88.569 39.820 2.224 0.034* 0.009 0.003 3.314 0.002**

1500mL 81.474 18.074 4508 | 7.8e-05** | 0.857 0.155 5.541 | 3.7e-06**
192.454 71.783 2.681 0.011* 0.172 0.058 2.976 0.005**
216.280 37.117 5.827 | 1.6e-06** | 0.051 0.027 1.926 0.063
72.682 80.362 0.904 0.372 0.016 0.009 1.752 0.089

3000mL 111.289 27.500 4.047 | 2.5e-04** | 27.955 | 5.267 5.308 | 5.1e-06**
88.253 6.067 14.547 | 4.1e-17** | 1.000 0.083 | 12.048 | 1.5e-14**
222.061 5.033 44120 | 3.0e-34** | 0.197 0.009 | 21.809 | 4.3e-23**
127.866 4.406 29.022 | 1.5e-27** | 0.029 0.001 | 30.704 | 2.0e-28**

*: significance at a = 0.05;

**: significance at o = 0.01

Table 3. After OLS, the residuals are examined via some graphs and statistical tests in order to check the
assumptions. The results are not given here, but the satisfied assumptions are marked as “-” in Table 3.
There are a lot of violations of assumptions in the OLS analysis. Therefore, logged OLS is preferred to
hinder the violations or at least to decrease the effects of them. The logged OLS analysis includes taking
logarithm both y; and f(t;, @, #) in equation (11), which is usually preferred for compartmental models.

Logged OLS is applied and the results obtained from this analysis are given in Table 4.

Table 3. The examination of assumptions after some primary analyzes

oLS Logged OLS

Bleaching | OVA . Heteroscedasticity | Autocorrelation | Outlier | Heteroscedasticity | Autocorrelation | Outlier

pH concentration

10 100mL + + + - - +
200mL + - + + _ +
400mL - + + - - +
800mL + - + - - -
1500mL + - + - - -

