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Abstract. In this paper, we present the modulus of smoothness of a function
f ∈ Xp

c , which the Mellin-Lebesgue space, and later we state some properties

of it. In this way, the rate of convergence is gained. Moreover, we elucidate
some pointwise convergence results for the Mellin-Gauss-Weierstrass operators.

Especially, we acquire the pointwise convergence of them at any Lebesgue point

of a function f .

1. Introduction

Mellin analysis is famous in approximation theory and Mellin operators are
broadly investigated in this field (see [13], [18] for a comprehensive theory and,
for other approximation results, [7], [12]). The reputation of Mellin operators is
both mathematically and due to their applications in different fields. For instance,
they are relevant to various problems of Signal Processing: actually, Mellin analysis
is quite helpful in situations, where the samples to reconstruct a signal are expo-
nentially spaced rather than equally spaced as in the classical Shannon Sampling
Theorem (see, e.g., [14]).

The singular integrals of Mellin convolution type were first-time presented by
Kolbe and Nessel [17] in 1972. They play a remarkable role in the Mellin analysis,
likewise the traditional convolution operators in the Fourier analysis. These convo-
lution integrals are utilized to explain the attitude of solutions of certain boundary
value problems in the wedge-shaped regions. Butzer and Jansche [13] broadly an-
alyzed them, relating to the Lp convergence. The pointwise convergence of linear
singular integrals of the Fejer-type in the periodic case or in the line group is was
broadly investigated in the classical book by P.L. Butzer and R.J. Nessel [15] in

2020 Mathematics Subject Classification. 41A36, 41A25.
Keywords. Mellin-Gauss-Weierstrass operators, Mellin-Lebesgue spaces, modulus of smooth-
ness, Lebesgue point.

firat ozsarac@hotmail.com; 0000-0001-7170-9613.

©2024 Ankara University
Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics

630



MELLIN-GAUSS-WEIERSTRASS OPERATORS IN THE MELLIN-LEBESGUE SPACES 631

1971, where specially an almost everywhere convergence is gained by using the
concept of the Lebesgue point of a function f ∈ Lp, 1 ≤ p ≤ +∞.

In [18], the approximation theory by Mellin convolution operators is evolved
using a more direct and inherent way, totally unconnected from the Fourier the-
ory, bottomed on a ‘logarithmic’version of Taylor formula, Mellin derivatives, and
the concepts of ‘logarithmic’ uniform continuity and ‘logarithmic’moment of kernel
function, which gives a different and powerful approach.

From the early 2000s until today, Mellin convolution operators have been worked
intensively, particularly by Bardaro and Mantellini, and quite significant guidances
have been accomplished to this field. In [4] and [5], the authors asserted a con-
venient linear composition of Mellin type operators to accelerate convergence. In
another view to gain better order of approximation, Bardaro and Mantellini [8] took
into account linear compositions of Mellin type operators using the iterated kernels
instead of the basic kernels. Same authors, in [5], improved the pointwise approxi-
mation theory for Mellin convolution operators including Mellin-Gauss-Weierstrass
operators, acting on functions defined on the multiplicative group R+.

Bardaro and Mantellini [7] considered Mellin convolution operators of type

(Twf) (s) =
∞∫
0

Kw (t) f (ts)
dt

t
, s ∈ R+

where f pertains to domain of the operator Tw and Kw : (0,∞) → R is a set of

the kernels, which provides the condition
∞∫
0

Kw (t) dt
t = 1. Check against the usual

classical convolution, the translation operator is changed by a dilation operator, and
let R+ be the multiplicative topological group granted with the Haar measure µ =
dt
t becoming the Lebesgue measure. We will indicate by Lp (µ,R+) = Lp (µ), 1 ≤
p ≤ +∞, the Lebesgue spaces according to the measure µ and we will demonstrate
by ∥f∥p the matching norm of a function f ∈ Lp (µ).

Moreover, in recent important papers, the authors have been working on the
Mellin-Lebesgue spaces. For example, in [10], the authors study convergence theo-
rems to a function f of its generalized exponential sampling series in the weighted
Lebesgue spaces. In [2], some results on exponential sampling operators in the
weighted Lebesgue spaces have been performed recently. In the very recent papers,
in [6] and [11], Bardaro et al. examine the boundedness properties and the conver-
gence features of certain semi-discrete exponential-type sampling operators in the
weighted Lebesgue spaces, respectively.

