
Received: 19 March 2024 | Revised: 07 May 2024 | Accepted: 16 May 2024
DOI: 10.53508/ijiam.1455321

International Journal of Informatics and Applied Mathematics
e-ISSN:2667-6990 Vol. 7, No. 1, 57-72

Nonlinear Reduced Order Modelling for
Korteweg-de Vries Equation
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Abstract. Efficient computational techniques that maintain the accu-
racy and invariant preservation property of the Korteweg-de Vries (KdV)
equations have been studied by a wide range of researchers. In this paper,
we introduce a reduced order model technique utilizing kernel principle
component analysis (KPCA), a nonlinear version of the classical princi-
ple component analysis, in a non-intrusive way. The KPCA is applied to
the data matrix, which is formed by the discrete solution vectors of KdV
equation. In order to obtain the discrete solutions, the finite differences
are used for spatial discretization, and linearly implicit Kahan’s method
for the temporal one. The back-mapping from the reduced dimensional
space, is handled by a non-iterative formula based on the idea of multidi-
mensional scaling (MDS) method. Through KPCA, we illustrate that the
reduced order approximations conserve the invariants, i.e., Hamiltonian,
momentum and mass structure of the KdV equation. The accuracy of
reduced solutions, conservation of invariants, and computational speed
enhancements facilitated by classical (linear) PCA and KPCA are exem-
plified through one-dimensional KdV equation.

Keywords: Kernel Principle Component Analysis · Multi Dimensional
Scaling · Energy Preservation.
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1 Introduction

Most of the physical phenomena of real life problems in several sciences are
mathematically modeled by differential equations, especially by partial differen-
tial equations (PDEs). Among them, the Korteweg-de Vries (KdV) equation is
a nonlinear partial differential equation that describes the propagation of waves
in certain physical systems. It was first derived by physicists Diederik Korteweg
and Gustav de Vries in 1895 to model shallow water waves in a canal. The KdV
equation is widely studied in the field of nonlinear dynamics and has applica-
tions in various branches of physics, including fluid dynamics, plasma physics,
and nonlinear optics. On a one dimensional spatial interval, the KdV equation
is given by

∂y

∂t
= −αy

∂y

∂x
− µ

∂3y

∂x3
, x ∈ (a, b), t ∈ (0, T ],

y(x, 0) = u0(x), x ∈ [a, b],

(1)

with real parameters α and µ, and for a positive terminal time T > 0. The
function u0(x) is a prescribed initial wave and, in general case, periodic boundary
conditions are to be satisfied. The KdV equation is an integrable Hamiltonian
PDE with a constant Poisson structure

∂y

∂t
= S δH

δy
, (2)

where δ denotes the variational derivative, S is the constant Poisson tensor, and
H is the Hamiltonian (energy) functional, given by

S =
∂

∂x
, H(y) =

∫ b

a

(
−α

6
y3 +

µ

2

(
∂y

∂x

)2
)
dx.

The cubic Hamiltonian functional H is the major conserved quantity of the
KdV equation. On the other hand, the KdV equation (1) is completely integrable,
meaning that it has infinitely many invariants to be preserved. Here, we consider
the most frequently used invariants: the quadratic momentum and the linear
mass, given respectively by

I1(y) =
∫ b

a

y2dx, I2(y) =
∫ b

a

ydx.

