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Abstract: In his study; in cases where the targeted object which is taken from a real time camera shot is 

in a circular motion, quasi projectile motion and maneuvering dynamic motion, its later location where it 

will be is examined using the Adaptive Fuzzy Time Series (AFTS) and Exponential Smoothing (ES) 

estimation methods. Error evaluation of these motions was performed according to the Mean Absolute 

Percentage Error (MAPE) method. In the conducted evaluation, with AFTS, the circular motion was 

found to be 3.65%, quasi projectile motion 9.12%, and maneuvering dynamic motion 19.23%, and with 

ES, circular motion 4.48%, quasi projectile motion 1.13% and maneuvering dynamic motion was found 

to be 0.61%. AFTS gives better results than ES for the circular motion but ES gives better results than 

AFTS for quasi projectile and maneuvering dynamic motions. 
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Hareketli Nesnelerin Uyarlanabilir Bulanık Zaman Serileri ve Üssel Düzeltme Tahmin Tekniklerini 

Kullanarak Gerçek Zamanlı Yörüngelerinin İzlenmesi 

 

Öz: Bu çalışmada; gerçek zamanda kamera görüntüsünden alınan hedef cismin; dairesel, eğik atışa 

benzer ve manevralı dinamik hareket yapması durumunda, bir sonraki konumu veya nerede olacağı 

Adaptive Fuzzy Time Series (AFTS) ve Exponential Smoothing (ES) tahmin yöntemleriyle incelenmiştir. 

Bu hareketlerin hata değerlendirmesi, ortalama mutlak yüzde hata (MAPE) yöntemine göre yapılmıştır. 

Yapılan değerlendirmede, AFTS ile dairesel harekette %3.65, eğik atışa benzer harekette %9.12, 

manevralı dinamik harekette %19.23, ES ile dairesel harekette %4.48,  eğik atışa benzer harekette %1.13 

ve manevralı dinamik harekette ise %0.61 elde edilmiştir. Dairesel harekette AFTS ES’den, eğik atışa 

benzer ve manevralı dinamik harekette ise ES AFTS’den daha iyi sonuç vermiştir.  

 

Anahtar Kelimeler: Hedef takibi, tahmin algoritmaları, uyarlanabilir bulanık zaman serileri, üssel 

düzeltme 

 

1. INTRODUCTION 

 

The location estimation and the trajectory estimation of a moving object are important in 

civilian and military applications. In military applications location estimation is used to hit to 

moving enemy target with a rocket Yang and et al. (2007); Kosut and al. (2007); Tang and 

Huang (2006); Marques and Dias (2007) in traffic used in vehicle control applications Hu et. al. 

(2004); Shen et. al. (2011), in robotics used to control robot manipulator Yagimli and Varol 

(2008); Ohno et. al. (2006); Vallery et. al. (2009); Kumar and Garg (2004) and in industry in 

quality control (Bourne et. al., 2011; Facco et. al., 2009; Zhou et. al., 2004; Hu et. al., 2008).   
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In the literature, there are trajectory estimation studies in which different techniques are 

used. These studies are relevant to the trajectory-based Yang and Ji (2010); Chakraborty and 

Meher (2011); Chakraborty and Meher (2012); Hsieh et. al. (2012); Unrath et. al. (2007), 

Kalman filter Eustice et. al. (2004); Chen et. al. (2007); Ryan et. al. (2004); Prėvost et. al. 

(2007) and Jacobian methods (Piepmeier et. al. 1998; Piepmeier et. al. 2004). 

In this study the point where a moving object which was tracked be next was calculated. 

The real time camera shot was relayed to the software. The targeted image taken from the 

camera and the images located in the database were compared with each other in terms of color 

and shape. When a 90% similarity was found between both images, identification of the 

targeted image was done. The image area acquired from the camera that was relayed to the 

software was scaled on the horizontal axis between 0-4800 and on the vertical axis between 0-

3600. Mid-point coordinates of the targeted object and the distance it bears from the reference 

point were determined via the prepared database (Yagimli and Varol, 2009a, 2009b, 2009c). 

In our study, trajectory estimation of a moving object whose location values are present 

was carried out with the AFTS and ES estimation techniques, whose application we are yet to 

know if or not is existent in the literature, and then both methods were compared. 