8 400mL + - n - - T
800mL - + + - - +
1500mL + - + - _ "
3000mL - + - - - +

-: nonexisting;  +: existing
Table 4. The results of logged OLS analysis
a, B
Bleaching | OVA ?2 SE t p-value ,‘iz SE t p-value
pH concentration Gy B
Oy /}4
10 100mL 31.332 13.859 2.261 0.035* 3.054 1.536 1.988 0.061
189.670 | 11.583 16.375 | 4.7e-13** | 0.663 0.067 9.880 | 3.9e-09**
433.522 | 75.737 5.724 | 1.3e-05** | 0.035 0.007 4.830 | 1.0e-04**
28.791 | 81.461 0.353 0.727 -0.007 0.038 -0.176 0.862
200mL 124.329 | 22.026 5.645 | 1.3e-05** | 10.872 2.707 4.017 | 6.2e-04**
127.500 | 13.976 9.123 | 9.4e-09** | 1.834 0.328 5594 | 1.5e-05**
227.922 | 19.173 11.888 | 8.7e-11** | 0.564 0.036 | 15.464 | 6.0e-13**
279.624 | 2.751 101.661 | 9.1e-30** | 0.033 0.001 | 39.351 | 3.7e-21**
400mL 189.323 | 25.570 7.404 | 7.3e-08** | 3.365 0.566 5942 | 2.9e-06**
239.294 | 25.635 9.335 | 8.7e-10** | 0.891 0.089 9.991 | 2.2e-10**
38.308 7.086 5.406 | 1.2e-05** | 0.105 0.037 2.800 | 9.5e-03**
104.779 | 10.767 9.732 | 3.7e-10** | 0.027 0.002 | 14.840 | 3.3e-14**
800mL 264.411 | 12.896 | 20.503 | 6.7e-15** | 7.144 0.590 | 12.106 | 1.2e-10**
254,712 | 13.023 19.558 | 1.7e-14** | 1.992 0.105 | 19.007 | 2.8e-14**
38.064 4.165 9.139 | 1.4e-08** | 0.432 0.049 8.742 | 2.9e-08**
41.494 0.961 43.192 | 3.2e-21** | 0.042 0.001 | 30.916 | 2.3e-18**
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1500mL 547.813 | 608.707 | 0.900 0.387 34.770 | 16.000 | 2.173 0.052
231506 | 17.326 13.362 | 3.8e-08** | 5.829 0.487 | 11.977 | 1.2e-07**
67.674 6.713 10.081 | 6.8e-07** | 1.373 0.085 | 16.201 | 5.1e-09**
26.324 0.385 68.396 | 8.1e-16** | 0.088 0.002 | 58.524 | 4.5e-15**
8 400mL 76.926 | 116.403 | 0.661 0.515 0.007 0.006 1.312 0.203
50.332 16.395 3.070 0.005** 0.343 0.070 4874 | 6.4e-05**
104.891 | 10.034 | 10.454 | 3.3e-10** | 0.100 0.023 4374 | 2.2e-04**
435.616 | 98.940 4403 | 2.1e-04** | 0.019 0.003 5.878 | 5.4e-06**
800mL 65.359 18.008 3.629 0.001** 1.132 0.576 1.966 0.058
145842 | 16.278 8.959 | 4.1e-10** | 0.178 0.040 4477 | 9.6e-05**
342552 | 10.240 | 33.453 | 6.8e-26** | 0.037 0.003 | 12.373 | 1.6e-13**
114952 | 18.528 6.204 | 6.9e-07** | 0.010 0.001 | 11.203 | 2.0e-12**
1500mL 72.271 18.789 3.846 0.001** 0.950 0.287 3.308 0.002**
174860 | 19.114 9.148 | 1.4e-10** | 0.198 0.039 5.038 | 1.7e-05**
229.163 | 19.449 11.783 | 2.3e-13** | 0.058 0.006 9.787 | 2.8e-11**
87.314 10.451 8.355 | 1.2e-09** | 0.017 0.001 | 18.095 | 1.1e-18**
3000mL 65.272 6.563 9.945 | 4.0e-12** | 2.314 0.433 5.343 | 4.5e-06**
200.850 | 7.763 25.874 | 9.8e-26** | 0.299 0.021 | 14.376 | 6.0e-17**
119.097 | 6.704 17.764 | 5.3e-20** | 0.072 0.007 | 11.002 | 2.3e-13**
72.216 5.370 13.448 | 5.0e-16** | 0.021 0.001 | 28.521 | 2.9e-27**

*: significance at o = 0.05;

**: significance at o = 0.01

It can be said in view of Table 3 that the assumptions of homoscedastic and uncorrelated errors are
satisfied with logged OLS analysis. Only there is a heteroscedasticity at the condition of 200mL OVA
concentration and ph 10, but its effect decreases too much in comparison with this one after OLS.
Therefore, the results given in Table 4 are more reliable that it can be also verified by the results given in
Table 5. It is clear from Table 5 that for both of OLS and logged OLS the models are significant.
However, root mean squared error (RMSE) values show that the logged OLS fits to data better than OLS
for all pH and OV A concentration combinations. On the other hand, there is a problem of outliers for both
OLS and logged OLS.

Table 5. The comparison of OLS and logged OLS

oLS Logged OLS

Bleaching | OVA sample | pyise F p-value RMSE F p-value

pH concentration size (n)

10 100mL 28 2.48 1.4e+05 | 8.6e-46** 4.3e-03 7.0e+06 | 9.6e-63**
200mL 29 1.23 3.7e+05 | 3.0e-52** 2.6e-03 1.9e+07 | 2.9e-70**
400mL 34 3.29 2.1e+04 | 2.0e-47** | 13.0e-03 | 6.3e+05 | 9.6e-67**
800mL 28 0.85 1.1e+05 | 1.2e-44** 6.9e-03 1.4e+06 | 7.le-56**
1500mL 19 0.96 2.6e+04 | 19e-22** | 12.2e-03 | 2.5e+05 | 8.3e-28**

