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Abstract 

 

Pf (parafree) Zinbiel (PfZin) algebras, a generalization of Leibniz algebras, share various traits with free 

Zinbiel algebras. This article delves into the intricacies of PfZin algebras, presenting their structure and 

exploring significant findings analogous to those in parafree Leibniz algebras. The focus extends to 

properties of subalgebras and quotient algebras within the realm of PfZin algebras. Additionally, the direct 

sum of these algebras is examined, demonstrating that the amalgamation of two PfZin algebras yields a 

Zinbiel algebra. A new connection between weak Hopf algebras and PfZin algeras constructed. Moreover, 

from the direct sum of PfZin algebras weak Hopf algebra is handled and construction of weak Hopf algebra 

usuing PfZin algebra is showed.  
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1. Introduction 

Zinbiel algebras, the Koszul dual of Leibniz algebras, 

were first presented by Loday in [13]. The term "Zinbiel" 

was coined by Lemaire [14], by reversing the word 

"Leibniz". In [15] Loday defined Leibniz algebras as a 

non-associative extensions of Lie algebras with the 

property that the right-multiplication operator is a 

derivation. Key results from Leibniz algebras also hold 

for Zinbiel algebras in [1,6,8,16,18,19].  Some papers 

[2,4,5,13] delve into the cohomological and structural 

aspects of Leibniz algebras. Ginzburg and Kapranov [12] 

introduced Koszul dual operads, and it was shown that 

the dual of the Leibniz algebra category is determined by 

the Zinbiel identity.  Our motivation in this article is to 

see how the parafree algebras considered in Lie algebras 

and Leibniz algebras work in Zinbiel algebras. In 

[3,9,10,17,20] parafree Lie and Leibniz algebras were 

discussed and the studies were expanded and advanced. 

In addition, it is discussed in the article [11] that this type 

of algebra is Hopfian. In this paper, in the light of the 

above mentioned studies we construct parafree Zinbiel 

algebras. Which we will briefly denote as PfZin (Parafree 

Zinbiel). We concentrate on PfZin algebras and review 

key findings in this field derived from prior studies. Next, 

we will focus on examining the subalgebra structure in 

PfZin algebras. Our objective is to explore intrinsic 

characteristics of subalgebras and division algebras in the 

context of PfZin algebras. Additionally, we demonstrate 

a key result that shows how combining two PfZin 

algebras creates a new Zinbiel algebra while preserving 

the Pf property. The connection between PfZin algebras 

and weak Hopf algebras is investigated.  The connection 

lies in their construction and properties, such as for a 

given PfZin algebra 𝑃, we can construct a weak Hopf 

algebra 𝐻(𝑃) using the direct sum of the algebra 

structures on 𝑃 and its dual 𝑃∗. The antipode on 𝐻(𝑃) is 

defined as the linear map that satisfies the required 

conditions. 

 

The construction of a weak Hopf algebra using a PfZin 

algebra demonstrates the connection between these two 

concepts. The weak Hopf algebra 𝐻(𝑃) inherits 

properties from the PfZin algebra 𝑃, such as the self-dual 

property. This relationship highlights the importance of 

considering weaker axioms in certain situations, as seen 

in the context of weak Hopf algebras in [7]. 

  

2. Notations and Definitions 

In this part, we review important founding crucial for 

ours objectives as mentioned in references  

[10,11,12,15], using standart inscription. During this 

discussion, 𝐹 demonstrates a characteristic zero field. A 

Zinbiel algebra 𝑍 is defined as an algebra that satisfies 

the identity: 
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              [[𝑥, 𝑦], 𝑧] = [𝑥, [𝑦, 𝑧]] + [𝑥, [𝑧, 𝑦]]              (2.1) 

for all 𝑥, 𝑦, 𝑧 ∈ 𝑍. We introduce a series of ideals 

𝑍1 ⊇  𝑍2  ⊇ . . . ⊇  𝑍𝑘  ⊇. ..   

where 𝑍1 =  𝑍, 𝑍2 = [𝑍, 𝑍], … , 𝑍𝑘+1  = [𝑍𝑘 , 𝑍] for 𝑘 ≥
1, termed the lower central series of 𝑍. 

A Zinbiel algebra 𝑍 is classified as nilpotent if there 

exists an integer 𝑘 ≥ 1 such that 𝑍𝑘 = {0}. If 𝑍1 𝑍1
𝑛⁄ ≅

𝑍2 𝑍2
𝑛⁄ . Then we propose that, 𝑍1 and 𝑍2 have an 

identical lower central series. Let 𝑋 be a set and 𝐴(𝑋) be 

the free non-associative algebra over 𝐹 generated by 𝑋. 