Additionally, many studies have been carried out for similar operators on the
subject. For instance, in [3], q analogue of the Stancu-Beta operators is intro-
duced, and direct results in terms of the modulus of continuity and the weighted
approximation theorem are expressed. In [16], Gupta et al. deal with the semi-
exponential type Gauss-Weierstrass operators and they estimate some direct results
using suitable modulus of continuity, weighted approximation, quantitative asymp-
totic formula and pointwise convergence. In the last year, in [1], a new modulus
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of continuity for locally integrable function spaces is presented and the obtained
results are applied to the Gauss-Weierstrass operators.

The rest of the paper is organised as follows. In the next part, elementary
informations related to the subject are reminded. After that, the definition of
modulus of smoothness of a function f ∈ Xp

c and its some properties are given.
In this way, the rate of convergence is gained. Other than these, the definition
of Lebesgue point of a function f ∈ Xp

c is expressed. Later, we state pointwise
convergence of the linear Mellin-Gauss-Weierstrass operators.

2. Basic Notations

Let us represent by N, R+ and R+
0 the sets of positive integers, positive real

numbers and nonnegative real numbers, respectively. By C, we symbolize the set
of complex numbers. Throughly the paper, C (R+) settles for the space of all
continuous and bounded functions defined on R+and by Ccomp (R+) the subspace of
C (R+) including all functions with compact support in R+. Moreover, C∞

comp (R+)

denotes the subspace of Ccomp (R+) including all test functions, i.e., the functions
of compact support which are infinitely differentiable.

For 1 ≤ p ≤ ∞, we represent by Lp (R+) the ordinary Lebesgue space comprising
all Lebesgue measurable function such that

∥f∥p :=

{∫ ∞

0

|f (x)|p dx
}1/p

< ∞ (1 ≤ p < ∞)

and
∥f∥∞ := ess sup

x∈R+

|f (x)| < ∞.

We should point out that C (R+) ⊂ L∞ (R+) and the norm of two spaces is the
same.

Let’s assume that c ∈ R is constant. For 1 ≤ p < ∞, we symbolize by Xp
c

the weighted Lebesgue space, so called Mellin-Lebesgue space, which represent the
natural Mellin counterpart of the classical Lebesgue spaces, defined by

Xp
c :=

{
f : R+ → C : f (·) (·)c−1/p ∈ Lp

(
R+

)}
and equipped with the norm

∥f∥Xp
c

: =

{∫ ∞

0

|f (x)|p xcp−1dx

}1/p

=

{∫ ∞

0

|f (x)|p xcp dx

x

}1/p

< ∞ .

In case p = 1, we will simply writeX1
c ≡ Xc. In an equal form, Xp

c is the space of all
functions f such that f (·) (·)c ∈ Lp

µ (R+), where Lp
µ (R+) represents the Lebesgue

space in connection with the invariant measure µ (A) =
∫
A

dt
t for any measurable

set A ⊂ R+. For details, see [13].
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We consider the linear Mellin-Gauss-Weierstrass operators defined in [13, Page
342 Definition 8] as follows

(Twf) (s) =
w√
4π

∫ ∞

0

e−(
w
2 log t)

2

f (st)
dt

t
, s ∈ (0,∞) .

It is easy to see that
w√
4π

∫ ∞

0

e−(
w
2 log t)

2 dt

t
= 1. (1)

3. Pointwise Convergence and Quantitative Estimate

This part is seperated to state pointwise convergence of (Tw) and the rate of
convergence through modulus of smoothness which will also be defined.

To acquire convergence theorems for the operators Tw, we need the following
density result (see [10]). We accept the following impression: for a subspace H ⊂
Xp

c , we represent by clsXp
c
(H) the closure of H in connection with the norm-

topology of Xp
c .

Theorem 1. [10] For every p ≥ 1 and c ∈ R, we have

clsXp
c

(
C∞

comp

(
R+

))
= Xp

c .

Firstly, we begin with the following lemma.