8 400mL 31 0.96 8.8e+05 | 3.2e-61** 2.0e-03 3.5e+07 | 1.4e-79**
800mL 39 1.39 3.7e+05 | 5.9e-75** | 12.0e-03 | 1.1e+06 | 5.4e-82**
1500mL 41 2.09 1.4e+05 | 1.6e-72** | 10.7e-03 | 1.3e+06 | 1.5e-88**
3000mL 46 1.38 2.0e+05 | 2.6e-85** | 11.2e-03 | 1.2e+06 | 3.0e-100**

**: significance at o = 0.01

Robust nonlinear least squares method with different weight functions is used in order to obtain efficient
parameter estimates and robust SE values. In this study, robust logged analysis is performed with
different weight functions shown in Table 1. Approximate RMSE values obtained from this robust logged
analysis are given in Table 6. It can be seen that the values are very close because the logged analysis
reduces RMSE values seriously. The approach marked as bold in Table 6 provides the most efficient,
robust and plausible (hot completely removed the effects but less affected from outliers; also taking into
account some preliminary information) parameter estimates for each condition in this experimental study.
It can be emphasized that the best approach differs for each condition. Moreover, it can be said that nearly
same parameter estimates are obtained in some cases by using Andrews and bisquare weight functions.
The results obtained from robust logged analysis with the best approach are given in Table 7.
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Table 6. The comparison of different weight functions

Bleaching | OVA Sample RMSE RMSE RMSE RMSE RMSE RMSE RMSE
pH concentration | size (n) | (Andrews) | (Bisquare) | (Cauchy) (Fair) (Huber) | (Logistic) | (Talwar)
10 100mL 28 3.9e-03 3.9e-03 4.1e-03 4.3e-03 | 4.0e-03 4.1e-03 3.9e-03
200mL 29 2.4e-03 2.4e-03 2.4e-03 2.6e-03 | 2.4e-03 2.5e-03 2.5e-03
400mL 34 10.7e-03 10.7e-03 | 10.7e-03 | 11.3e-03 | 10.9e-03 | 11.0e-03 | 10.8e-03
800mL 28 7.3e-03 7.3e-03 7.5e-03 8.7e-03 | 6.9e-03 7.7e-03 6.9e-03
1500mL 19 13.9e-03 13.9e-03 | 13.9e-03 | 16.8e-03 | 12.2e-03 | 14.3e-03 | 13.0e-03
8 400mL 31 1.8e-03 1.8e-03 1.9e-03 1.9e-03 | 1.8e-03 1.9e-03 1.8e-03
800mL 39 9.6e-03 9.6e-03 9.8e-03 9.8e-03 | 9.7e-03 9.8e-03 9.7e-03
1500mL 41 8.6e-03 8.6e-03 8.6e-03 9.0e-03 | 8.7e-03 8.8e-03 8.6e-03
3000mL 46 8.9e-03 8.9e-03 8.9e-03 9.1e-03 | 9.0e-03 9.0e-03 8.9e-03

It can be pointed out in view of Table 7 that some parameter estimates become significant because of
robust SE. Moreover, almost all parameter estimates have a slight or more difference compared with the
others obtained by using OLS or logged OLS. All the results achieved under the violations of
assumptions point to the importance of robust approaches especially for highly nonlinear models.

Table 7. The results of robust logged analysis

a, A
. a P
Bleaching | OVA . AZ SE t p-value ,‘iz SE t p-value
pH concentration a F:
3 3
&4 ﬁ4
10 100mL 38.096 11.103 3.431 0.003** 3.219 1.153 2.792 0.011*

188.769 9.205 20.508 | 6.7e-15** | 0.657 0.057 11.439 | 3.2e-10**
436.398 60.816 7.176 | 6.0e-07** | 0.035 0.006 5.653 | 1.6e-05**
25.478 65.925 0.386 0.703 -0.008 0.035 -0.234 0.817

200mL 126.380 31.546 4.006 | 6.4e-04** | 12.334 3.408 3.619 0.002**

128.362 10.596 12.114 | 6.1e-11** | 1.980 0.297 6.670 | 1.3e-06**
233.854 14.613 16.003 | 3.1e-13** | 0.573 0.030 19.335 | 7.4e-15**
280.049 2.406 116.383 | 5.4e-31** | 0.033 0.001 | 44.447 | 2.9e-22**