We define 𝐼 as the two-sided ideal in 𝐴(𝑋) generated by 

elements of the form 

           [[𝑥, 𝑦], 𝑧] − [𝑥, [𝑦, 𝑧]] − [𝑥, [𝑧, 𝑦]]                   (2.2)                    

for all 𝑥, 𝑦, 𝑧 ∈ 𝐴(𝑋). As a result, the algebra  

𝑍(𝑋) = 𝐴(𝑋) 𝐼⁄   is established as a free Zinbiel algebra. 

In addition, we provide definitions for Zinbiel algebras 

that resemble those commonly associated with Lie and 

Leibniz algebras. 

Definition 2.1.  A Zinbiel algebra is deemed "Hopfian" 

if it satisfies the following equivalent conditions: 

(i) It is isomorphic to any of its proper quotients. 

(ii) Each endomorphism that maps onto it is an 

automorphism. 

Definition 2.2. If 𝑍 is a Zinbiel algebra, it is considered 

residually nilpotent (has residual nilpotency) if the 

intersection of its ascending powers from n equals 1 to 

infinity, represented as ⋂ 𝑍𝑛∞
𝑛=1  is equal to {0}. 

Definition 2.3. The free Zinbiel algebra generated by 𝑋 is 

denoted as 𝑍(𝑋). A Zinbiel algebra 𝑃 is considered Pf 

over 𝑋 if it satisfies the following conditions:  

(𝑖) 𝑃 has a residual nilpotency, 

(𝑖𝑖)  𝑍(𝑋) 𝑍(𝑋)𝑛⁄ = 𝑃 𝑃𝑛⁄ , for all 𝑛 ≥ 1 indicating that 𝑃 

and 𝑋 have the same lower central series. 

The number of elements in 𝑋 is referred to as the rank of 

𝑃. 

Example 2.4. Now, let's construct a Zinbiel algebra 

example that satisfies the definitions. Consider the 

Zinbiel algebra  𝑍 = 〈𝑥, 𝑦〉  where 𝑥 and 𝑦 are generators, 

and the bilinear product is defined as: 

[𝑥, 𝑥] = 𝑥, [𝑥, 𝑦] = 𝑦, [𝑦, 𝑥] = 0, [𝑦, 𝑦] = 0 

This is a Zinbiel algebra satisfies the following 

properties: 

Hopfian: 

Proving the First Condition: 

To prove that 𝑍 is isomorphic to any of its proper 

quotients, we need to show that for any proper quotient 

𝑍/𝐼, there exists an isomorphism φ: 𝑍 →  𝑍/𝐼. 

Let 𝐼  be a proper ideal of 𝑍. Then, 𝐼 is a subspace of 𝑍 

that is closed under the bilinear product. Since 𝑍 is 

generated by 𝑥 and 𝑦, 𝐼 must be generated by some subset 

of {𝑥, 𝑦}. 

Case 1: 𝐼 =〈0⟩. In case 1, 𝑍 𝐼⁄ = 𝑍 and the identity 

map is an isomorphism. 

Case 2: 𝐼 =〈𝑥⟩.  In case 2, 𝑍/𝐼 = 〈𝑦〉,  and the map  

𝜑: 𝑍 →  𝑍/𝐼  defined by 𝜑(𝑥)  =  0 and 𝜑(𝑦)  =  𝑦 is an 

isomorphism. 

Case 3: 𝐼 =  〈𝑦〉. In case 3,  𝑍/𝐼 = 〈𝑥〉 and the map 

𝜑: 𝑍 →  𝑍/𝐼 defined by 𝜑(𝑥)  =  𝑥 and φ(𝑦) =  0 is an 

isomorphism. 

Case 4: 𝐼 =  〈𝑥, 𝑦〉.  In this case, 𝑍/𝐼 =  {0}, and the zero 

map is an isomorphism. 

In all cases, we have shown that 𝑍 is isomorphic to any 

of its proper quotients. 

Proving the Second Condition: 

To prove that each endomorphism that maps onto 𝑍 is an 

automorphism, we need to show that for any 

endomorphism 𝑓: 𝑍 →  𝑍,  if 𝑓 is surjective, then 𝑓 is 

injective. 