 

2. ADAPTIVE FUZZY TIME SERIES (AFTS) FORECASTING TECHNIQUE 

 

Fuzzy sets and fuzzy logic are based on people by taking the ability of humans to think as a 

model, being able to summarize the information and to extract information from the data in our 

brains. Thinking processes of humans in the fuzzy-style are represented using fuzzy sets. These 

masses are named as the membership function. In classic masses, an expression is either right or 

wrong. In fuzzy masses, an expression has a membership value between 0 and 1 (Zadeh, 1965).  

Random information is only indexed as a time series and its name is given as time series 

analysis. The adaptive modeling of the fuzzy time series is as follows (Pantazopoulos and 

Pappis, 1996; Huang et. al., 2012): 

minD
and maxD

values are obtained from the data and Uint distance between the two units is 

determined. 

The number of equal intervals is decided and itv is found. This value is used in the fuzzy 

mass Ud. 

Ur is used with this increasing values in the equality below: 

 

Ud=[Dmin-(itv-Ur), Dmax+ itv]                    (1) 

 

In the equality no (2), some simple values represented with the fuzzy masses were given. 
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For example, when the Ud value is divided into five equal intervals, we get itv=5. When 

the information from three periods is used to make assumptions, we get O3(t) 3x5 matrix, R(t) 

and Z(t) 1x5 matrix. When we take the values from the slowly increasing fuzzy sets into 

account; 
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                    Z(t)=[0   0   0.5   1   0.5]        (3) 
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Figure 1: 

Flow diagram of the developed AFTS 

A flow diagram of the AFTS developed is shown in Figure 1. In the developed estimation 

method, the first four values of the x and y coordinates of the mid-points according to the 

motion the object follows are accepted as (w=4). Dmin and Dmax and are then divided into five 

equal pieces (itv=5). It is determined in which range each data falls in the fuzzy set. And it is 

estimated in which range the next data will fall.  

2.1. Circular Motion 
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Let’s think that the object carries out a motion similar to a circular motion, as seen in 

Figure 2. Table 1 illustrates the real values. 

 

Table 1. Real coordinates values of the circular motion 

Ix Iy Ix Iy 

1150 1800 3600 2000 

1200 2100 3600 1800 

1300 2400 3580 1600 

1400 2600 3550 1400 

1540 2800 3470 1200 

1700 2970 3350 1000 

1900 3100 3150 750 

2100 3170 2780 190 

2300 3200 2260 470 

2500 3200 1900 600 

2800 3140 1600 800 

3050 3000 1430 1000 

3250 2800 1320 1200 

3400 2600 1250 1400 

3500 2400 1200 1600 

3560 2200 1160 1800 

 

 
 

Figure 2: 

Circular motion 

Table 2. Estimated values for the circular motion 
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I(x+1) I(y+1) I(x+1) I(y+1) 

1150 1800 3600 2033 

1200 2100 3600 1828 

1300 2400 3580 1625 

1400 2600 3550 1422 

1540 2800 3470 1220 

1700 2970 3350 1018 

1900 3100 3150 816 

2100 3170 2780 562 

2300 3200 2260 297 

2500 3200 1900 286 

2800 3200 1600 730 

3050 3080 1430 964 

3250 2900 1320 1176 

3400 2667 1250 1382 

3500 2450 1200 1585 

3560 2240 1160 1788 

 

,  

Figure 3: 

Real and estimated location values belonging to the circular motion using AFTS 

The values estimated with AFTS are shown in Table 2. In the Figure 3, the graphic of the 

real location values and the location values estimated with AFTS is shown. 

 

2.2 Quasi Projectile Motion 
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Let’s assume that the object carries out a motion similar to a quasi projectile motion, as 

seen in Figure 4. Table 3 illustrates the real values. 

Table 3. Real coordinates values of the quasi projectile motion 

Ix Iy Ix Iy 

200 2100 1500 500 

300 1950 1800 400 

400 1800 2040 300 

500 1650 2200 250 

600 1500 2360 200 

750 1300 2600 250 

850 1150 2800 300 

1000 1000 3000 400 

1100 900 3200 500 

1200 800 3320 600 

1300 700 3450 700 

1400 600 3570 800 

 

 
Figure 4: 

Quasi projectile like motion 

 

 

 

 

Table 4. Estimated values of the projectile motion 
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I(x+1) I(y+1) I(x+1) I(y+1) 

1080 1158 1943 400 

1087 1016 2100 384 

1194 1016 2300 242 

1301 874 2500 226 

1408 858 2800 280 

1515 716 3100 380 

1622 700 3300 510 

1729 558 3400 580 

1836 542 3550 690 

 

 
Figure 5: 

Real and estimated values for the quasi projectile motion with AFTS 

The values estimated with AFTS are shown in Table 4. In Figure 5, the graphic of the real 

location values and the location values estimated with AFTS belonging to quasi projectile 

motion is shown. 

