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Abstract   Öz  

Sensor fusion techniques play critical roles in various 

industries such as defense, automotive, military, and 

healthcare. These techniques combine data from multiple 

sources, resulting in more detailed and reliable results. 

Sensor fusion techniques are indispensable for effective 

decision-making processes, especially in complex 

environments and variable conditions. These techniques 

allow systems to operate more efficiently. This study 

examines the advantages, challenges, and different 

algorithms used in various sensor fusion techniques and 

provides a comprehensive classification. This classification 

makes it possible to evaluate sensor fusion techniques and 

categorize them to appeal to broader applications. The 

study aims to help researchers understand sensor fusion 

techniques and guide them in making choices that suit their 

needs. Additionally, when evaluating the future potential of 

sensor fusion, the focus is on how fusion techniques may 

evolve, particularly with increasing complexity and 

diversity. Thus, it contributes to advancing research in 

sensor fusion and developing more effective systems. 

 Sensör füzyon teknikleri savunma, otomotiv, askeri ve 

sağlık gibi çeşitli endüstrilerde kritik rol oynamaktadır. Bu 

teknikler, birden fazla kaynaktan gelen verileri birleştirerek 

daha ayrıntılı ve güvenilir sonuçların elde edilmesini 

sağlar. Özellikle karmaşık ortamlarda ve değişken 

koşullarda etkili karar verme süreçleri için vazgeçilmez 

olan sensör füzyon teknikleri sistemlerin daha verimli 

çalışmasına olanak tanır.   Bu çalışma, çeşitli sensör füzyon 

tekniklerinin avantajlarını, zorluklarını ve kullanılan farklı 

algoritmaları detaylı bir şekilde incelemekte ve kapsamlı 

bir sınıflandırma sunmaktadır. Bu sınıflandırma, çeşitli 

sensör füzyon tekniklerini değerlendirmeyi ve bunları daha 

geniş bir uygulama alanına hitap edecek şekilde 

kategorilere ayırmayı mümkün kılar. Çalışmanın amacı 

araştırmacılara sensör füzyon tekniklerini daha iyi 

anlamalarını sağlamak ve ihtiyaçlarına uygun seçimler 

yapmaları için rehberlik etmektir. Ayrıca, sensör 

füzyonunun gelecekteki potansiyeli değerlendirilirken, 

özellikle artan karmaşıklık ve çeşitlilikle birlikte füzyon 

tekniklerinin nasıl gelişebileceğine değinilmiştir. Böylece 

sensör füzyonunda araştırmaların ilerlemesine ve daha 

etkili sistemlerin geliştirilmesine katkı sağlanır. 

Keywords: Data fusion, Information fusion, Sensor fusion, 

Sensor fusion algorithms, Sensor fusion taxonomy 

 Anahtar kelimeler: Bilgi füzyonu, Sensör füzyonu, 

Sensör füzyonu algoritmaları, Sensör füzyonu taksonomisi, 

Veri füzyonu. 

1 Introduction 

The Joint Directors of Laboratories (JDL) committee 

determined the definition of sensor fusion as follows: Sensor 

fusion or information fusion is a multi-level procedure that 

deals with the association, correlation, and integration of 

data and information from single and multiple sources to 

obtain distinctive locations and determine predictions [1]. 

When the studies in the literature are examined, it has been 

observed that the terms sensor fusion, information fusion, 

and data fusion are used interchangeably. Information fusion 

techniques combine data from multiple sensors and related 

databases to achieve improved accuracy and more specific 

definitions compared to a single sensor [2]. Sensor fusion is 

the collaborative use of information provided by multiple 

sensors to help perform a function [3,4]. Data fusion 

combines data from various sources to improve system 

performance [5-7]. Regardless of the different definitions in 

the literature, sensor fusion can be summarised as integrating 

information from multiple sources to increase the accuracy 

and quality of the content and reduce cost. 

Sensor fusion technology plays a critical role in many 

industries, such as automation, robotics, and artificial 

intelligence. This technology integrates data from different 

sources, enabling more comprehensive, reliable and in-depth 

analysis. In this way, correct and timely decisions can be 

made in complex environments and changing conditions, 

system performance can be increased, and innovative 

solutions can be developed. Sensor fusion has a wide range 

of applications, from industrial processes to healthcare, 

defence technologies, and environmental monitoring 

systems. Sensor fusion techniques direct future technological 

developments by providing advanced data integration and 

analytics in these areas. 

The advantages of sensor fusion techniques can be listed 

as 1) reduction in uncertainty, 2) increase in accuracy, and 3) 
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cost reduction [8]. Sensor fusion techniques can be 

considered the most suitable method for achieving a certain 

level of accuracy in integrating multiple sensors, as the 

inadequacy of data from a single sensor can be compensated 

for by data from other sensors. 

Sensor fusion applications can effectively solve many 

problems in various areas. The main areas where sensor 

fusion applications are used include the Internet of Things 

(IoT), automotive and navigation, quadrotors and drones, 

computer vision, virtual reality/augmented reality, and 

healthcare [9].  

Sensor fusion helps provide context awareness of IoT. 

Context awareness is the ability of a system or device to 

detect environmental conditions, user situations, or contexts 

of interaction. Sensor fusion provides more comprehensive 

and reliable information by combining data from different 

sensors, thus enabling systems and devices to detect 

interaction contexts more accurately and quickly. The 

number of IoT devices and the data types they collect are 

increasing daily, making sensor fusion techniques even more 

critical. For example, sensor fusion techniques are needed in 

IoT fields such as smart energy consumption control [10], 

power grid [11], management, environmental monitoring, 

industrial [12], and home automation [13]. A sensor-

equipped car can monitor traffic anywhere in the city due to 

a camera feeding on the road, and it uses IoT sensor fusion 

techniques to transmit this information as feedback to the 

user [14,15]. Sensor fusion techniques increase the 

efficiency of these applications and enable the development 

of more intelligent and predictive systems.  

Data security and privacy from IoT devices are critical 

for the effectiveness and reliability of sensor fusion 

techniques. Because these techniques aim to achieve more 

robust and comprehensive results by integrating these data. 

In this context, Ding et al. [16] classified IoT applications in 

various fields and proposed data integration requirements 

regarding the security and privacy of IoT data. 

Various sensors, such as a Global Positioning System 

(GPS), LiDAR, and ultrasound, are used in automotive and 

navigation applications, where sensor fusion techniques 

provide effective solutions. For an autonomous driving task, 

data from these sensors can be combined to provide a 

complete view of the driving condition. While LiDAR 

sensors offer better coverage, they do not provide velocity 

information, and RADAR provides accurate velocity data 

but is ineffective on winding lanes. In this context, sensor 

fusion techniques are applied to avoid collisions, mainly to 

prevent false positive cases and to improve the detection 

quality [17]. 

The quadrotor navigation system usually has a 

complementary sensor group consisting of a three-axis 

gyroscope, a three-axis accelerometer, a magnetometer, a 

pressure altimeter, ultrasonic sensors, and GPS [18]. In this 

type of quadrotor and drone applications, sensor fusion 

techniques are applied to avoid compromising the operation 

if a sensor input is missing. Due to the sensor fusion 

technique, reliability and operational continuity are ensured. 

Sensor fusion techniques enable the detection of 

environmental information with increased sensitivity and 

accuracy in computer vision applications. A computer vision 

study that emulates human vision using competing sensors 

has demonstrated this capability [19]. Additionally, sensor 

fusion techniques are needed in situations such as combining 

infrared images and multiple images with different 

exposures [20] or automatically scanning bags and 

belongings for security purposes in places such as stadiums 

and museums [21]. 

Accurately tracking head movements is a significant 

challenge in Virtual Reality (VR) applications. Virtual 

objects must be aligned with the natural world as users move 

their heads. In this case, a single gyroscope or accelerometer 

alone is not enough. VR systems overcome this challenge by 

using sensor fusion techniques that combine data from 

sensors such as gyroscopes and accelerometers. The 

gyroscope reduces noise in short-term movements, while the 

accelerometer provides long-term stability [22].  

Sensor fusion techniques used in healthcare can be used 

for applications such as monitoring the health status of older 

adults and evaluating body postures in babies [23,24]. These 

applications use body and wireless sensor networks to fusion 

data from various sensors for human tracking [25], 

identification [26], and monitoring patients' mental states 

[27]. With sensor fusion techniques, the reliability of 

measurements is increased and false favourable rates are 

reduced. 