Lemma 1. If f ∈ Xp
c , then we get

∥Twf∥Xp
c
≤ ec

2/w2

∥f∥Xp
c
.

Proof. We can write

∥Twf∥Xp
c

=

{∫ ∞

0

|(Twf) (s)|p scp
ds

s

}1/p

=
w√
4π

{∫ ∞

0

∣∣∣∣∫ ∞

0

e−(
w
2 log t)

2

f (st)
dt

t

∣∣∣∣p scp dss
}1/p

≤ w√
4π

∫ ∞

0

{∫ ∞

0

|f (st))|p scp ds
s

}1/p

e−(
w
2 log t)

2 dt

t

=
w√
4π

∥f∥Xp
c

∫ ∞

0

e−(
w
2 log t)

2

t−c dt

t

= ec
2/w2

∥f∥Xp
c
.

□

Definition 1. We present the first modulus of smoothness of a function f ∈ Xp
c

with
ωXp

c
(f ; δ) = sup

|ln t|<δ

∥f (t·)− f (·)∥Xp
c
, δ > 0.

The modulus has the following properties:
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Theorem 2. If f ∈ Xp
c , we have

lim
δ→0

ωXp
c
(f ; δ) = 0. (2)

Proof. Let be |ln t| < δ. Assuming first that c > 0, since f ∈ Xp
c , for every ε > 0

there exists A > 1 such that for any δ > 1

I1 :=

 e−A∫
0

|f (s)|p scp ds
s


1/p

<
ε

4ecδ and I2 :=

 ∞∫
eA

|f (s)|p scp ds
s

1/p

<
ε

4ecδ .

(3)
From (3), we have ∫

s/∈(e−A,eA)

|f (s)|p scp ds
s


1/p

=


 e−A∫

0

+

∞∫
eA

 |f (s)|p scp ds
s


1/p

<
ε

2
.

It is obvious that for any δ > 1 ∫
s/∈[e−A−δ,eA+δ]

|f (s)|p scp ds
s


1/p

<
ε

2
. (4)

Then, using the change of variable ts = u, with |ln t| < δ (δ > 1), and from (3), we
obtain  e

−δ−A∫
0

|f (ts)|p scp ds
s


1/p

< t−c

 te−δ−A∫
0

|f (u)|p ucp du

u


1/p

< e
cδ

 e−2δ−A∫
0

|f (u)|p ucp du

u


1/p

<
ε

4
(5)

and  ∞∫
eδ+A

|f (ts)|p scp ds
s


1/p

< t−c

 ∞∫
teδ+A

|f (u)|p ucp du

u

1/p

< e
cδ

 ∞∫
e2δ+A

|f (u)|p ucp du

u

1/p

<
ε

4
. (6)
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From (4), (5) and (6), we obtain

sup
|ln t|<δ

 e
−δ−A∫
0

|f (ts)− f (s)|p scp ds
s


1/p

+ sup
|ln t|<δ

 ∞∫
eδ+A

|f (ts)− f (s)|p scp ds
s

1/p

< ε.

In this case, we can write the inequality

ωXp
c
(f ; δ) ≤ ε+ sup

|ln t|<δ

 eδ+A∫
e−δ−A

|f (ts)− f (s)|p scp ds
s


1/p

.

For every f ∈ Xp
c , using Theorem 1, there is g ∈ Ccomp (R+) such that e2δ+A∫

e−2δ−A

|g (s)− f (s)|p scp ds
s


1/p

<
ε

ecδ . (7)

Using the Minkowsky inequality and the logarithmic continuity of smoothness of
the function g in the closed interval, we attain eδ+A∫

e−δ−A

|f (ts)− f (s)|p scp ds
s


1/p

≤

 eδ+A∫
e−δ−A

|f (ts)− g (ts)|p scp ds
s


1/p

+

 eδ+A∫
e−δ−A

|g (ts)− g (s)|p scp ds
s


1/p

+

 eδ+A∫
e−δ−A

|g (s)− f (s)|p scp ds
s


1/p

.

According to (7), we get eδ+A∫
e−δ−A

|f (ts)− g (ts)|p scp ds
s


1/p

< ε and

 eδ+A∫
e−δ−A

|g (s)− f (s)|p scp ds
s


1/p

< ε.