Let 𝑓: 𝑍 →  𝑍 be a surjective endomorphism. Then, 

𝑓(𝑥) and 𝑓(𝑦) generate 𝑍. Since 𝑍 is generated by 𝑥 and 

𝑦, we can write: 

                𝑓(𝑥)  =  𝑎𝑥 +  𝑏𝑦, 𝑓(𝑦)  =  𝑐𝑥 +  𝑑𝑦 

for some 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝐹, where 𝐹 is the underlying field 

of characteristic zero. Since 𝑓 is surjective, we know that 

𝑓(𝑥) and 𝑓(𝑦) are linearly independent. This implies that 

the matrix: 

                                    [
𝑎 𝑏
𝑐 𝑑

]  

Has non-zero determinant. Therefore, the matrix is 

invertible, and we can write: 

𝑥 =  𝑎′𝑓(𝑥)  +  𝑏′𝑓(𝑦) 𝑦 =  𝑐′𝑓(𝑥)  +  𝑑′𝑓(𝑦) 

for some  𝑎′, 𝑏′, 𝑐′, 𝑑′ ∈  𝐹.  

Now, define 𝑔: 𝑍 →  𝑍 by 𝑔(𝑓(𝑥))  =  𝑥 and 

𝑔(𝑓(𝑦))  =  𝑦:  

Then, 𝑔 is an endomorphism of 𝑍, and we have  

                           𝑔 ∘  𝑓 = 𝑖𝑑(𝑍).   

This implies that 𝑓 is injective, and therefore, 𝑓 is an 

automorphism. We have proven that our example 𝑍 =
〈𝑥, 𝑦〉 satisfies Hopfian conditions. Specifically, we have 

shown that 𝑍 is isomorphic to any of its proper quotients 

and that each endomorphism that maps onto 𝑍 is an 

automorphism. 

Residually Nilpotent: The ascending powers of 𝑍 are: 

𝑍1 = 〈𝑥, 𝑦〉,  𝑍2 = 〈𝑥〉, 𝑍3 = 〈0〉, … 
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The intersection of these ascending powers is ⋂ 𝑍𝑛∞
𝑛=1  is 

equal to {0}, making Z residually nilpotent.  

Free Zinbiel Algebra and Pf: Let 𝑋 =  {𝑥, 𝑦}  and 

consider the free Zinbiel algebra 𝑍(𝑋) generated by 𝑋. 

The Zinbiel algebra 𝑍(𝑋) is the vector space spanned by 

all possible words in 𝑋, with the bilinear bracket product. 

We can construct a Zinbiel algebra 𝑃 =  〈𝑥, 𝑦〉, which is 

Pf over 𝑋, it is freely generated by 𝑋  i.e., it has a residual 

nilpotency, meaning that the intersection of its ascending 

powers is {0} and it has a lower central series, which is a 

sequence of ideals that satisfy certain properties. 

Summary, we've successfully constructed a PfZin 

algebra example that satisfies the given definitions.  

 

3. Sub and Division algebras of PfZin Algebras 

 
The proofs of our key results on division algebras and 

subalgebras in the space of PfZin algebras are presented 

here. Contrary to the analogous case in parafree Lie 

algebras, as stated in [3], where a subalgebra remains 

parafree, this assertion doesn't hold for PfZin algebras. 

Notably, due to the non-freeness of every subalgebra of 

a free Zinbiel algebra, a subalgebra of a PfZin algebra 

may not retain the Pf property. However, our theorem 

demonstrates that any free subalgebra within a PfZin 

algebra indeed remains Pf. 

 

Theorem 3.1 A free subalgebra of PfZin algebra is Pf. 

Proof. Suppose with the same lower central series as the 

free Zinbiel algebra Z(X), let S  be the PfZin algebra.  We 

can establish isomorphisms  

 


𝑛

: 𝑆 𝑆 𝑛⁄ → 𝑍(𝑋) 𝑍(𝑋)𝑛⁄ , 

 

by using the canonical mapping φ: 𝑆→ 𝑍(𝑋), where      

𝑛 ≥  2. Next, let 𝐻 be a free subalgebra of 𝑃   such that  

𝐻 ∩ Sn = 𝐻𝑛. Therefore, we have ⋂ 𝐻𝑖∞
𝑖=1 ⊂ ⋂ 𝑆𝑖.∞

𝑖=1  

Since 𝑆 is Pf, we know that ⋂ 𝑆𝑖∞
𝑖=1 = {0}. From this, it 

follows that ⋂ 𝐻𝑖∞
𝑖=1 = {0}, which establishes the 

residual nilpotency of 𝐻. Therefore 𝐻 is a free Zinbiel 

subalgebra and shares the identical lower central series as 

a free Zinbiel algebra, we conclude that 𝐻 is also Pf.  