Sensor fusion techniques are complex processes 

involving integrating data from multiple sources. Therefore, 

although they provide advantages and convenience in 

complex applications, they include challenges in 

implementation [28]. These challenges can be listed as 1) 

different operating principles of different sensors, 2) data 

inconsistency or errors, 3) time synchronisation, 4) high 

computational power requirement, 5) accuracy and 

reliability. Sensors with different operating principles 

produce various types of data. Harmonising and combining 

this data is a significant challenge. Although inherently 

sensitive, sensors can sometimes cause data loss and 

erroneous or noisy data. This situation is a considerable 

challenge to obtaining accurate results. Effective data 

integration from various sensors necessitates time 

synchronisation—a lack of synchronisation results in data 

being combined or misinterpreted. Sensor fusion techniques 

require high computational power, especially in real-time 

applications. This situation is a significant challenge 

regarding processor power or memory usage. Most sensors 

generate a signal through several transformation steps. 

Therefore, the user's output may differ from the actual input. 

These performance-related parameters or specifications 

indicate rates of deviation from ideal behaviour. While static 

properties such as accuracy, precision, resolution, and 

sensitivity can be easily managed before the fusion process, 

dynamic properties vary between different inputs. Therefore, 

there may be deviations and errors in the required 

information. Errors are sometimes caused by random noise 

and sometimes by a systematic error related to time. If the 

error is known, it can be fixed by a defined filter. As a result, 

obtaining precise and reliable results due to sensor fusion is 

a considerable challenge. Appropriate sensor fusion 
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techniques must be used to overcome this challenge, and the 

system must be constantly calibrated. The existing 

literature's taxonomy is often limited to specific application 

areas or sensor types, making it difficult for researchers and 

engineers to obtain the comprehensive perspective they 

need. This study presents a comprehensive taxonomy of 

sensor fusion techniques used in complex applications, 

aiming to help researchers who want to work in this field 

choose the appropriate technique for their needs. The 

contributions of the study are as follows: 

 The study discusses the importance of sensor 

fusion, its working principles, different techniques, 

advantages, challenges, and application areas. 

 A comprehensive taxonomy of sensor fusion 

techniques is presented. This taxonomy allows the 

classification of various sensor fusion techniques, 

providing researchers with a comprehensive 

perspective on choosing the appropriate method. 

 The study examines the algorithms used in sensor 

fusion techniques available in the literature and 

presents these algorithm's descriptions and 

mathematical formulas. 

 

The second chapter of the study presents the general 

taxonomy of sensor fusion techniques. The third section 

presents current algorithms used in sensor fusion techniques 

and their application areas. The fourth section discusses the 

current status of sensor fusion techniques, the reasons for 

their preference, and offers suggestions for future sensor 

fusion studies. 

2 Sensor fusion taxonomy 

There are multiple approaches in the literature regarding 

the taxonomy of sensor fusion techniques. In this section, 

existing sensor fusion techniques are examined in detail, and 

a comprehensive taxonomy is created. This taxonomy makes 

it possible to evaluate a wide range of sensor fusion 

techniques and categorise them to appeal to a broader 

application area. Elmenreich [29] has defined three basic 

ways of combining sensor data: competitive, 

complementary, and cooperative. In another study, sensor 

fusion techniques have been discussed in four primary 

categories [30]. These categories are classification based on 

the relationship between different input sources, 

classification based on input and output data types, 

classification based on the abstraction level of combined 

data, and classification based on the kind of fusion 

architecture. Another study discussed sensor fusion 

architectures at the decision, feature extraction, and raw data 

levels [31]. A survey that performed data fusion taxonomy 

for Wireless Sensor NetworksNetworks (WSN) classified it 

as the relationship among the sources, levels of abstraction, 

input and output, data level fusion, data type fusion, and data 

fusion based on user requirements [32]. In addition, recent 

studies have categorised sensor fusion techniques as early 

fusion, mid/halfway fusion, and late/decision fusion [33-35]. 

This study examined sensor fusion taxonomies in the 

literature and created a new comprehensive taxonomy 

containing each category. The created sensor fusion 

taxonomy is in Figure 1. 

2.1 Relationship among the sources 

The relationships among the sources are categorised as 

“complementary”, “redundant/competitive”, and 

“cooperative” as in Figure 2 [36].  

Complementary fusion combines data from multiple 

sensor nodes to obtain more general information [37,38]. In 

an area where one resource is missing or weak, another 

strong resource complements the weak or missing one. 

Integrating lidar and radar sensors in autonomous vehicles is 

a good example of this technique [39]. Camera sensors 

provide image-based information and detect the colours, 

shapes, and details of surrounding objects with high 

resolution. However, its performance decreases in low light 

conditions or adverse weather conditions such as dense fog. 

Lidar sensors use laser beams to provide precise distance and 

shape information and can create detailed 3D maps of the 

environment. However, certain weather conditions, like 

heavy rain or snow, can affect lidar performance. When these 

two types of sensors are combined (complementary fusion), 

more comprehensive and reliable information about the 

vehicle's environment is obtained. 

Redundant/competitive fusion: Data is combined to 

obtain high-quality information and eliminate unnecessary 

data transfer. Resources are interchangeable to achieve the 

same purpose or goal. There are situations where one 

resource becomes redundant or competes with another. GPS 

and Lidar sensors used in autonomous vehicles and location 

and environmental sensing systems are good examples of 

redundant/competitive fusion [40]. GPS determines the 

vehicle's location using signals from satellites. Lidar uses 

laser beams to measure the distance of surrounding objects 

and creates a three-dimensional map. When both systems 

operate simultaneously, GPS and Lidar data are constantly 

compared to determine which sensor provides the most 

reliable and accurate information about the vehicle's location 

and surroundings. The system determines which sensor 

provides more reliable information and ignores data from the 

other sensor when necessary. 

Cooperative fusion: Data from independent sources are 

combined to obtain new information using angle and 

distance. This method aims to get a more comprehensive or 

accurate result by combining data from different sources. 

Data from different sources provide different perspectives or 

information about the same event or target, resulting in 

higher accuracy and more comprehensive determinations. 

Detecting and tracking pedestrians in autonomous vehicles 

is critical for safe driving [41]. This system applies 

collaborative fusion to obtain more accurate and reliable 

results using various sensor types. Cameras provide visual 

information about objects (including pedestrians) around the 

vehicle by capturing high-resolution video or photos. A radar 

sensor is not particularly affected by weather conditions and 

can accurately detect the velocity of moving objects. Lidar 

measures the distance and position of surrounding objects 

millimeter precision and provides a detailed 3D map of the 

area around those objects. Visual information from the  
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Figure 1. Sensor fusion taxonomy. 

 

 

Figure 2. Complementary, redundant/competitive, 

cooperative fusion [29]. 

 

camera is combined with distance and velocity information 

from Radar and Lidar. This provides more comprehensive 

and accurate pedestrian detection by leveraging the strengths 

of each sensor. Due to this collaborative fusion, the system 

accurately determines pedestrians' location, distance, and 

velocity and monitors the environment around them in detail. 

2.2 Levels of abstraction 

Levels of abstraction are categorised as low-level, 

medium-level, high-level and multi-level [42]. 

Low-level fusion: Raw data is combined to reduce noise 

and obtain more accurate data. Each sensor alone may be 

incomplete or susceptible to noise. For example, in a 

navigation device, the magnetometer determines the general 

direction, while the gyroscope's data corrects the 

magnetometer's deviations and increases the device's 

stability. 

Medium-level fusion: This is also called feature fusion. 

Features of the raw data are combined to create a feature 

map. Feature fusion aims to create a more comprehensive 

feature map by combining features of raw data from different 

sensors or data sources. For example, in an image processing 

application, a 3D feature map of an object can be created by 

combining the colour, depth and thermal properties of 

images taken from cameras operating at different 

frequencies. This map is used to describe and understand 

various features of the object in more detail. 

High-level fusion: High-level fusion, also known as 

decision-level fusion, involves aggregating decisions as 

input and amalgamating them to yield more comprehensive 

decisions at a global scale. For example, a security system 

uses facial and fingerprint recognition to verify a user's 

identity [43]. Analyzing the user's face generates an 

authentication score. Scanning the user's fingerprint 

generates an individual authentication score. Both systems 

attempt to authenticate the user independently. The two 

resulting verification scores (facial recognition and 

fingerprint) are combined (for example, using a weighted 

average or rules based on the combined scores). The final 

decision determines whether the user will be granted access. 

In this process, high-level fusion combines the independent 

decisions made by each sensor to create a more reliable 

authentication decision. 

Multi-level fusion: In this fusion level, the input and 

output of the data fusion system are among the previous 

levels. It is when the features combined at the last level are 

used as input to the decision-making process at the next 

level. For example, a smart farming system collects data 

about a field using various sensors and uses this data to 

optimize plant health and productivity [44]. In multi-level 

fusion, raw data from soil moisture sensors and data from 

weather sensors are combined at a low level. These 

combined data are analyzed at the intermediate level together 

with plant health characteristics (e.g. NDVI from drone 

imagery). The results of medium-level analyses are used as 

input to high-level decision-making. In this process, 

integrating data at various levels helps the farmer make 

correct irrigation and fertilization decisions. 

2.3 Input/Output data 

There are five categories of data fusion based on data 

input and output [45].  