2.3 Maneuvering Dynamic Motion 

Let’s accept that an object changes its present trajectory with a maneuver in a very short 

time, as seen in Figure 6. Table 5 illustrates real coordinates values of the maneuvered dynamic 

motion. 

0

500

1000

1500

2000

2500

0 1000 2000 3000 4000

Object's Movement

Estimated Values



Yağımlı M.: Real Time Trajectory Tracking of Moving Objects  

50 

 

Figure 6:  

Object’s maneuvering dynamic motion 

Table 5. Real coordinates values of the maneuvered dynamic motion 

Ix Iy Ix Iy 

200 2300 2500 1200 

300 2050 2600 1100 

400 1900 2700 1000 

600 1700 2800 900 

800 1500 1950 800 

1000 1100 3100 700 

1200 1000 3200 600 

1400 850 3400 500 

1600 800 3600 450 

1800 850 3800 400 

2000 1000 4200 500 

2150 1100 4400 600 

2250 1200 4500 700 

2400 1300 4600 800 
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Figure 7: 

Real and estimated values for maneuvering dynamic motion for AFTS application 

 

Tablo 6. Estimated values for the maneuvered dynamic motion 

I(x+1) I(y+1) I(x+1) I(y+1) 

200 2300 1984 331 

300 2050 2184 487 

400 1900 2334 643 

600 1700 2413 799 

800 1500 2521 899 

1000 1100 2642 1299 

1284 575 3050 675 

1384 475 3984 331 

1584 375 4682 643 

1784 325 4749 899 

In Figure 7, the graphic of the real location values and the location values estimated with 

AFTS belonging to maneuvering motion is shown. Table 6 illustrates estimated values for the 

maneuvered dynamic motion. 

3. EXPONENTIAL SMOOTHING (ES) FORECASTING TECHNIQUES 

Simple ES is a very popular, practical and generally accepted method among the smoothing 

techniques which are used for reducing the variations in time series data (i.e., preparing 

smoothed time series). A time series can simply be defined as sequence of observations based 

on time order of a physical or

 

financial variable made at equally spaced time intervals (Palit and 

Popovic, 2005).

 

A numerical time series can be defined with the temporal variable it  and time dependent 

variable ix  as ( ii tx , ) where 1it  it  and  ini  ,...3,2,1  (Nind and Torra, 2009).  
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Exponential  smoothing can be classified as “model-free” forecasting method from the 

system-theoretical approach (Palit and Popovic, 2005). Similar moving averages, basic idea is to 

assign weights to the data denoting their importance in the computation systematic. Generally 

this forecasting model assigns exponentially decreasing weights to the data observed as the data 

grow obsolete depending on time; more recent the observation more impact on the forecast 

value. The ES method is based upon the fact of using the future estimation with the present real 

value and the estimation of a certain weight ratio. This characteristic of exponential smoothing 

makes it more appropriate for short-time forecasting. Let Ft be the forecast value for period t, 

then the exponential smoothing model and the error correction are generally defined as; 

11 )1(   ttt FAF 
      (6) 

                     
11)(   ttt FeF 
                        (7) 

where At-1 is the one period ahead actual value of the time series, Ft-1 is the one period ahead 

smoothed value, α (0<α<1) is the smoothing constant determining the weights assigned and et is 

the error term. As the value of α directly related to the characteristics of time series that will be 

smoothed; depending on the nature data and observation methods used for collecting data, there 

are several way of determining the value of α such as trial and error or adaptive filtering 

method. Smaller values of α (0.1< α <0.3) are most commonly used as the forecast value within 

this interval depends on a large number of past observations (Palit and Popovic, 2005). As the 

determination of value α is snarl and the appropriate value varies from system to system, in 

addition to the crisp value determination models, successful fuzzy approaches are also used to 

cope with this problem like Tsaur (Tsaur and Kuo, 2011). 