As g is a continuous function, for |ln t| < δ, we can take

|g (ts)− g (s)| < ε

(2 (A+ δ))
1/p

e(A+δ)c
.
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Hence, we have

sup
|ln t|<δ

 eδ+A∫
e−δ−A

|f (ts)− f (s)|p scp ds
s


1/p

≤ 3ε

and this theorem proves.
A similar result is obtained when c < 0. Thus, the desired result emerges again

in a similar way. □

Theorem 3. If f ∈ Xp
c and n ∈ N, then we get

ωXp
c
(f ;nδ) ≤ nωXp

c
(f ; δ) .

Proof. With the aid of the definition of ωXp
c
, we obtain

ωXp
c
(f ;nδ) = sup

|ln t|<nδ

∥f (t·)− f (·)∥Xp
c

= sup
|ln t|<δ

{∫ ∞

0

|f (tns)− f (s)|p scp ds
s

}1/p

= sup
|ln t|<δ

{∫ ∞

0

∣∣∣∣ n∑
k=1

f
(
tks

)
− f

(
tk−1s

)∣∣∣∣p scp dss
}1/p

≤
n∑

k=1

sup
|ln t|<δ

{∫ ∞

0

∣∣f (
tks

)
− f

(
tk−1s

)∣∣p scp ds
s

}1/p

= nωXp
c
(f ; δ) .

□

Corollary 1. If f ∈ Xp
c and λ ∈ R, then we get

ωXp
c
(f ;λδ) ≤ (1 + λ)ωXp

c
(f ; δ) .

Now, we give the following:

Definition 2. We will call that a point s ∈ R+ is a Lebesgue point of a function
f ∈ Xp

c (c ̸= 0) if

lim
z→1

∣∣∣∣ 1

log z

∫ z

1

|f (su)− f (s)|p ucp du

u

∣∣∣∣1/p = 0.

This is equivalent to

limz→1−

(
1

− log z

∫ 1

z
|f (su)− f (u)|p ucp du

u

)1/p

+ limz→1+

(
1

log z

∫ z

1
|f (su)− f (u)|p ucp du

u

)1/p

= 0.

You can refer to [9] for the situation in X1
0 space.

The main conclusion of this part is on pointwise convergence as following:
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Theorem 4. If f ∈ Xp
c , then we get

lim
w→∞

(Twf) (s) = f (s)

for any Lebesgue point s ∈ R+.

Proof. Using the property (1), we can obtain that

|(Twf) (s)− f (s)| ≤ w√
4π

∫ ∞

0

e−(
w
2 log t)

2

|f (st)− f (s)| dt
t
.

Using Hölder’s inequality, we attain

|(Twf) (s)− f (s)|p ≤
(∫ ∞

0

w√
4π

e−(
w
2 log t)

2

|f (st)− f (s)|p tcp dt
t

)
×

(∫ ∞

0

w√
4π

e−(
w
2 log t)

2

t−cq dt

t

) p
q

,

where 1
p + 1

q = 1. Consider the integral∫ ∞

0

w√
4π

e−(
w
2 log t)

2

|f (st)− f (s)|p tcp dt
t
.

Let δ > 1 be fixed and let us consider Hδ =
(
δ−1, δ

)
. Then

w√
4π

∫ ∞

0

e−(
w
2 log t)

2

|f (st)− f (s)|p tcp dt
t

=
w√
4π

∫ δ

1/δ

e−(
w
2 log t)

2

|f (st)− f (s)|p tcp dt
t

+
w√
4π

∫
R+\Hδ

e−(
w
2 log t)

2

|f (st)− f (s)|p tcp dt
t

= I1 + I2.

Firtsly, we take into account I1.

I1 =
w√
4π

∫ 1

1/δ

e−(
w
2 log t)

2

|f (st)− f (s)|p tcp dt
t

+
w√
4π

∫ δ

1

e−(
w
2 log t)

2

|f (st)− f (s)|p tcp dt
t

= I11 + I21 .