Data in, data out (DAI-DAO): Within this category, the 

data fusion system receives raw data as input and produces 

more dependable raw data as output. 
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Data in, feature out (DAI-FEO): It involves feeding raw 

data into the data fusion system, yielding an extracted 

property or attribute, such as an object or state. 

Feature in, feature out (FEI-FEO): Here, the system 

takes a feature as input, generates a verified feature, or 

extracts new features. 

Feature in, decision out (FEI-DEO): In this category, a 

set of features serves as input to the data fusion process, 

resulting in decision-making outputs. 

Decision in, decision out (DEI-DEO): This category 

encompasses scenarios in which decisions are provided as 

input and new decisions are generated as output through the 

data fusion process. 

2.4 Data level  

Sensor data can be combined at different levels in 

different applications. Three different levels of data fusion 

are shown in Figure 3.  

Early fusion: Features from all sensors are combined into 

one input, and one classifier is trained on the combined 

feature representations. It integrates information from 

different methods at the feature level and requires only one 

classifier. It can be computationally efficient. However, it 

carries the risk of high input dimensionality, which can lead 

to overfitting and increased implementation costs. It may 

exhibit unusual or non-intuitive properties due to the 

combination of various types of information. 

 

 

Figure 3. Data level fusion techniques [46]. 

 

Mid fusion: There is one classifier, but it is trained on a 

properly processed, more abstract version of the input from 

each modality. Extracting abstract representations from each 

modality requires additional processing and can be 

computationally costly. 

Late fusion: Each modality is trained with a separate 

classifier that makes decisions independently, and then the 

decisions or predictions from the individual classifiers are 

combined to obtain the final classification result. This fusion 

allows each modality to be processed independently and can 

be computationally efficient. It can handle unit and scale 

differences between modalities. However, it involves the risk 

of missing complementary information in the combined 

feature representation. Additional processing is required to 

integrate the outputs of individual classifiers. 

2.5 Data type  

Depending on the data type, there are three types of data 

integration: "temporal fusion, spatial fusion, and temporal-

spatial fusion" [47]. 

Temporal fusion means combining data from different 

periods but from the same source. Thus, time series data can 

detect changes and distortions in time and capture 

seasonality and trends. 

Spatial fusion means combining data simultaneously but 

from different sources. Thus, the same event or phenomenon 

can be examined from various perspectives. It provides other 

features and offers multiple perspectives for an event 

identified by different sensors (such as local and satellite). 

Temporal spatial fusion refers to continuously merging 

data from different nodes over a certain period. It is suitable 

for studies that require continuous data merging to obtain an 

instantaneous status. It can capture both changes over time 

and relationships in different places. 

These methods can meet different data analysis and 

processing needs and are often used to transform extensive 

data sets into more meaningful and usable information. 

2.6 Data fusion based on user requirements 

Depending on the user's needs, there are three types of 

data fusion: single, new, and complete. Sometimes, the user 

may need a single piece of information about a concrete 

place that can be obtained with a single sensor or new 

information about a specific area. In addition, the user may 

need complete information about the general location or 

network [48]. For example, the user wants to monitor room 

temperature changes using data from a single sensor. In this 

case, the user only needs a single data set for a specific point. 

In cases where the user wants to create a new usage map by 

combining data obtained from satellite images and local 

sensors, the aim is to get new information by combining 

existing data. In another case, an urban planner may want to 

analyse traffic flow throughout the city and optimise the 

transportation system. In this case, the user aims to create a 

complete map of the city-wide transportation network by 

combining data from different sources. 

2.7 Architecture type 

This study discusses sensor fusion architecture types in 

two categories: central and distributed. Central architecture 

is the approach in which data from different sources is 

combined in a central location. The fusion process is 

performed on a central server or computer. Distributed 

fusion architecture is an approach in which data from 

different sources is combined in a distributed manner. In this 

approach, the fusion process is performed distributedly 

where resources are available.  

2.7.1 Central architecture 

Central fusion architecture collects data fusion and 

processing processes at a single central point, as in Figure 4. 

This architecture suits situations where data flows are 

collected and managed under central control. It provides data 

consolidation and captures an integrated perspective. Central 

architecture is advantageous because it is simple and 
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optimal. It also allows for the easy detection of erroneous 

reports [49]. 

 

 

Figure 4. Central architecture. 

 

On the other hand, this architecture needs higher 

bandwidth to transmit data from all sensing nodes to the 

central processor fusion and requires more resources for data 

processing [50]. One of the central models used in both 

military and commercial fields is JDL. JDL model includes 

five levels of data processing and a database, all connected 

by a data path [51]. The elements of the model are as follows: 

Sources include various data sources such as sensors, a 

priori information, databases, and human input.  

Source preprocessing (Level 0): This element pre-scans 

data and allocates it to appropriate processes, reducing the 

processing load of fusion processes. 

Object refinement (Level 1): This level provides data 

alignment (data transformation into a consistent reference 

frame), correlation, tracking of objects' actual and future 

locations, and identification using classification methods. 

Situation refinement (Level 2): Situation refinement 

attempts to contextualise the relationship between objects 

and observed events. 

Threat refinement (Level 3): Attempts to make inferences 

about vulnerabilities and operational opportunities based on 

preliminary information and predictions. 

Process refinement (Level 4): This meta-process 

monitors system performance (e.g., real-time constraints) 

and reallocates sensors and resources to achieve specific 

mission objectives. 

Database management system: This system monitors, 

evaluates, adds, updates, and provides information about 

fusion processes. 

Man-machine interaction contains an interface that 

transmits input and fusion results to operators and users. 

The JDL model, being data or information-centric, poses 

challenges in extending or repurposing applications 

developed under its framework. Its abstract nature 

complicates accurately interpreting its components and their 

application to specific problem domains. While the model 

aids in establishing a common understanding, it lacks 

guidance for developers in selecting appropriate 

methodologies. JDL fusion architecture can be used in 

application areas such as military [52], agriculture [53] and 

autonomous vehicles [54]. 

Another central fusion architecture is waterfall 

architecture, as shown in Figure 5. Waterfall emphasises 

processing functions at lower levels [55]. The process stages 

of the waterfall model consist of levels 0,1,2,3. The detection 

and signal processing level (level 0) corresponds to source 

preprocessing in the JDL model. The feature extraction and 

pattern processing level (level 1) matches the object 

refinement in the JDL model. The situation assessment level 

(level 3) matches the situation improvement level in the JDL 

model. The decision level corresponds to the threat 

improvement level in the JDL model. The waterfall model, 

which is very similar to the JDL model, has the same 

disadvantages. The most significant limitation of the 

waterfall model is that any feedback data flow is neglected. 

Waterfall fusion model is used in application areas such as 

agriculture [56], health [57] and maintenance system [58]. 

 

 

Figure 5. Waterfall model. 

 

Another known central architecture is the Boyd model 

[59], which consists of a 4-stage cycle, as shown in Figure 6. 

The Boyd loop is used for sensor fusion because decision 

support systems for situational awareness are strongly 

related to fusion systems. 

 

 

Figure 6. Boyd model. 

 

The elements of the Boyd model are divided into four. 

Observe generally corresponds to resource preprocessing in 

the JDL model. Orientate corresponds to level 1, 2, and 3 

functions of the JDL model. Decide is comparable to level 4 

(process improvement) of the JDL model. The act includes 

implementing decisions. In this phase, decisions are 

translated and implemented into real-world actions. Actions 

are based on decisions taken to achieve predetermined goals. 

It has no direct equivalent in the JDL model. First used to 

model the military chain of command, the Boyd fusion 

model became widespread for data fusion. 

Another central architecture similar to the Boyd model is 

the omnibus model in Figure 7 [60]. However, unlike the 
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Boyd model, the omnibus model structures the transaction 

levels in detail.  

 

 

Figure 7. Omnibus model. 

 

While the hierarchical division of sensor fusion tasks in 

the omnibus model is notably intricate, it cannot partition 

functions in a manner conducive to distributed sensing and 

data processing. Consequently, the model does not facilitate 

decomposition into modules that can be independently 

implemented, tested, and repurposed for diverse 

applications. Table 1 presents the advantages, disadvantages, 

and reasons for preference of the introduced central 

architectural fusion architectures. 

 

2.7.2 Distributed architecture 

Unlike a centralised architecture, a distributed 

architecture does not have a single central node, as in Figure 

8. Nonetheless, data fusion is locally executed at every node 

within the network, leveraging observations obtained from 

adjacent nodes. Distributed architecture provides advantages 

in terms of supporting changes in the network, scalability 

and tolerance [61]. Data is sent to multiple nodes instead of 

a central node, reducing processing load and communication 

overhead. Additionally, there is less communication delay, 

allowing the user to access fusion results faster. One of the 

known distributed architectures is the Laboratoire d'Analyse 

et d'Architecture des Systemes (LAAS) architecture [62]. 