Numerical solutions for large-scale dynamic systems are demanding in terms
of computational time and often necessitate extensive computer memory, partic-
ularly for real-time applications. Hamiltonian systems, like the KdV equation,
belong to a category that conserves the system’s energy when solved accurately
to machine precision. However, solving Hamiltonian PDEs can be exceedingly
time-consuming, especially in spatial dimensions of two and three. Consequently,
reduced order modeling (ROM) has gained significant importance as they allow
for the resolution of such challenges with reduced computational data. There are
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not many documents addressing the ROM of the KdV equation. ROMs are for-
mulated using Lax pairs in [1], and a greedy proper orthogonal decomposition
(POD) algorithm is devised in [2], incorporating the discrete empirical inter-
polation method (DEIM) rooted in the Poisson structure. To maintain the first
integrals of the KdV equation, structure-preserving POD and DEIM methods are
established in [3], and in [4] it is extended to one-dimensional conservative PDEs
in Wasserstein space to construct ROMs that encompass the KdV equation. In
[5], structure-preserving POD is used for the Hamiltonian PDEs in a tensorial
framework, where the authors take into account the linear-quadratic structure
of the arising dynamical system. All the aforementioned works use the ROM
techniques in an intrusive way, i.e., a projection-based reduced dimensional sys-
tem of equations has to be solved. In contrast, in this paper, utilizing mainly the
principle component analysis (PCA), we consider a non-intrusive (data-driven)
version of ROM, which only encounters a data set and do not need to solve a
reduced system of equations.

The PCA is a powerful statistical technique used for dimensionality reduc-
tion and data visualization in various fields such as image processing, genetics,
finance, and social sciences to simplify complex data sets, identify patterns, and
facilitate interpretation [6,7]. It works by transforming the original variables into
a new set of uncorrelated variables, called principal components, which capture
the maximum variance in the data. PCA aims to find a lower-dimensional rep-
resentation of the data while preserving as much of the original variability as
possible. Besides, in the PCA, data belonging to different targets must be dis-
tributed with a very large variance, and when the distribution has very small
variance, the performance of PCA decreases. In such a case, PCA cannot per-
form subspace decomposition with a linear transition. Recently, as an extension
of PCA, kernel principal component analysis (KPCA) has become a favorable
technique in place of classical PCA for dimensionality reduction. The KPCA
allows for nonlinear dimensionality reduction and feature extraction in high-
dimensional data spaces. Unlike the PCA, the KPCA employs a kernel function
to implicitly map the input data into a higher-dimensional feature space where
nonlinear relationships can be better captured. However, KPCA has a drawback
when finding the pre-image of the projection in the feature space. A variety of
approaches exist in the literature, among them, the multidimensional scaling
(MDS) is a favorable method [8,9,10]. By MDS, one can iteratively compute
the pre-image utilizing some distance metrics of the data vectors. In this paper,
following the idea in [9], we apply a non-iterative version of the MDS in order
to find the pre-image vectors in the feature space. The KPCA is particularly
useful when the underlying structure of the data is nonlinear or when linear
methods fail to adequately represent the data distribution. Thus, KPCA serves
as a powerful tool for exploratory data analysis, pattern recognition, and mani-
fold learning in various domains, including computer vision, bio-informatics, and
signal processing [11,12,9,13,14,15].

The main focus of this paper is the application of the KPCA to the data set
obtained by discrete solution vectors of the KdV equation (1). To the best of our
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knowledge, the utilization of KPCA in ROM has not been previously employed
for the KdV equation, maintaining both solution accuracy and the preservation
of the invariant conservation structure. The paper is organized as follows: in
the next Section, we introduce shortly the mathematical formulation of full dis-
crete system of the KdV equation (1), i.e., spatial and temporal discretization
methods. In Section 3, the process of KPCA applied to the data set obtained
by the discrete solution vectors of the KdV equation, is explained. The accu-
racy of reduced solutions, conservation of invariants, and computational speed
enhancements are demonstrated through the one-dimensional KdV equation in
Section 4. The paper ends with some conclusion.