Let us define

F− (z) :=

∫ 1

z

|f (su)− f (u)|p ucp du

u

for every z ∈
(
δ−1, 1

)
. Let ε > 0 be fixed. Since s ∈ R+ is a Lebesgue point of f,

we can choose δ > 1 such that

F− (z) ≤ −ε log z.
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Then, we have

I11 =
w√
4π

∫ 1

1/δ

e−(
w
2 log t)

2

|f (st)− f (s)|p tcp dt
t

= − w√
4π

∫ 1

1/δ

e−(
w
2 log z)

2

dF− (z)

=
w√
4π

e−(
w
2 log 1/δ)

2

F− (1/δ) +

∫ 1

1/δ

F− (z) d

(
w√
4π

e−(
w
2 log z)

2
)

≤ ε
w√
4π

e−(
w
2 log 1/δ)

2

log δ − ε

∫ 1

1/δ

log zd

(
w√
4π

e−(
w
2 log z)

2
)

≤ ε
w√
4π

e−(
w
2 log 1/δ)

2

log δ − ε

[
log δ

w√
4π

e−(
w
2 log 1/δ)

2

− w√
4π

∫ 1

1/δ

e−(
w
2 log z)

2 dz

z

]
≤ ε.

Next for I21 , utilizing the similar ways and paying attention to the function

F+ (z) :=

∫ z

1

|f (su)− f (u)|p ucp du

u
,

we obtain analogous estimate. Thus, we achieve I1 → 0 for ω → ∞.
Now, we handle

I2 =
w√
4π

∫
R+\Hδ

e−(
w
2 log t)

2

|f (st)− f (s)|p tcp dt
t

≤ 2p
w√
4π

∫ 1/δ

0

e−(
w
2 log t)

2

|f (st)|p tcp dt
t
+ 2p |f (s)|p w√

4π

∫ 1/δ

0

e−(
w
2 log t)

2

tcp
dt

t

+2p
w√
4π

∫ ∞

δ

e−(
w
2 log t)

2

|f (st)|p tcp dt
t
+ 2p |f (s)|p w√

4π

∫ ∞

δ

e−(
w
2 log t)

2

tcp
dt

t
.

As w√
4π

e−(
w
2 log t)

2

is increasing in (0, 1), we can write

w√
4π

∫ 1/δ

0

e−(
w
2 log t)

2

|f (st)|p tcp dt
t

≤ w√
4π

e−(
w
2 log 1/δ)

2

s−cp ∥f∥Xp
c
.

Similarly,

w√
4π

∫ 1/δ

0

e−(
w
2 log t)

2

tcp
dt

t

tends to zero for w → ∞. On the other hand, we obtain

w√
4π

∫ ∞

δ

e−(
w
2 log t)

2

tcp
dt

t
=

1√
4π

∫ ∞

δw
e−(

1
2 log t)

2

t
cp
w
dt

t
,

which tends to zero for w → ∞. The last term can be estimated similarly. □
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Corollary 2. If f ∈ Xp
c , then we get

lim
w→∞

(Twf) (s) = f (s)

almost everywhere in R+.

Theorem 5. If f ∈ Xp
c , then we get

∥Twf − f∥Xp
c
≤

(
1 +

2√
π

)
ωXp

c

(
f ;w−1

)
.

Proof. Since the property (1), we have

(Twf) (s)− f (s) =
w√
4π

∫ ∞

0

e−(
w
2 log t)

2

(f (ts))− f (s))
dt

t
.

Then, we deduce

∥Twf − f∥Xp
c

=
w√
4π

{∫ ∞

0

∣∣∣∣∫ ∞

0

e−(
w
2 log t)

2

(f (ts))− f (s))
dt

t

∣∣∣∣p scp dss
}1/p

≤ w√
4π

∫ ∞

0

{∫ ∞

0

|(f (ts))− f (s))|p scp ds
s

}1/p

e−(
w
2 log t)

2 dt

t

≤ w√
4π

∫ ∞

0

ωXp
c
(f ; |ln t|) e−(

w
2 log t)

2 dt

t

≤ w√
4π

ωXp
c
(f ; δ)

∫ ∞

0

(
1 +

1

δ
|ln t|

)
e−(

w
2 log t)

2 dt

t

= ωXp
c
(f ; δ)

(
1 +

1

δ

2

w
√
π

)
.

Choosing δ = w−1, we obtain desired result. □
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