 

 

Figure 8. Distributed architecture. 

 

Table 1. Central fusion architectures. 

Model Advantages Disadvantages Reason of preference 

JDL 
Can integrate complex data sources 

and processes. 

High bandwidth requirements. 

Huge resource requirement for 
data processing. 

It is used when integrating a wide variety of data 

sources is required. It has been widely accepted 
and used in military and commercial fields. 

Waterfall 

The clear and distinct separation of 

stages. Each stage focuses on a 

specific function. Simple and 
understandable structure. 

Feedback flow is not taken into 
account. Lack of flexibility 

between stages. 

It is used in applications where a simple and flat 

process structure is needed. It is preferred in 

areas such as agriculture, health and care 
systems. 

Boyd 

It is suitable for decision support 

systems. It provides a good 
structure for situational awareness. 

It includes a feedback mechanism 

between stages. 
 

It requires high data flow and 
processing load under central 

control. It is not flexible due to 

its non-modular structure. 

It is used in military decision-making processes. 

It is preferred in applications where decision and 
action cycles are frequent. 

Omnibus 

Detailed and comprehensive phase 

separation. Provides detailed 
functional structure for complex 

tasks. Hierarchical separation of 

processing levels. 

Lack of separability in modular 
construction. High complexity 

and resource requirement. 

It is suitable for mixed and multi-stage sensor 
fusion missions. It is used when modularity is 

unnecessary and centralised control is required. 
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LAAS has been developed as an integrated architecture 

for designing and implementing mobile robots in real time 

and for reusing code. LAAS architecture consists of four 

levels.  

The logical robot level creates a hardware-independent 

interface between physical sensors, actuators, and the 

functional level.  

 

Processing functions such as image processing level, 

obstacle avoidance, and control loops are housed in separate 

controllable communication modules.  

Execution control level controls and coordinates the 

execution of functions according to mission requirements. 

The decision level includes the ability to generate the mission 

plan and oversee its execution, as well as react to other events 

at the executive control level. Depending on the application, 

the decision level may consist of several layers that provide 

different representation abstractions and have different 

temporal properties. While the architecture provides a 

suitable means of dividing large systems into modules, it 

does not offer real-time communication and representation 

of aggregated data. Centralized and distributed fusion 

architectures are compared in Table 2. 

 

Table 2. Central and distributed fusion architecture 

comparison. 

      Feature      Central Distributed 

Structure 

Data fusion and 

processing is done at one 
central point. 

 

Data fusion is 

performed locally at 
each node in the 

network. 

Models 

 
JDL, Waterfall, Boyd, 

Omnibus 

 

LAAS 

Advantages 

It is the data management 
and control center. Errors 

can be easily detected 

with centralized control. 

Provides data integration 

and consolidation. 

 

Provides support for 

changes in the network. 

It offers scalability and 
tolerance. Processing 

and communication 

load is reduced. Faster 
access and less 

communication delay. 

Disadvantages 

High bandwidth and data 
processing requirements. 

Failure of the central 
node affects the entire 

system. Lack of modular 

structure. 

Complex management 
and coordination due to 

distributed structure. 
Lack of unified data 

representation and real-

time communication. 

Scalability Low High 

Reaction time High Low 

Data 

Processing 

Load 

High Low 

Communicatio

n Payload 
High Low 

Modularity and 
Reusability 

Medium High 

Ease of Usage High Complex 

 

3 Algorithms used in sensor fusion applications 

Sensor fusion combines data from multiple sensors to 

obtain more consistent, reliable and accurate information. 

This technique is used in various applications and increases 

system performance due to the different features and 

capabilities of the algorithms. With developing technologies, 

a wide range of sensor fusion algorithms are used, from 

classical methods such as Kalman Filters (EKF and UKF) to 

modern techniques such as Deep Learning (DNN, CNN, 

LSTM) and Graph Neural Network (GNN). These 

algorithms significantly contribute by providing effective 

solutions in various fields, such as autonomous driving, 

robotic control, healthcare and rehabilitation. Each of these 

different algorithms can be optimized according to 

application requirements and tailored to perform best on 

specific tasks. For example, in scenarios such as home 

rehabilitation studies, algorithms such as Extended Kalman 

Filter (EKF) and Unscented Kalman Filter (UKF) have been 

used to estimate motion by integrating inertial and visual 

sensor data [63]. Studies have shown that both fusion 

algorithms offer similar accuracy levels, but UKF has higher 

computational power. 

 

Table 3. The reviewed sensor fusion applications according 

to their algorithms and categories. 

Reference Category Algorithm 

[63] Probabilistic  EKF and UKF 

[64] DL-Based and Probabilistic EKF, PF, LSTM 

[65] DL-Based DNN 

[66] DL-Based TransFuser 

[67] DL-Based CNN 

[68] DL-Based AutoEncoder 

[69] DL-Based Transformer 

[70] DL-Based MFIN 

[71] DL-Based RNN 

[72] DL-Based LSTM 

[73] ML-Based AdaBoost 

[75] Probabilistic  Dempster Shafer 

[78] DL-Based RNN 

[79] DL-Based CNN 

[80,81] DL-Based RCNN 

[82] DL-Based SPP-Net 

[83] DL-Based Fast-RCNN 

[84,85] DL-Based Faster-RCNN 

[87,88] DL-Based YOLO 

[94,95] DL-Based SSD 

[97,98] DL-Based DSSD 

[99] Feature Maps Network Scan 

 

Information from force, encoder, and visual detection is 

integrated with differentiable filters (EKF, Particle Filter 

(PF), LSTM) to perform state estimation in specified tasks. 

The results have been compared with Bayesian filters and 

crossmodal weighted fusion methods [64]. 
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Figure 9. The algorithms used in sensor fusion applications in the literature. 

 

On the other hand, Deep Learning and multi-modal 

sensor fusion techniques have been used to increase 

autonomous driving performance and generalization ability. 

For example, RGBD and Lidar sensors have been integrated 

using the Deep Neural Network (DNN) algorithm and 100% 

success has been achieved in training and static navigation 

tasks [65]. The TransFuser method, on the other hand, 

integrates image and Lidar data for finite driving using self-

attention [66]. This method uses multiple transducer 

modules to fuse perspective views and feature maps, 

reducing average collisions per kilometer by 48% compared 

to geometric fusion. RGB and Lidar sensor data are 

combined with CNN to optimize environmental sensing of 

autonomous driving systems in complex urban environments 

[67]. Another study using sensor fusion techniques for 

autonomous driving systems introduced a new method called 

BEVFusion [68]. Using multi-sensor data, BEVFusion 

combines LiDAR and camera features in a bird's-eye view 

(BEV) representation space while preserving geometric and 

semantic information. BEVFusion transforms multi-

modality features like LiDAR and camera into a unified 

bird's eye view (BEV) representation space with efficient 

view-to-view transformations. It processes these combined 

BEV features with a fully convolutional BEV autoencoder 

and supports different 3D sensing tasks with task-based 

heads. 

In another study, the Transformer-based sensor fusion 

method, which can be used in many sensing systems, such as 

autonomous driving and robotics, has been examined [69]. 

Integrating body sensor networks (BSN) in medical 

services has gained significant importance. One study used 

an interpretable neural network (MFIN) method for BSN 

integration by combining various sensor, communication, 

robotic, and data processing technologies [70]. MFIN uses 

CNN, Recursive Neural Network (RNN), CapsNet and 

Random Forest (RF) algorithms to extract features from 

sensor data, and Graph Neural Network (GNN) and CapsNet 

algorithms to correlate features. The obtained features are 

combined with a Bayesian network. In another study, RNN 

has been used for BSNs integration [71]. In another study 

performing Human Activity Recognition, multimodal sensor 

fusion consisting of IMU sensors and measurements of an 

Android device has been performed with the LSTM model 

[72]. 

Additionally, in complex tasks such as disease 

prediction, the AdaBoost machine learning algorithm has 

been used to integrate various sensor data such as pressure, 

light sensitivity, motion, electrical signal, current, 

acceleration, and angular velocity [73]. In this review, sensor 

fusion techniques and sensor fusion algorithms are 

categorised separately. There are multiple classifications of 

sensor fusion algorithms in the literature. Elmenreich [29] 

classified some sensor fusion algorithms as state estimation 

and decision fusion methods. In [30], sensor fusion 

algorithms are classified in two different ways: classical 

fusion algorithms and deep learning fusion algorithms. 

Sensor fusion algorithms for WSNs are divided into 

categories: inference, estimation, compression, reliable 

abstract sensors, feature map, aggregation and an 

information theory approach [32]. In addition, recent studies 

used DL-based algorithms in sensor fusion applications [33-

35]. In this section, the existing algorithms used in sensor 
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fusion applications in the literature are categorised as in 

Figure 9. Additionally, Table 3 summarises the reviewed 

sensor fusion applications according to their algorithms and 

categories. 