2 Discrete data set of KdV equation

In this section, we give the full discrete formulation of the KdV equation over
its Hamiltonian form (2), whose solution vectors are used for formation of the
data set to be considered in the sequel. We begin by the spatial discretization of
the KdV equation. To this end, we partition the interval [a, b] into m equidistant
sub-intervals of length ∆x = (b − a)/m, forming the discrete grid nodes xi =
a + (i − 1)∆x, i = 1, . . . ,m + 1. On this mesh, we define time-dependent semi-
discrete solution vectors y(t) : [0, T ] 7→ Rm as

y(t) = (y1(t), . . . , ym(t))T ,

where yi(t) = y(xi, t), and we omit the solution at the right boundary node
xm+1 because of the periodic boundary condition y(x1, t) = y(xm+1, t). For the
first and second order derivative terms, we use the centered finite difference ap-
proximations, which yields the m-dimensional semi-discrete (dynamical) system

ẏ = D1∇H(y),

or, inserting the discrete gradient∇H(y) = −µD2y−(α/2)y2, we get the explicit
form

ẏ = −µD3y − α

2
D1y

2, (3)

where D3 = D1D2, with D1 ∈ Rm×m and D2 ∈ Rm×m denoting the matrices
of first order and second order finite difference operators, respectively, under
periodic boundary

D1 :=
1

2∆x


0 1 −1
−1 0 1

. . .
. . .

. . .

−1 0 1
1 −1 0

 , D2 :=
1

∆x2


−2 1 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 1 −2

 .
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We note that the square operation in (3) hold component-wise, i.e., y2 ∈ Rm

and (y2)i = y2i , i = 1, . . . ,m.

The full discrete system of the KdV equation is obtained by application of a
temporal integration method to the semi-discrete system (3). Here, we apply Ka-
han’s method [16,17] which is a second order, time-reversal, and linearly implicit
method for ODEs with quadratic vector fields [18], like the semi-discrete KdV
equation (3). Divide the temporal interval [0, T ] into n−1 equidistant steps with
the time step-size ∆t = T/(n− 1) to form the discrete time instances tj = j∆t,
j = 0, . . . , n− 1. We denote by yj = y(tj) ∈ Rm the solution vector at time tj .
Then, application of the Kahan’s method results in the full discrete problem:
given y0 ∈ Rm with (y0)i = u0(xi), find yj ∈ Rm from the system

yj+1 − yj

∆t
= −µ

2
D3(y

j + yj+1)− α

2
D1y

jyj+1, j = 0, . . . , n− 1. (4)

Under the given discretization setting, the discrete Hamiltonian H(tj), the dis-
crete momentum I1(tj), and the discrete mass I2(tj) at time tj are defined by

H(tj) = ∆x

m∑
i=1

(
−α

6
y3i (tj) +

µ

2

(
yi+1(tj)− yi(tj)

∆x

)2
)
,

I1(tj) = ∆x

m∑
i=1

y2i (tj) , I2(tj) = ∆x

m∑
i=1

yi(tj).

3 Reduced order Model

In this section, we discuss on the linear/nonlinear ROM formulation for the
KdV equation. Firstly, we give shortly the traditional PCA approach, then we
explain the KPCA which is the nonlinear version of PCA. In either case, the
procedure is two folds: beginning with the vectors from the column space of the
data matrix, referred to as the input space, transitioning to the reduced space
through projection, and then reversing the mapping from the reduced space
back to the input space to obtain the reduced approximation. Since the ROM
technique we consider is data-driven, we consider in the upcoming sections the
data matrix

Y = [y1y2 · · ·yn] ∈ Rm×n, (5)

where the columns of the data matrix are the solution vectors of the KdV equa-
tion obtained by the full discrete system (4). We note that, for easy notation,
we start the starting superscript of the snapshot vectors in (5) from 1 in place
of 0, i.e., the column vector yi ∈ Rm in (5) is the solution vector yi−1 ∈ Rm of
the KdV equation obtained by the system (4), i = 1, . . . , n.
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3.1 Linear dimension reduction (PCA)

For a data matrix Y = [y1y2 · · ·yn] ∈ Rm×n, like the matrix (5) of the solu-
tion vectors for KdV equation, PCA seeks to identify a linear model of some
dimension k ≪ m that effectively captures the variability present in the vectors
yi. Assume that the matrix Y has zero column sum, otherwise it can be done
by subtracting the mean ȳ = (1/n)

∑
yi of the columns from each column. The

covariance matrix of Y is defined by

C =

n∑
i=1

yi(yi)T = Y Y T ∈ Rm×m.