Furthermore, we can utilize a theorem that applies to 

PfZin algebras. This theorem has a straightforward proof 

and leverages the analogous result established for 

parafree Leibniz algebras as detailed in [17]. 

 

Example 3.2. In example 2.4 we have shown that 𝑃 =
 〈𝑥, 𝑦〉, which is Pf. Now, let's construct a free subalgebra 

𝑄 of 𝑃 generated by a single element 𝑥. We define the 

bilinear product on 𝑄 as: [𝑥, 𝑥] = 𝑥.  This free subalgebra 

𝑄 is a PfZin algebra in its own right satisfying the 

conditions:  

𝑄 has a residual nilpotency, as it is a subalgebra of 𝑃. 

𝑍(𝑋) 𝑍(𝑋)𝑛⁄ =𝑄 𝑄𝑛⁄ , for all 𝑛 ≥ 1, which can be verified 

by directly. In conclusion, a free subalgebra of PfZin 

algebra is Pf. 

Theorem 3.3. A PfZin algebra’s quotient algebra is Pf. 

Proof. Consider 𝑃 as a PfZin algebra with    as its ideal. 

Finding the residual nilpotence of the quotient algebra 

𝑆/   is our first objective. 

Assume  𝑥 ∈ ⋂ (𝑆 )⁄ 𝑛∞
𝑛=1 . Thus, for all 𝑛,  

𝑥 ∈ (𝑆  ⁄ )𝑛 = (𝑆𝑛 +  )  ⁄  implying 𝑥 =  𝑦 + 𝐼 where 

𝑦 ∈ 𝑆𝑛 + 𝐼 .  Leveraging the residual nilpotence of 𝑆, we 

conclude that 𝑆 𝐼  ⁄ is residually nilpotent. Now lets 

demonstrate that 𝑆      ⁄  shares the identical lower central 

series as a free Zinbiel algebra. Take into 

account  ( 𝑆 ⁄   ) (𝑆 ⁄  )𝑛⁄ . 

Since (𝑆𝑛 +  )  ⁄   isomorphic to 𝑆𝑛/ , we have 

(𝑆  ⁄ )
(𝑆  ⁄ )𝑛⁄       ≅ (𝑆  ⁄ ) ((𝑆𝑛 +  )  ⁄ )⁄

≅ (𝑆  ⁄ ) (𝑆𝑛  ) ≅ 𝑆 𝑆𝑛⁄⁄⁄ . 

This demostrates that (𝑆 ⁄  ) ⁄ (𝑆  ⁄ )𝑛  has the identical 

lower central series qua a free Zinbiel algebra. Whence, 

(𝑆  )⁄ (𝑆  ⁄ )𝑛 ≅ 𝑍(𝑋) (𝑍(𝑋))𝑛⁄⁄ . 

Consequently, 𝑆  ⁄  is Pf. 

Example 3.4. Consider the PfZin algebra 𝑃 =  〈𝑥, 𝑦〉 

which is expalined in example 2.4. We want to construct 

an ideal 𝐼 of 𝑃 generated by the element 𝑦.  Of course 𝐼 

contains all possible products of 𝑦 with elements of 𝑃. 

The ideal 𝐼 is generated by taking the span of these 

elements. We define the quotient algebra 𝑃/𝐼 as the set 

of equivalence classes of elements of 𝑃, where two 

elements are considered equivalent if their difference lies 

in 𝐼. Then the quotient algebra 𝑃/𝐼 is a PfZin algebra in 

its own right, satisfying the aforementioned conditions.  

Lemma 3.5. Consider   𝑆 , PfZin algebra with finite rank 

and   be an ideal of  𝑆.  If  𝑆  and  𝑆   ⁄  have the identical 

rank, then it follows that    = {0}. 

Proof. Presumably, the ranks of  𝑆  and 𝑆   ⁄  are equal. 

For any positive number 𝑛,  

𝑆   ⁄ ≅ (𝑆   ⁄ ) (𝑆   ⁄ )𝑛⁄ ≅ (𝑆   ⁄ ) ( )⁄ ≅ 𝑆 (𝑆𝑛 +  ).⁄  

According to the Theorem 3.3, 𝑆   ⁄   has residual 

nilpotency.  Subsequently by [10], S   ⁄   remains 

Hopfian. Moreover, 

𝑆 (𝑆𝑛 + ) ⊆⁄ 𝑆 𝑆𝑛⁄  

and 

𝑆 𝑆𝑛⁄ ≅ 𝑆 (𝑆𝑛 + ).⁄  

Given that  𝑆   ⁄  is Hopfian, a contradiction. Therefore   

for each 𝑛,  ⊆ 𝑆𝑛, then  = {0}. 