3.1 Probabilistic methods 

Probabilistic methods estimate probability distributions 

of various situations to make accurate and reliable 

predictions under uncertainty. It is more common to use it in 

uncertain and complex systems. Existing probabilistic 

method algorithms are as follows: 

Bayesian: The Bayesian approach provides a theoretical 

framework that deals with uncertainties utilising a 

foundational graphical framework. This approach is well-

suited for analysing past events and forecasting the 

probability of various causes contributing to their 

occurrence. Mathematically, it is as in Equation (1) [74]. 

 

𝑃(𝐶|𝐷) =  
𝑃(𝐶|𝐷)𝑃(𝐶)

𝑃(𝐷)
 (1) 

 

In this context, P(C) represents the likelihood of event C 

occurring independently, while P(D) signifies the probability 

of event D unfolding without any external influence. 

Meanwhile, P(D|C) denotes the probability of event D 

happening, given that event C has already transpired. The 

resulting probability of the condition, P(C|D), falls within the 

range of zero to one [1 0], indicating the likelihood of event 

C occurring given event D. In other words, this signifies 

event P(C|D). Although Bayesian theory has the advantage 

of simplicity of calculation and high probabilities for the 

correct decision, it has some disadvantages. These 

disadvantages include difficulty recognising decision 

uncertainty, complexity due to many events that depend on 

multiple hypotheses and conditions, and difficulty 

determining the value of prior probabilities.  

Dempster-Shafer: The Dempster-Shafer method is a 

probability theory-based approach that enables the 

combination of different evidence under uncertainty and the 

making of predictions by considering situations where this 

evidence may conflict with each other. It has become popular 

in applications such as signal decoding and recognition and 

pattern recognition. It provides a vital formula that combines 

a variety of evidence from different sources. The Dempster 

Shafer has been evaluated for various perceptual tasks, 

encompassing sensor fusion, scene interpretation, 

recognition of object targets, and object validation. The 

method combines information from different sources. It uses 

belief and probability values to represent evidence and 

corresponding uncertainty [75,76]. The technique uses 

"belief" instead of probability. The Belief function is used to 

describe the uncertainty of the hypothesis. The hypothesis 

probability is defined by the mass function m. The amount 

of belief in a hypothesis (A) is represented by a belief 

function [77]. 

 

𝐵𝑒𝑙(𝐴) =  ∑ 𝑚(𝐵)
𝐵⊆𝐴

 (2) 

 

In Equation (2), the sum of the mass probabilities of all 

subsets of A assigned according to m is calculated. The 

presence of two or more pieces of evidence is combined 

using the join rule in Equation (3). 

 

∑ 𝑚1(𝐵𝑖). 𝑚2(𝐶𝑗)

𝑖,𝑗

 

𝑚(𝐴) =  
𝐵𝑖 ∩  𝐶𝑗 = 𝐴

1 − 𝑘
 

 

(3) 

 

Here, 1-k is a normalisation factor, which is the sum of 

all non-zero values given to the ∅ hypothesis. A feature is 

classified based on the maximum belief decision rule, which 

assigns it to class A if the total amount of beliefs supporting 

A is more significant than those not supporting A. This 

situation is expressed mathematically as in Equation (4). 

 

𝐵𝑒𝑙(𝐴) ≥ 𝐵𝑒𝑙(�̅�) (4) 

 

State-Space Model: A state-Space model is a probability-

based approach used for the mathematical modelling of 

dynamic systems. It describes the state variables in a system 

and how these variables evolve. The state space model 

consists of two primary components: the state equation and 

the measurement equation. The state equation describes how 

the state variables change over time and expresses the system 

dynamics as a first-order differential equation. Equation (5) 

shows the state equation: 

 

𝑥𝑘+1 = 𝐹𝑘𝑥𝑘 + 𝐵𝑘𝜇𝑘 +  𝑤𝑘 (5) 

 

𝑥𝑘+1 represents the value of the state in the system at the 

next step. 𝑥𝑘 is the value of the system state at the current 

time step. 𝐹𝑘 is the transition matrix that indicates how the 

system evolves. 𝐵𝑘 is the control input matrix and 

isuggeststhe effect of control inputs on state inputs, if any. 

𝜇𝑘 represents control inputs. 𝑤𝑘 represents a continuous and 

discontinuous random process (usually noise). The 

measurement equation relates the observable outputs of the 

system to state variables. It indicates the relationship 

between real-world data and the model and is calculated as 

in Equation (6). 

 

𝑦𝑘 =  𝐻𝑘𝑥𝑘 +  𝑣𝑘 (6) 

 

𝑦𝑘  represents the measurement vectors received from the 

system.𝑥𝑘 represents the state in the system. 𝐻𝑘 is the 

measurement matrix that shows how state variables in the 

system are associated with measurements. 𝑣𝑘 represents 

measurement error or noise. 

Maximum a Posteriori: This approach is a probabilistic 

approach that determines the most probable value of a 

parameter using Bayes' theorem. It estimates parameters by 

modelling the relationship between prior information about 

a parameter or event and observed data. According to Bayes' 

theorem, the posterior distribution of a parameter is 

calculated based on priori and observed data. The maximum 
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a posteriori selects the value at the maximum point of this 

posterior distribution, which provides the most probable 

estimate of the parameter. This method is a version of 

maximum likelihood that considers previous information 

about a parameter or event. If prior information is available 

and reliable, the maximum a posteriori estimate may be more 

robust than the maximum likelihood estimate. The maximum 

a posteriori estimate based on Bayes' theorem is calculated 

as in Equation (7). 

 

𝑃(𝜃|𝐷) =  
𝑃(𝐷|𝜃). 𝑃(𝜃)

𝑃(𝐷)
 (7) 

 

Here, P(θ│D) represents the a posteriori probability of 

parameter θ when data D is observed. P(D│θ) represents the 

probability of parameter θ when data D is observed. P(θ) 

represents the prior probability of θ, and P(D) represents the 

marginal probability of data D. Maximum a Posteriori selects 

the parameter θ value at the maximum point of the a 

posteriori likelihood as in Equation (8). 

 

�̂� =  argmax
𝜃

𝑃(𝜃|𝐷) (8) 

 

When data from multiple sensors in a system must be 

combined to predict or measure the system state, the 

measurement of each sensor may have a different probability 

distribution. Combining a priori information with the 

maximum a posteriori can provide the most accurate 

estimate in this situation. 

Maximum Likelihood is a probabilistic method for 

estimating the most likely value of a parameter by combining 

measurements from different sensors. It considers the 

probability distributions of each sensor measurement and 

combines these distributions to provide the most probable 

estimate. Firstly, measurement probability distributions from 

each sensor are calculated. These distributions express 

uncertainty around the actual value of the measurement. 

Secondly, the calculated probability distributions are 

combined. A probability distribution is obtained by 

combining measurements from all sensors. Considering each 

sensor measurement, a distribution containing the most 

probable value of the system state is obtained. Thirdly, the 

combined probability distribution makes the most likely 

prediction of system parameters. Finally, system status 

estimates are updated and improved with new sensor 

measurements. More accurate predictions are obtained when 

sensor data are combined with maximum likelihood. 

However, this method requires obtaining accurate 

probability distributions of each sensor measurement and 

may present some practical difficulties. Let the model 

parameters be assumed to be θ and the observed data be D. 

The likelihood function for the data set indicates the 

probability of the data set under the parameter θ and is 

denoted by P(D| θ). The most probable parameter estimate is 

obtained by maximising the likelihood function. 

Mathematically possible parameter estimation is as in 

Equation (9). 

 

�̂�𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 =  argmax
𝜃

𝑃(𝐷|𝜃) (9) 

Likelihood functions often involve multiplication 

operations, and the logarithmic functions convert 

multiplication operations to addition operations. This makes 

the calculation easier. Maximum likelihood estimates are 

maximised with the log-likelihood function and calculated as 

in Equation (10). 

 

�̂�𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 =  argmax log
𝜃

𝑃(𝐷|𝜃) (10) 

 

Particle Filter: The PF method uses a Sequential Monte 

Carlo (SMC) to solve the state estimation problem and can 

approximate Probability Density Functions (PDFs). PF 

involves a resampling step at each instant, using the 

Sequential Importance Sampling (SIS) algorithm. The 

density function is created by several random samples called 

particles. In the particle production stage, initial particles 

p(x(0)) are generated according to the initial probability 

density function (PDF) N{x1(0), x2(0), x3(0), . . . , xN(0)}. 

In the estimation phase, each particle xi (k + 1) is propagated 

according to p( x(k + 1) | x(k)), which is the PDF of xi (k + 

1). Each particle calculates the sum of random noise to 

simulate the noise effect. In the sampling phase, wi (k + 1) = 

p[z(k + 1) | xi (k + 1)] is created for each xi (k + 1) particle. 