The diagonalization of the covariance matrix reads as

C = UΛUT ,

where the column vectors of the orthogonal matrix U = [u1u2 · · ·um] ∈ Rm×m

are the eigenvectors corresponding to the eigenvalues λ1 > . . . > λm located at
the diagonal entries of the diagonal matrix Λ ∈ Rm×m. Then, in its simplest
way, the basis of the k-dimensional linear subspace is taken as the eigenvectors
{u1, . . . ,uk} ⊂ Rm of the covariance matrix C corresponding to the k largest
eigenvalues λ1 > . . . > λk [6,7,15]. Finally, any arbitrary vector y∗ ∈ Rm from
the input space can be approximately represented by the pre-image ŷ∗ ∈ Rm as
the linear combination of the eigenvectors

y∗ ≈ ŷ∗ =

k∑
i=1

z∗i ui = Ukz
∗, (6)

where the matrix Uk = [u1u2 · · ·uk] ∈ Rm×k consists of the first k columns
of the orthogonal matrix U . The coefficients z∗i = (y∗)Tui are the entries of
the projection vector z∗ = [z∗1 , z

∗
2 , . . . z

∗
k]

T ∈ Rk of y∗ onto the reduced linear
subspace, in other words, the k ≪ m dimensional vector z∗ = UT

k y∗ lies in the
reduced space, which is the projection of the m dimensional vector y∗ from the
input space.

3.2 Nonlinear dimension reduction (KPCA)

The PCA is limited to linear dimensionality reduction. Yet, when dealing with
data characterized by complex structures that cannot be effectively captured
within a linear subspace, standard PCA may be ineffective. However, KPCA
offers a solution by enabling us to extend the linear PCA to nonlinear dimen-
sionality reduction [11,12,9,14,15].

Forward map By KPCA, the vectors from the m dimensional input space
are first transformed into a M ≫ m dimensional (possibly infinite dimensional)
space, named feature space, through an arbitrary nonlinear map Φ(·) : Rm 7→
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RM , and then traditional PCA is applied to the vectors in this feature space. To
this end, let us denote by Ỹ the transformed data matrix defined by

Ỹ = [Φ(y1)Φ(y2) · · ·Φ(yn)] ∈ RM×n,

where the columns are the transformed vectors Φ(yl) ∈ RM related to the input

space vectors yl. For the arbitrary map Φ(·), the matrix Ỹ , usually, does not
have zero column sum which is a necessity for the PCA process. We may obtain
a data matrix with zero column sum by simply subtracting the mean Φ̄(y) =
(1/n)

∑
Φ(yi) of the columns from each column, yielding the following data

matrix with zero column sum

˜̄Y = [Φ̃(y1)Φ̃(y2) · · · Φ̃(yn)] = Ỹ H ∈ RM×n,

where the columns are given by Φ̃(yl) = Φ(yl) − Φ̄(y), and H is called the
centering matrix given by

H = I − 1

n
11T ∈ Rn×n, (7)

with I is the n-dimensional identity matrix and 1 = (1, . . . , 1)T ∈ Rn is the
vector of ones. Then, it follows the traditional PCA procedure explained in the

previous section for the data matrix ˜̄Y whose columns span the feature space,
i.e., we need to find the eigenvectors of the covariance matrix

C̃ =

n∑
l=1

Φ̃(yl)Φ̃(yl)T = ˜̄Y ˜̄Y T
∈ RM×M . (8)

At this point, the KPCA has two serious drawbacks. Firstly, the dimension
M may be a very large number that makes almost impossible to compute the
eigenvectors of the M -dimensional covariance matrix C̃. Second, the nonlinear
map Φ(·) is arbitrary and that most of the time it is not available. To overcome
all these issues, a kernel trick is applied [14,15]. In order to understand this trick,
let consider the eigenvalue problem