400mL 190.574 34.865 5.466 | 9.9e-06™* | 3.124 0.536 5.829 | 3.8e-06**
226.204 30.914 7.317 | 9.0e-08** | 0.941 0.132 7.109 | 1.5e-07**
36.943 9.433 3.916 0.001** 0.192 0.052 3.686 0.001**

116.881 2.700 43.292 | 9.2e-26** | 0.029 0.001 | 53.134 | 4.7e-28**

800mL 266.767 12.663 21.067 | 4.0e-15** | 7.165 0.580 12.364 | 8.0e-11**
254.010 12.699 20.002 | 1.1e-14** | 1.986 0.103 19.285 | 2.2e-14**
37.827 4.098 9.230 | 1.2e-08** | 0.430 0.049 8.742 | 2.9e-08**
41.459 0.965 42.944 | 3.6e-21** | 0.042 0.001 30.783 | 2.5e-18**

1500mL 547.838 | 608.883 0.900 0.388 34.770 | 16.002 2.173 0.053

231.506 17.325 13.363 | 3.8e-08** | 5.829 0.487 11.978 | 1.2e-07**
67.674 6.713 10.081 | 6.8e-07** | 1.373 0.085 16.202 | 5.1e-09**
26.324 0.385 68.397 | 8.1e-16** | 0.088 0.002 | 58.524 | 4.5e-15**

8 400mL 73.134 100.533 0.727 0.474 0.007 0.005 1.400 0.175

49.778 12.742 3.907 0.001** 0.365 0.064 5.726 | 7.9e-06**
106.492 8.828 12.062 | 2.0e-11** | 0.099 0.019 5.268 | 2.4e-05**
438.841 85.321 5.143 | 3.3e-05** | 0.019 0.003 6.753 | 6.9e-07**

800mL 79.199 14.768 5.363 | 7.6e-06** | 0.929 0.290 3.207 0.003**

146.013 18.505 7.891 | 6.6e-09** | 0.148 0.033 4474 | 9.6e-05**
298.342 12.810 23.291 | 3.3e-21** | 0.038 0.004 9.518 | 1.0e-10**
145.747 20.500 7.110 | 5.5e-08** | 0.012 0.001 15.001 | 9.3e-16**

1500mL 74.996 12.004 6.247 | 4.7e-07** | 1.120 0.247 4545 | 7.0e-05**
172.197 16.918 10.178 | 1.0e-11** | 0.204 0.031 6.486 | 2.3e-07**
223.082 17.440 12.791 | 2.4e-14** | 0.062 0.005 11.887 | 1.8e-13**
100.246 7.808 12.838 | 2.2e-14** | 0.018 0.001 29.064 | 4.3e-25**

3000mL 47.397 8.101 5.851 | 9.1e-07** | 2.104 0.524 4.013 | 2.7e-04**
170.060 8.578 19.826 | 1.2e-21** | 0.361 0.034 10.569 | 7.2e-13**
135.782 10.655 12.744 | 2.7e-15** | 0.101 0.007 15.438 | 5.9e-18**
93.534 2.306 40.564 | 6.8e-33** | 0.024 0.0003 | 84.628 | 6.9e-45**

*: significance at « = 0.05;  **: significance at « = 0.01
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4. CONCLUSION AND DISCUSSION

Researchers often need nonlinear models to analyze the relationship among variables. At first glance,
OLS comes to mind for nonlinear regression analysis. However, it requires several assumptions and these
assumptions can be ignored in some areas. Therefore, the assumptions should be checked carefully and
necessary precautions should be taken in order to obtain efficient results. In this paper, an original
experiment and its results are handled by using a nonlinear model known as compartmental model.
Because of the violations of assumptions robust logged analysis is performed with some different weight
functions. The joint use of robust and logged analysis improves the efficiency and reliability for both
parameter estimation and test results. On the other hand, different weight functions can be preferred under
different conditions of OVA-mediated bleaching reactions. As a conclusion, it is emphasized that highly
nonlinear conditions can require robust logged analysis.
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