In the normalisation and rejected samples stage, the weights 

of the particles are normalised. Low-weight particles are 

removed, and high-weight particles are copied so that each 

particle has the same weight. PF is evaluated in traffic 

control, military field, mobile robot positioning and self-

positioning. 

Kalman Filter (KF): The Kalman Filter (KF) algorithm 

estimates the state of a discrete time-controlled process 

characterised by a linear stochastic equation. It relates the 

state from the previous time step to the current measurement 

to accurately extract the current state. This method is a 

preferred algorithm, mainly due to its direct applicability to 

linear systems. Kalman Filter formulation is as in Equation 

(11). 

 

xk̂  =  Fkxk−1 + Bkμk
̂  

𝑃𝑘 =  𝐹𝑘𝑃𝑘−1𝐹𝑘
𝑇 +  𝑄𝑘  

(11) 

 

xk̂ is state vector of  xk system. 𝑃𝑘 is the estimated 

covariance matrix. F is the dynamics of the system matrix. B 

refers to the control matrix, and Q refers to the noise 

covariance. KF is used to generate new predictions by adding 

an external unit for correction. The KF includes the step in 

Equation (12) to update the state. 

 

𝑥𝑘
′̂  =  𝑥�̂� + 𝐾′(𝑧𝑘 − 𝐻𝑘𝑥�̂�) 

𝑃𝑘
′ = 𝑃𝑘 − 𝑘′𝐻𝑘𝑃𝑘 

𝐾′ =  𝑃𝑘𝐻𝑘
𝑇(𝐻𝑘𝑃𝑘𝐻𝑘

𝑇 + 𝑅𝑘)−1 

(12) 

 

Here, 𝑧𝑘 contains the measurement vectors from the 

sensors. H is the transformation matrix. R represents the 

covariance matrix of noise measurements and the k time 

interval. Kalman gain (K) refers the amount of update needed 



 

 

 
NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. Erken Görünüm / InPress 

H. Çavşi Zaim, E. N. Yolaçan 

 

 

based on the relationship between prediction accuracy and 

measurement noise. Weighting is done on each iterative 

prediction. KF is the most appropriate estimator that can be 

used to predict the statistical behavior of measured values. In 

most real problems, systems cannot provide linear 

characteristics. EKF is suitable for this problem. The main 

benefit of the Kalman filter is its computational cost, but it 

can only express single modality distributions. Another 

version of the KF is the UKF. 

3.2 Statistical methods 

Statistical methods use statistical methods to extract 

meaningful information from noisy sensor measurements. 

Statistical method algorithms are as follows: 

Cross Covariance: It is a statistical method used to 

measure the relationship between two variables. Cross-

covariance helps determine the direction and strength of the 

relationship between two variables and how lagged it is. 

Firstly, the average of two different variables is calculated. 

This means calculating the average of the observed values of 

each variable. Secondly, the differences between the 

averages of both variables are taken. These differences are 

then multiplied and averaged. The covariance of two 

variables is calculated as in Equation (13). 

 

𝐶𝑜𝑣𝑋𝑌(𝑘) =  
1

𝑛
∑(𝑋(𝑡 + 𝑘) − �̅�)(𝑌(𝑡) −  �̅�)

𝑛−𝑘

𝑡=1

 (13) 

 

k refers to the delay between two variables. n refers to the 

total number of observations. X(t) and Y(t) refer to the values 

of the variables X and Y at time t, respectively. �̅� and �̅�  refer 

to the averages of the variables X and Y, respectively. If the 

cross-covariance is positive, the relationship between the 

variables is positive. If the cross-covariance is negative, the 

relationship between the variables is negative. Additionally, 

the size of the cross-covariance value indicates the strength 

of the relationship. 

Covariance Intersection: It is a statistical method that 

combines the covariance matrices of data from different 

sensors. These covariance matrices represent the uncertainty 

and accuracy of each sensor measurement. The method aims 

to obtain a more reliable estimate by combining these 

uncertainties. Firstly, the covariance matrices of the 

measurements from each sensor are calculated. Then, the 

calculated covariance matrices are joined to obtain a single 

covariance matrix. Different methods can be used during the 

join phase. However, the weighted join method is often used 

in covariance intersection. Weights are assigned based on the 

reliability of sensor measurements. Covariance intersection 

is calculated as in Equation (14). 

 

Σ𝑐𝑜𝑣𝑎𝑟𝑖𝑒𝑛𝑐𝑒 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 = (∑ 𝛼𝑖Σ𝑖
−1

𝑛

𝑖=1
)

−1

 (14) 

 

Σ𝑖
−1is the inverse of the covariance matrix of each sensor, 

and 𝛼𝑖 is the weight of each sensor. 

Least Square Estimation aims to minimise the error 

between data points. It is frequently used in applications such 

as linear regression and curve fitting. Least square estimation 

tries to minimize the sum of the squares of the differences 

between the data points and the values predicted by the 

model. It is a practical and easy-to-calculate method. 

However, it may give misleading results in the presence of 

outliers and cases that do not comply with the linearity of the 

model. Therefore, the characteristics of the data set and the 

suitability of the model should be carefully evaluated. Data 

from sensors can often have different accuracy, sensitivity, 

and noise levels. Therefore, least square estimation plays an 

important role in obtaining accurate and reliable results by 

combining sensor data. The Least state estimation method 

increases the accuracy and reliability of sensor data and can 

combine different types of sensors and measurement data. It 

is calculated as in Equation (15). 

 

�̂� = (𝑋𝑇𝑋)−1𝑋𝑇𝑦 (15) 

 

�̂� represents the estimated parameter vector, X represents 

the design matrix containing independent variables, y 

represents the dependent variable vector consisting of actual 

values or observed results. 

Moving Average Filter is a widely used statistical method 

for correcting or smoothing data in time series. This filter can 

be used to reduce random noise in the data or identify trends 

in the data set. The basic principle of the moving average 

filter is to replace each data in a time series with the average 

of data taken over a certain period (for example, the last N 

measurements). The average of measurements for a specified 

period provides a more accurate estimate of the original data. 

Firstly, a window size is selected for the filter. Secondly, the 

window is moved along the time series, and for each window 

position, the average of the measurements across the window 

is calculated. Finally, the calculated average value changes 

the relevant point of the original time series data to filtered 

data. In this method, choosing the correct filter size is very 

important. Because filter size directly affects the results. 

Moving average filter is calculated as in Equation (16). 

 

𝑀𝑜𝑣𝑖𝑛𝑔 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑡 =
1

𝑁
∑ 𝑥𝑡−𝑖

𝑁−1

𝑖=0

 (16) 

 

𝑀𝑜𝑣𝑖𝑛𝑔 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑡 is the moving average value at time 

t. 𝑥𝑡−𝑖 is the measurement value at time t-i. N refers to the 

window size. 

3.3 Knowledge-based methods 

Knowledge-based methods rely on domain-specific 

knowledge or rules. This method is used to interpret sensor 

measurements and make decisions. Fuzzy logic and 

abductive reasoning are knowledge-based sensor fusion 

methods. 

Fuzzy Logic: This algorithm uses imprecise concepts and 

expressions to deal with uncertainty. Fuzzy logic uses fuzzy 

or gradient categories instead of strict boundaries. Therefore, 

it is suitable for modeling and controlling systems with 

uncertain or fuzzy information. For example, fuzzy logic can 

be used to describe quantities such as temperature, velocity 
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or position. The fuzzy logic model is constructed by 

leveraging the expertise and insights of domain experts. In 

this method, combining is performed by considering the 

degrees of uncertainty and uncertainties instead of assigning 

sensor data to precise categories. 

Abductive Reasoning generates a set of possible 

explanations or hypotheses and uses available evidence to 

determine their accuracy. This process can consider existing 

evidence, as well as experience, understanding, and intuition. 

Abductive reasoning can be used to interpret or make sense 

of sensor data before sensor fusion. 

3.4 ML-based methods 

Machine Learning-Based Methods are an important 

approach to integrating different sensor data and obtaining 

more accurate results. This method algorithms are as 

follows: 

Artificial Neural Network (ANN): This machine-

learning model draws inspiration from the structure and 

function of biological neural networks. In sensor fusion, 

ANN helps obtain more comprehensive information by 

processing data from multiple sensors and learning the 

relationship between these data. ANN is as in Equation (17). 

 

𝑦 =  𝜎(𝑊𝐿 . 𝜎(𝑊𝐿−1. … . 𝜎(𝑊1. 𝑥 + 𝑏1) + 𝑏𝐿−1) + 𝑏𝐿) (17) 

 

X is the vector representing the input data and, y 

represents the vector of output data. 𝑊𝑖 is the weight matrix 

in the 𝑖𝑡ℎ layer. 𝑏𝑖 represents the bias vector in the 𝑖𝑡ℎ layer 

and σ represents the activation function. The use of ANN in 

a specific sensor fusion problem varies depending on the 

architecture of the network and the problem. It is important 

to adjust the network architecture and activation function 

depending on the application and problem. 