C̃vi = λ̃iv
i, i = 1, . . . ,M, (9)

where {λ̃i,v
i} are the eigen-pair of the covariance matrix C̃. Note that by defini-

tion the eigenvectors span the feature space, i.e., the column space of the trans-

formed data matrix ˜̄Y = [Φ̃(y1)Φ̃(y2) · · · Φ̃(yn)]. As a result, for each eigenvector
vi, there exist some coefficients aij satisfying the linear combination

vi =

n∑
j=1

aijΦ̃(y
j), i = 1, . . . ,M. (10)
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Now, substituting the relation (10) together with the identity (8) into the equa-
tion (9), we obtain that

n∑
l=1

Φ̃(yl)

n∑
j=1

aijΦ̃(y
l)T Φ̃(yj) = λ̃i

n∑
j=1

aijΦ̃(y
j),

or, since all the eigenvectors lie in the span of the transformed vectors {Φ̃(ys)}ns=1,
we can consider for s = 1, . . . , n the equivalent equations after projection onto
the vectors Φ̃(ys), yielding

n∑
l=1

Φ̃(ys)T Φ̃(yl)

n∑
j=1

aijΦ̃(y
l)T Φ̃(yj) = λ̃i

n∑
j=1

aijΦ̃(y
s)T Φ̃(yj). (11)

At this point, a kernel function κ(·, ·) : Rm × Rm 7→ R which aims to represent
the Euclidean inner products Φ(·)TΦ(·) of non-centered transformed vectors in
the feature space in terms of the input space vectors, is defined as follows

κ(ys,yl) = Φ(ys)TΦ(yl), s, l = 1, . . . , n.

In order to represent the Euclidean inner products Φ̃(·)T Φ̃(·) of centered trans-
formed vectors in the feature space, we use the setting [9]

κ̃(ys,yl) = κ(ys,yl)− 1

n
1Tkys − 1

n
1Tkyl +

1

n2
1TK1,

where the kernel matrix K ∈ Rn×n and the vector ky ∈ Rn are defined respec-
tively by

Kij = κ(yi,yj), ky = (κ(y,y1), . . . , κ(y,yn))T .

We note that the vectors kyi need not be calculated, as they are nothing but
the ith columns of the symmetric kernel matrix K. Then, we get an equivalent
equation to (11) as

n∑
l=1

κ̃(ys,yl)

n∑
j=1

aij κ̃(y
l,yj) = λ̃i

n∑
j=1

aij κ̃(y
s,yj). (12)

There are a variety of kernel functions used in the literature, such as linear,
polynomial and Gaussian kernels [13,14]. Here, we use the Gaussian kernel given
by

κ(x,y) = exp

(
−∥x− y∥2

2σ2

)
,

where ∥ · ∥ denotes the standard Euclidean norm, and σ is a parameter. For the
coefficient vector ai = (ai1, . . . , ain)

T ∈ Rn, the equation (12) can be written in
the following matrix-vector form
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K̃2ai = λ̃iK̃ai or K̃ai = λ̃ia
i, i = 1, . . . ,M, (13)

where K̃ = HKH, with the centering matrix H in (7). Finally, for an arbitrary
vector y∗ ∈ Rm from the input space, with its centered nonlinear transformed
vector Φ̃(y∗) ∈ RM in the feature space, let z∗ = [z∗1 , z

∗
2 , . . . z

∗
k]

T ∈ Rk denotes

the projection vector of Φ̃(y∗) ∈ RM onto the k dimensional (k ≪ m ≪ M)
reduced space spanned by the eigenvectors {v1, . . . ,vk} corresponding to the

first k largest eigenvalues λ̃i, i = 1, . . . , k. Once the coefficients ai are computed
from the eigenvalue problem (13), using the identity (10) of the eigenvectors vi,
the entries z∗i of the projection vectors (principle components) can be found in
terms of the kernel function as follows

z∗i = Φ̃(y∗)Tvi =

n∑
j=1

aijΦ̃(y
∗)T Φ̃(yj)

=

n∑
j=1

aij κ̃(y
∗,yj), i = 1, . . . , k.