Here, α is the correction coefficient and its value is 0<α<1. The present observation is 

determined by the weight in the formula. Also, (1- α) expresses the weight of the estimation 

values belonging to the past observation. While At-1 expresses the real value, Ft-1 expresses the 

value of the previous period. This method gives more importance to the last observation value. 

3.1 Circular Motion 

Tablo 7. Estimated values for the circular motion 

I(x+1) I(y+1) I(x+1) I(y+1) 

1150 1800 3600 2046 

1200 2100 3600 1846 

1300 2400 3580 1646 

1400 2600 3550 1446 

1540 2800 3470 1246 

1700 2970 3350 1046 

1900 3100 3150 846 
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Table 7 illustrates estimated values for the circular motion with ES. 

 

Figure 8: 
Real and estimated values for circular like motion for ES application 

In Figure 8, real location values and the location values estimated with ES belonging to 

circular motion is shown.   

3.2 Quasi Projectile Motion 

The estimated values obtained when the position values of the quasi projectile motion of 

Table 8 are applied to the ES estimation algorithm. 

Table 8. Estimated values for the quasi projectile motion 

I(x+1) I(y+1) I(x+1) I(y+1) 

190 199 159 505 

295 195 178 405 

395 180 199 305 

495 165 219 253 

595 150 239 202 
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742 131 259 248 

845 115 279 297 

992 100 299 395 

109 905 319 495 

119 805 339 595 

129 705 349 695 

139 605 359 795 

In Figure 9, real location values and the location values estimated with ES belonging to 

quasi projectile motion is shown. 

 

Figure 9: 

 Real and estimated values for quasi projectile like motion for ES application 

3.3 Maneuvering Dynamic Motion 

Table 9. Estimated values for the maneuvering dynamic motion 

Ix I(x+1) Iy I(y+1) 

190 2185 2495 1205 

295 2057 2595 1105 

395 1908 2695 1005 
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1790 847 3790 402 

1990 992 4180 495 

2142 1095 4389 595 

2245 1195 4494 695 

2392 1295 4595 795 

 

Figure 10:  

Real and estimated values for maneuvering dynamic motion for ES application 

Table 9 illustrates estimated values for the maneuvering dynamic motion. 

4. COMPARISON OF AFTS WITH ES 

Total error percentage of the real motion and the estimated motion of the circular, quasi 

projectile and maneuvering dynamic motions done in both of the estimation methods is carried 

out according to the “mean absolute percentage error (MAPE)” method. Mean absolute 

percentage error equality (Nahmias, 1997); 
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Figure 11: 

 Comparison of AFTS with ES in the circular motion 

As seen in the Figure 11, total error percentage in the circular motion with AFTS is 3.65% 

and with ES is 4.48%. 

 

Figure 12: 

 Comparison of AFTS with ES in the quasi projectile motion 

As seen in the Figure 12, total error percentage in the quasi projectile motion with AFTS is 

9.12% and with ES is 1.13%. 

 

Figure 13:  

Comparison of AFTS with ES in the quasi projectile motion 
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As seen in the Figure 13, total error percentage in the maneuvering dynamic motion with 

AFTS is 19.23% and with ES is 0.61%. 

5. CONCLUSIONS 

Table 10. Total Error Percentages of the Motions According to the Estimation 

Techniques 

 AFTS  Estimation 

Technique 

ES Estimation 

Technique 

Circular Motion 3.65 % 4.48 % 

Quasi Projectile Motion 9.12 % 1.13 % 

Maneuvering Dynamic 

Motion 

19.23 % 0.61 % 

In the AFTS estimation method while it estimates the next location where the object will 

be, as it looks at the object’s four real location values each time and then it estimates to which 

interval each datum will fall into, a good estimation was obtained in the circular motion in 

routine positions. However, as the object descends from the top location point or vice versa, a 

good prediction was not obtained. While looking at the four real values, the AFTS estimation 

algorithm again tried to catch a motion similar to that. However, in the ES estimation method 

the last observation value is more important and thus in the circular motion, better results were 

obtained with AFTS. A better prediction was made possible with ES in the quasi projectile 

motion as 1.13% and in the maneuvering dynamic motion as 0.61%. The conducted estimation 

application was integrated into a robot arm and good results were obtained (Yagimli, 2010). 
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