Genetic Algorithms is an ML algorithm that mimics the 

principles of natural selection and genetic inheritance. It can 

be used in sensor fusion to find and optimize relationships 

between different sensor data. It looks for many 

combinations of traits of individuals within a population. It 

achieves these combinations by iteratively crossing 

individuals, mutating them, and selecting the best-

performing individuals. In the first step, a random initial 

population 𝑃0 = {𝐼1, 𝐼2, … , 𝐼𝑁} is created. This population 

consists of individuals representing data from sensors. In the 

second step, a fitness function 𝑓(𝐼𝑖) is created that evaluates 

the fitness of each individual. This function measures 

success in achieving a specific goal or optimizing a goal. In 

the third step, some of the individuals in the population are 

selected according to the fitness function and used for the 

next generation. Then, a crossover is performed between the 

selected individuals. This process creates new individuals by 

selecting the characteristics of the parents. Finally, the 

mutation is applied to the created individuals. The genetic 

structure of these individuals is randomly changed to 

increase diversity. As a result of crossover and mutation, a 

new generation is created. 

k-Near-Neighbors (k-NN): Sensor fusion leverages k-

Nearest Neighbors (k-NN) to cluster and merge data 

originating from disparate sensors. k-NN calculates the 

distance between two samples with distance measures such 

as Euclidean or Manhattan. Grouping is done by calculating 

the distances of each sample from all other samples and 

selecting the k closest samples. During grouping, a majority 

vote or an average value calculation can be performed 

between class labels. For K-NN, the distance is as in 

Equation (18). 

 

𝑑(𝑥𝑖 , 𝑥𝑗) =  √∑(𝑥𝑖𝑘 − 𝑥𝑗𝑘)2

𝑛

𝑘=1

 (18) 

 

3.5 Deep learning-based methods 

Deep learning techniques have become popular for 

sensor fusion. Deep learning models can learn to extract 

features and combine sensor data end-to-end. 

Recursive Neural Network (RNN): RNNs feed back the 

outputs from previous steps to the inputs from subsequent 

steps. This is ideal for modelling dependencies in time-series 

data. Distributed sensors are employed for monitoring both 

the vital signs and behavioural patterns of individuals. 

Sensor fusion applications have increased to provide 

valuable lifestyle-related data and recognition of physical 

human action through body sensors. In [78], a body sensor-

based sensor fusion method has been proposed for behavior 

recognition using RNN. In the study, multiple body sensor 

fusion such as electrocardiography (ECG), accelerometer 

and magnetometer has been performed. RNN is as in 

Equation (19). 

 

ℎ𝑡 =  𝜎(𝑊𝑖ℎ𝑥𝑡 + 𝑊ℎℎℎ𝑡−1 + 𝑏ℎ) 

𝑦𝑡 = 𝜎(𝑊ℎ𝑜ℎ𝑡 + 𝑏0) (19) 

 

𝑥𝑡 represents the input vector at time t. ℎ𝑡 is the hidden 

layer vector (RNN memory) at time t. 𝑦𝑡  represents the 

output vector at time t. 𝑊𝑖ℎ refers the weight matrix from the 

input layer to the hidden layer while 𝑊ℎℎ refers the weight 

matrix from hidden layer to hidden layer. 𝑊ℎ𝑜 refers to the 

weight matrix from the hidden layer to the output. 𝑏ℎ and 𝑏0 

represent the hidden layer and output bias vectors. σ refers to 

activation functions such as sigmoid and tanh. 

Long-short-term memory (LSTM) and Gated Recurrent 

Unit (GRU) models derived from the RNN architecture are 

specifically engineered to capture long-term dependencies 

within data sequences more effectively. A drawback of 

RNNs is that they need to capture long-term dependencies 

better. This is especially important for tasks where long-term 

dependencies are important, such as time series data. LSTM 

and GRU have special memory mechanisms to better model 

long-term dependencies. LSTM includes a cell state and 

three gates (input, forget, output). These gates control the 

insertion of information into the cell state. GRU has a 

simpler structure than LSTM. It consists of only two gates 

(reset and update). These gates control forgetting past 

information and adding new information. LSTM has more 

parameters than GRU. Therefore, LSTM is more complex 
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and flexible than GRU. GRU training time is faster than 

LSTM and requires less computation. 

Convolutional Neural Networks (CNN): CNNs are 

popular for combining or analyzing data obtained from 

image-based sensors. In autonomous vehicles, CNNs can be 

used to process images obtained from camera sensors and 

detect objects. However, the direct transfer of these 

modalities is a significant challenge due to processing 

multimodal sensor data and the lack of large labelled 

datasets. In [79], CNN has been used in multi-modal sensor 

fusion for human action recognition. CNN has been used to 

extract higher abstraction features from each sensor data. 

Then, these features have been combined. In the 

convolutional layer, filters (kernels) are applied to the input 

data and feature maps are produced. This process is as in 

Equation (20). 

 

𝑧[𝑙] = ∑ 𝑊[𝑙] ∗ 𝑥[𝑙−1] + 𝑏𝑙

𝑛

𝑖=1

 (20) 

 

𝑧[𝑙] is convolution layer output, 𝑊[𝑙] is the filter weight 

matrices in the layer, 𝑥[𝑙−1] is the input data from the 

previous layer, 𝑏𝑙 is the bias vector of the layer.  

The pooling layer's primary function is to diminish the 

dimensions of feature maps acquired post-convolution while 

condensing and abstracting the extracted features. A fully 

connected layer flattens feature maps and establishes full 

connectivity for tasks such as classification or regression. 

CNNs consist of convolution, pooling and fully connected 

layers.  

 When categorizing CNNs based on object 

recognition tasks, they are classified into two-stage and 

single-stage detectors. Two-stage detectors initiate the 

process by employing a region proposal network (RPN) to 

generate object proposals. This network produces a region 

recommendation to determine the potential object region on 

the image. At this stage, no prediction is made about any 

object; only possible region suggestions are produced. Then, 

the feature vectors associated with the recommendation 

region and the image region are classified using a classifier 

(usually a CNN). In this phase, object classification and 

location adjustment are performed on each region proposal. 

Single-stage detectors perform object classification and 

location detection directly on the image. There is no 

suggestion generation step, and the detector directly predicts 

the object for each pixel. It provides a faster operation 

compared to two-stage detectors.  

Two-stage detectors can provide higher sensitivity and 

accuracy than single-stage detectors but require more 

computational cost and processing time. 

Region-based CNN (R-CNN): It is the first two-stage 

detector introduced [80]. The algorithm aims to reduce the 

computational load and increase the detection speed. Instead 

of covering all regions of an image, 2000 regions of the 

image are primarily created with a selective search 

algorithm. Feature extraction is performed with CNN from 

the selected regions. Then, extracted features are classified 

with a Support Vector Machine (SVM) algorithm. RCNN 

has been used to study the effect of combining thermal and 

visible images on pedestrian detection during the day and at 

night [81]. The study's RCNN architecture has been tested 

with both early and late fusion. It has been observed that 

image detection takes approximately 47 seconds. This result 

is not optimal for real-time applications. Classification of 

2000 priority regions increases the training time of the R-

CNN model. 

Spatial Pyramid Pooling (SPP)-Net: This novel 

approach is introduced to address the limitations observed in 

the R-CNN algorithm [82]. Employing multiple pooling 

layers at various scales, this innovative method facilitates the 

manipulation of input images through cropping and resizing. 

Notably, it removes the necessity to conform to a specific 

aspect ratio. Irrespective of input size fluctuations, SPP-Net 

can produce a constant-length representation. Unlike R-

CNN, which individually processes all 2000 regions, SPP-

Net operates on the entire image simultaneously, resulting in 

a marked enhancement in algorithmic processing speed. 

Fast-R-CNN is developed to increase the training and 

testing speed of R-CNN [83]. In the new version, input 

images are processed, and a convolutional feature map is 

produced instead of region suggestions being processed by 

the CNN network. Fast-R-CNN is nine times faster in 

training and 213 times faster in inference compared to R-

CNN.  

Faster-R-CNN: While Fast-R-CNN offers notable 

enhancements in processing speed, it relies on a selective 

search algorithm to detect regions and their corresponding 

bounding boxes. This results in a considerable processing 

delay. To overcome this drawback, a region proposal 

network (RPN) to estimate bounding boxes has been 

proposed [84]. This network introduces a model named 

Faster R-CNN, which integrates with R-CNN to share 

convolution features. With a test time of just 0.2 seconds, 

Faster R-CNN establishes itself as a promising choice for 

real-time applications. Faster R-CNN has successfully 

performed various tasks, such as pedestrian detection using 

thermal and colour images in day and night detection 

scenarios [85]. Single-stage detectors are faster than their 

two-stage counterparts. This method is more available for 

real-time development but has lower levels of precision and 

accuracy. 