Reconstruction of pre-image For any arbitrary vector y∗ ∈ Rm from the
input space, its pre-image ŷ∗ ∈ Rm can simply be approximated as in (6) by
the standard PCA. However, this is not the case for KPCA. Let us denote by
PkΦ(y

∗) ∈ Rk the projection of the feature space vector Φ(y∗) onto the reduced
space spanned by the eigenvectors {v1, . . . ,vk}, i.e., we have that

PkΦ(y
∗) =

k∑
i=1

z∗i v
i + Φ̄(y).

Then, an approximate pre-image ŷ∗ can be obtained so that the transformed
vector Φ(ŷ∗) is the closest vector to the projection vector PkΦ(y

∗). This requires
finding, in least-squares sense, the minimum of the objective functional

ρ(ŷ∗) = ∥Φ(ŷ∗)− PkΦ(y
∗)∥.

Setting ∇ŷ∗ρ = 0 gives the solution equation

ŷ∗ =

∑k
i=1 γ̃iexp(−∥ŷ∗ − yi∥2/2σ2)yi∑k
i=1 γ̃iexp(−∥ŷ∗ − yi∥2/2σ2)

, (14)

where

γ̃i = γi +
1

n

1−
n∑

j=1

γj

 , γi =

k∑
l=1

z∗l ali.
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The equation (14) can be solved by fixed point iteration. On the other hand, the
iteration method is numerically unstable and relies on the initial guess [12]. In
KPCA proposed here, we find the pre-image through a non-iterative scheme [9],
which is based on the relationship between the distance of vectors in input space
and the distance of transformed vectors in feature space, utilizing the Gaussian
kernel function which can be considered as a function of distance metric ∥ · ∥.
Using the idea of MDS [8,9], we can approximately find a pre-image ŷ∗ for which
dissimilarities between the distance of y∗ to each input space vector yi and the
distance of projected vector PkΦ(y

∗) to each transformed feature space vectors
Φ(yi) are preserved, see Fig. 1. To this end, let

d2(yi,yj) = d2ij = ∥yi−yj∥2 and d̃2(Φ(yi), Φ(yj)) = d̃2ij = ∥Φ(yi)−Φ(yj)∥2,

denote the (Euclidean) distance metrics of input space vectors and their trans-
formed feature space vectors, respectively. Since the Gaussian kernel function
can be taken as a function of distance metric with f(d2ij) = exp(−d2ij/2σ

2), we
can get after some manipulations the following relation between the input space
distance and feature space distance [9]

f(d2ij) =
1

2
(Kii +Kjj − d̃2ij),

and, for the Gaussian kernel, the inverse map yields

d2ij = −2σ2 ln
((
Kii +Kjj − ∥Φ(yi)− Φ(yj)∥2

)
/2
)
. (15)

Fig. 1: Reconstruction with KPCA.

Moreover, the feature space distance between the projected vector PkΦ(y
∗)

and some transformed vector Φ(yi) can be shown, in terms of the kernel matrix,
to be [9]
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d̃2(Φ(yi), PkΦ(y
∗)) = ∥Φ(yi)∥2 + ∥PkΦ(y

∗)∥2 − 2PkΦ(y
∗)TΦ(yi)

=

(
ky∗ +

1

n
K1− 2kyi

)T

HTCaH

(
ky∗ − 1

n
K1

)
+

1

n2
1TK1+Kii −

2

n
1Tky∗ ,

(16)

for the matrix Ca =
∑k

j=1(1/λ̃j)a
j(aj)T .

Finally, using the natural assumption PkΦ(y
∗) ≈ Φ(ŷ∗) and that the metric

relation (15) inside the equation (14), we reach the non-iterative solution formula
[9]

ŷ∗ =

∑k
i=1 γi

(
(2− ∥PkΦ(y

∗)− Φ(yi)∥2)/2
)
yi∑k

i=1 γi ((2− ∥PkΦ(y∗)− Φ(yi)∥2)/2)
, (17)

where the distances ∥PkΦ(y
∗)−Φ(yi)∥2 inside the formula can be calculated by

the relation (16). Additionally, the k vectors yi referenced within the equation
(17) are selected from among the n input space vectors that is closest to y∗. The
overall KPCA algorithm is summarized in Algorithm 1.

Algorithm 1 KPCA Algorithm

Input: Vector y∗ ∈ Rm, matrix Y = [y1y2 · · ·yn] ∈ Rm×n , reduced dimension k.
Output: Pre-image vector ŷ∗ ∈ Rm.

1: Compute kernel matrix K ∈ Rn×n and vector ky∗ ∈ Rn.

2: Compute eigenvalues λ̃i and eigenvectors ai ∈ Rn from (13), i = 1, . . . , k.
3: Find k closest yi by looking at ∥y∗ − yi∥, i = 1, . . . , k.

4: Calculate distances d̃2(Φ(yi), PkΦ(y
∗)) from (16), i = 1, . . . , k.

5: Calculate pre-image vector ŷ∗ by (17).

4 Numerical tests

In this section, we investigate the performance of the proposed non-intrusive
nonlinear dimensionality reduction technique over the KdV equation. Firstly,
we construct the data matrix Y to which we apply dimensionality reduction. We
consider the KdV equation (1) on the spatio-temporal domain (x, t) ∈ [−10, 10]×
[0, 8] with the initial wave

u0(x) =
β

2

2

sech

(√
β

2
x0

)
.

The problem data and mesh sizes are set as [5]: α = 6, µ = 1, β = 1.5, ∆x = 0.04
and ∆t = 0.02. The full order solution vectors are obtained from the full discrete
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system (4). By the given setting, the discrete solution vectors form the matrix Y
of dimension 500× 400, i.e., m = 500 and n = 400. The solution waves at some
time instances are given in Fig. 2, where the initial wave moves to the right as
the time progresses with the same amplitude which is expected from a numerical
scheme for reliable approximations.

Fig. 2: Full order solution profiles at different time instances.

Preserving the numerical integrity of an invariant entails gauging the variance
between the measure of the invariant at various times and its initial measure.
Therefore, we expect oscillations within a narrow range, in order to indicate the
preservation of an invariant. In Fig. 3, we illustrate the variance of the discrete
momentum I1, discrete mass I2 and discrete Hamiltonian H at time instances
from their initial values, obtained by full order solutions. The oscillations ob-
served suggest a well-preservation for either invariants, with the discrete mass
maintaining precision comparable to machine accuracy.

Next, we compare the traditional PCA and the KPCA in the sense of solution
accuracy and computational efficiency. For this simulation, we fix the input space
solution vector y∗ = y100 which corresponds to the wave at time t = 2. In
terms of accuracy, we present the results in Table 1 for the reduced dimensions
k = 1, . . . , 6, where we compute the relative absolute error

∥y∗ − ŷ∗∥R =
|y∗ − ŷ∗|

|y∗|
,

between the full order solution y∗ and the reduced order approximation ŷ∗. We
see that for the same reduced dimension k, the pre-images obtained by KPCA
lead to more accurate approximations compared to the PCA. The results also
suggest that with k = 2, the approximations by KPCA are satisfactory, while it
needs reduced dimension greater than k = 6 for the PCA in order to be able to
obtain the same accuracy.
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Fig. 3: Preservation of conserved quantities by full order solutions

Table 1: Relative absolute errors ∥y∗ − ŷ∗∥R for different values of k
k 1 2 3 4 5 6