You Only Look Once (YOLO): Single-stage detectors 

employ a singular regression step instead of the multi-stage 

classification process utilized in other methods. YOLO is 

one of the most popular algorithms of single-stage detectors 

[86]. In YOLO, the input image is partitioned into a 

predetermined number of grids. After this, a single neural 

network estimates bounding boxes and determines their 

associated class probabilities. These operations are 

performed in a single step. Although YOLO exhibits greater 

speed than two-stage detectors, it often leads to higher 

localization errors and lower detection accuracy when 

dealing with small objects. These limitations have been 

improved in YOLOv2, YOLO9000 [87], and YOLOv3 [88]. 

In [89], YOLO has been used for 3D Lidar and RGB fusion. 

In another study, YOLOv3 has been used for vision and lidar 

point cloud fusion [90]. 
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Single-Shot Multibox Detector (SSD): Observations 

indicate that the YOLO algorithm predominantly detects 

large objects. According to [91], YOLO's accuracy decreases 

when dealing with small and variable-scale objects, and 

according to [92], it imposes spatial constraints on bounding 

boxes, limiting the classification to a single object class. SSD 

has been proposed to remove these limitations in YOLO 

[93]. SSD is engineered to accommodate bounding boxes 

with diverse sizes and aspect ratios, empowering the 

algorithm to identify objects of varying dimensions within a 

single image. SSD has been used for general object detection 

in autonomous driving applications [94]. In another study, 

SSD has been used as a primary detector, and various fusion 

techniques have been compared to multiple CNN 

architectures [95]. 

Deconvolutional Single-Shot Detector (DSSD): Since 

small objects produce a limited number of pixels and 

information, detecting these objects becomes a burden. 

Improving accuracy is often prioritized over detection speed 

[96]. Instead of employing the original Visual Geometry 

Group (VGG) classifier, DSDD utilizes ResNet101. 

Consequently, it enhances the SSD algorithm by 

incorporating deconvolutional layers and enriching the 

contextual information. DSDD improves the detection of 

small objects by providing better-resolution feature maps. 

For pedestrian detection, colour and thermal images are 

combined using mid-fusion with the DSSD network [97,98].  

3.6 Interval analysis methods 

Interval analysis methods involve representing sensor 

measurements as intervals rather than exact values. This 

approach considers uncertainty and can provide robust 

fusion results, especially in the presence of sensor noise and 

errors. 

Fault Tolerant Interval Function: This method primarily 

provides fault tolerance in sensor fusion. It is designed to 

detect errors in data from different sensors and respond to 

them tolerantly. For example, it can tolerate missing or 

incorrect data points or smooth out mismatches between 

sensor data. Measurement errors, sensor malfunctions, and 

environmental effects can cause errors in sensor data. The 

fault-tolerant interval function allows the system to avoid 

incorrect results caused by incorrect data and works more 

reliably. The fault tolerant interval function is shown in 

Equation (21). 

 

𝑦(𝑡) = 𝑥(𝑡) + 𝑒(𝑡) (21) 

 

y(t) represents the corrected output, x(t) represents the 

input, and e(t) represents errors or uncertainties in the data 

from the sensors. e(t) can change depending on the 

characteristics of a particular fault tolerant interval function 

and the methods used. 

3.7 Feature maps 

Feature maps are representations of sensor data that 

highlight important features or patterns. They are used to 

preprocess sensor data before fusion or as input to fusion 

algorithms. 

Occupancy Grid: In sensor fusion, it can be used to 

combine data from different sensors and extract or update 

feature maps. It is represented by a matrix. This matrix 

divides an environment at specific resolutions and represents 

an occupied or empty state of each cell (𝑂𝑖,𝑗 = {0,1}). 𝑂𝑖,𝑗 

represents the cell in the i,j index of the matrix. 1 means 

occupied, 0 means empty. The Occupancy grid is updated 

with various sensor data. For example, environmental 

sensors such as a LIDAR sensor, radar sensor, or camera can 

provide data in different directions and resolutions. This data 

is used to mark specific cells of the occupancy grid as 

occupied (1) or empty (0). 

Network Scans: Sensor fusion provides more 

comprehensive environmental sensing by combining data 

from network scanners with data from other sensors. For 

example, a network scanner can detect IP addresses, 

connection states, and other network properties of devices, 

while other sensors can detect physical objects in the 

environment. Among the most commonly used network 

scanning techniques is eScan [99]. Escan gathers data within 

WSNs and generates maps based on the information 

collected.  

4 Conclusion 

Sensor fusion integrates data from multiple sensors to 

acquire comprehensive, reliable, and accurate information. It 

enhances system performance by ensuring redundancy in 

case of sensor failure and by combining data from sensors 

with different sensitivities to better adapt to environmental 

conditions. Moreover, sensor fusion techniques streamline 

processing costs by condensing sensor data into fewer, more 

meaningful datasets. 

Algorithms used in sensor fusion applications vary in 

implementation and effectiveness depending on specific use 

cases and system requirements. Algorithms such as Kalman 

filtering and covariance intersection are favoured for their 

ability to handle Gaussian noise well, making them suitable 

for applications such as robotics localisation and navigation 

systems tracking. These algorithms rely on probabilistic 

models to effectively integrate sensor data and provide 

robust predictions even in noisy environments. In contrast, 

knowledge-based algorithms such as fuzzy logic and 

abductive reasoning are superior in scenarios where sensor 

data is inherently uncertain. Fuzzy logic enables flexible 

decision-making based on fuzzy sets and linguistic variables, 

making it ideal for systems that require human-like 

reasoning in uncertain situations. Abductive reasoning 

complements this by extracting the most plausible 

explanations from incomplete or conflicting sensor inputs. 

Therefore, it is useful in diagnostic applications such as fault 

detection systems. Algorithms such as ANNs and CNNs are 

increasingly preferred because they can learn complex 

relationships and patterns directly from data. ANNs are 

preferred for tasks such as object recognition in autonomous 

vehicles due to their ability to integrate various sensor inputs 

and generalize from large data sets. On the other hand, CNNs 

excel at processing image-based sensor data and perform 

well in applications requiring real-time object detection and 

classification. Interval analysis algorithms provide 
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robustness against sensor noise and errors by representing 

sensor measurements as intervals rather than precise values. 

These algorithms are effective in fault-tolerant systems 

where maintaining system reliability during sensor failures 

is critical. 

Each algorithm offers unique advantages tailored to 

specific sensor fusion applications. For example, statistical 

algorithms are preferred in scenarios that require precise 

prediction with minimal computational load, while 

knowledge-based methods are effective for systems that 

require adaptive decision-making in uncertain environments. 

Machine learning-based algorithms are particularly valuable 

in applications that require high accuracy in complex data 

interpretation. By understanding these strengths, researchers 

can effectively select the optimal algorithm to optimize 

system performance and reliability in real-world 

applications. 

In recent years, sensor fusion applications have 

increasingly embraced the power of artificial intelligence 

(AI) algorithms. Integrating AI and ML algorithms in sensor 

fusion applications presents opportunities and challenges. 

AI/ML's big data analysis capabilities can be used at all 

levels of sensor fusion. However, combining the condition 

and impact assessment methods of sensor fusion with 

AI/ML's big data-based object assessment classification is 

difficult. For example, although AI/ML has been successful 

in big data analysis, it still faces challenges for more complex 

problems such as force structure analysis and intent 

assessment. AI/ML methods must develop robust models to 

reduce uncertainty with reliable and consistent performance 

bounds in this context. The combination of AI/ML and 

sensor fusion offers significant opportunities in contextual 

modelling, context awareness methods for situational 

assessment, and model-based AI/ML methods for threat 

assessment. Future coordination efforts include the 

development of contextual models, the ability of AI/ML to 

transfer learning from one state to another, understanding 

models derived from principles, and distributed architectures 

for multi-sensor and multi-algorithm coordination. These 

efforts aim to increase AI/ML's explainability, ensuring its 

broader acceptance and effectiveness in sensor fusion 

applications. 

There is a wide range of potential future advances in 

sensor fusion applications that could further improve 

functionality and use cases. Integrating AI and ML 

algorithms allows sensor fusion applications to learn from 

experience, adapt to new environments and make smarter 

decisions. Thus, improvements in areas such as navigation 

and obstacle avoidance are expected to be achieved in the 

future. In addition, advances in edge computing enable 

systems to be more efficient in dynamic environments by 

processing data in real-time, reducing delay, and increasing 

decision-making speed. Energy efficiency and sustainability 

advances can contribute to developing systems with longer 

battery life powered by sustainable power sources, 

expanding operational capabilities and reducing 

environmental impact. By evaluating these potential 

advances and integrating them into the design and 

development of sensor fusion applications, researchers and 

engineers can further increase these systems' functionality, 

performance, and versatility and create new uses across 

various industries and fields. 
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