PCA 7.31e-01 3.84e-01 3.44e-01 2.87e-01 1.35e-01 7.78e-02
KPCA 1.41e-02 6.79e-03 1.34e-02 1.16e-02 9.87e-03 2.05e-03

In terms of computational efficiency, on the other hand, we give the CPU
times needed by the KPCA scheme using the formula (14) which is solved by
fixed point iteration, and by the one using the formula (17) which is an algebraic
equation. Table 2 shows the results, where the first two columns are for the errors
between the full and reduced order solutions with either formula, and the last two
are cpu times needed to construct the pre-images. It can be seen that the errors
through the nonlinear equation (14) solved with iteration and the errors through
the algebraic equation (17) solved without iteration are almost the same, which
claims that the solutions obtained without iteration are agreeable in the sense of
accuracy. The main contribution of the KPCA method proposed in this paper
is seen in the last two columns, where the CPU times needed by the scheme
without iteration, are much less than the one with iteration, that is our scheme
is highly fast.

As the final simulation, we test both the accuracy/reliability of the reduced
order solutions and the preservation of the discrete conserved invariants of the
KdV equation by the proposed KPCA algorithm. We fix the reduced dimension
k = 2 suggested by the errors in Table 1. In order to compute the invariants
by reduced order approximations, we apply the KPCA algorithm to the whole
trajectory, that is, we find the pre-images y∗ = yi for i = 1, . . . , n.

Fig. 4 shows the full order solutions together with the reduced order approx-
imations at times t = 0.5 and t = 3.82. We see even for the reduced dimension
k = 2 that at either time instance, the full and reduced order waves coincide to
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Table 2: Relative absolute errors and CPU times for different values of k
∥y∗ − ŷ∗∥R CPU Time (Sec.)

k With Iteration Without Iteration With Iteration Without Iteration

1 1.41e-02 1.41e-02 1.9634 0.1026
2 6.79e-03 6.83e-03 1.9047 0.1630
3 1.34e-02 1.35e-02 2.1734 0.1660
4 1.16e-02 1.17e-02 1.8595 0.1932
5 9.87e-03 1.01e-02 2.2519 0.1721
6 2.05e-03 2.51e-03 2.3998 0.1872

Fig. 4: Full/reduced order solution profiles at t = 0.5, 3.82 for k = 2.

each other. This means that the reduced order solutions yield a reliable wave
propagation with the same wave length and wave amplitude as for the full order
one, which is crucial for a physically meaningful simulation.

On the other hand, the conserved invariants obtained by the pre-images are
illustrated in Fig. 5, where, similar to the full order invariants in Fig. 3, we plot
the difference between the measure of either invariant at discrete times and the
initial one. It is clear that the discrete mass is again conserved with machine
precision, while the errors in the invariants of discrete momentum and discrete
Hamiltonian are not as precise as the ones obtained by full ordered solutions. It’s
indeed expected within reduced order modelling methodology, particularly in the
context of conserved invariants. We can confidently affirm that these invariants
remain conserved over the specified time period, since their oscillations persist
within a small band without any drift.
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Fig. 5: Preservation of conserved quantities by reduced order approximations for
k = 2.

5 Conclusion

In this paper, we propose a nonlinear dimensionality reduction technique that
maintains the accuracy and preserves the conservation of the invariants of the
KdV equation. The approach for the dimensionality reduction is non-intrusive
and based on the KPCA. Within the KPCA, the idea of MDS method together
with the relationship between the input space and feature space distance met-
rics are used in order to obtain a non-iterative algorithm to reconstruct the
pre-images. The accuracy of solutions and preservation of discrete Hamiltonian,
mass and momentum are demonstrated through a numerical test example, and
comparison with traditional PCA and KPCA, as well as iterative scheme with
non-iterative one are provided. As a future work, we plan to study on different
kinds of kernel functions that may work more efficient comparing to the Gaussian
kernel.
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