4.  PfZin algebra Direct Sum 

Presume  𝑍1, 𝑍2, … , 𝑍𝑛 be Zinbiel algebras. We define the 

direct sum 𝑍 = 𝑍1 ⊕ 𝑍2 ⊕ … ⊕ 𝑍𝑛  as the vector space 
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direct sum of the 𝑍𝑖 with the Zinbiel product 

[∑ 𝑥𝑖
𝑛
𝑖=1 , ∑ 𝑦𝑖

𝑛
𝑖=1 ] = ∑ [𝑥𝑖 , 𝑦𝑖]𝑛

𝑖=1 , where [𝑥𝑖 , 𝑦𝑖] ∈ 𝑍𝑖 ∩
𝑍𝑗 = {0}  for  𝑖 ≠ 𝑗, 𝑥𝑖 ∈ 𝑍𝑖 , 𝑥𝑗 ∈ 𝑍𝑗 . The following 

theorems can be viewed as obvious consequences of 

direct sums:  

Lemma 4.1. Let 𝑍1, 𝑍2  be Zinbiel algebras. The direct 

sum 𝑍 = 𝑍1 ⊕ 𝑍2 is a Zinbiel algebra with the product 

[𝑥1 + 𝑥2, 𝑦1 + 𝑦2] = [𝑥1, 𝑦1] + [𝑥2, 𝑦2]  for 𝑥1, 𝑦1 ∈ 𝑍1,
𝑥2, 𝑦2 ∈ 𝑍2.  

Theorem 4.2. Let 𝐹1 and 𝐹2 be free Zinbiel algebras. 

Then 𝐹1 ⊕ 𝐹2 is again free. 

Theorem 4.3. Let 𝑆1 and 𝑆2 be PfZin algebras and 𝑆 =
𝑆1 ⊕ 𝑆2. Then 𝑆 is PfZin algebra. 

  Now we will present an example showing that the direct 

sum of two PfZin algebras is also a PfZin algebra, we will 

take the example we discussed in the article one step 

further and build an example on direct sum.:  

Example 4.4. Consider two PfZin algebras 𝑃 =  〈𝑥, 𝑦〉,  
and 𝑄 =  〈𝑧, 𝑤〉, where 𝑥, 𝑦 and 𝑧, 𝑤 are generators, and 

the bilinear products are defined as: 

[𝑥, 𝑥] = 𝑥, [𝑥, 𝑦] = 𝑦, [𝑦, 𝑥] = 0, [𝑦, 𝑦] = 0  

[𝑧, 𝑧] = 𝑧, [𝑧, 𝑤] = 𝑤, [𝑤, 𝑧] = 0, [𝑤, 𝑤] = 0  

The direct sum 𝑃 ⊕ 𝑄 is a PfZin algebra. 

Theorem 4.3. The direct sum of two parafree Zinbiel 

algebras is a weak Hopf algebra. 

Proof. Let  𝑃 and 𝑄 are two parafree Zinbiel algebras. 

We can construct their direct sum 𝑃 ⊕ 𝑄 as a Zinbiel 

algebra with the bilinear product defined component-

wise. 

Using the definition of a weak Hopf algebra from [7], we 

can show that 𝑃 ⊕ 𝑄 satisfies the required axioms. 

Multiplication: The direct sum 𝑃 ⊕ 𝑄 has well-defined 

multiplication, as it is a Zinbiel algebra. 

Comultiplication: The comultiplication on 𝑃 ⊕ 𝑄 can be 

defined component-wise, using the comultiplications on 

𝑃 and 𝑄. 

Counit: The counit on  𝑃 ⊕ 𝑄 can be defined as the direct 

sum of the counits on 𝑃 and 𝑄. However, this counit does 

not satisfy the usual counit axiom. Instead, it satisfies the 

weaker axiom required for a weak Hopf algebra. 

Therefore, the direct sum 𝑃 ⊕ 𝑄 is a weak Hopf algebra. 

Corollary 4.4. The direct sum of two PfZin algebras is 

not necessarily a Hopf algebra, but it is a weak Hopf 

algebra. 

Theorem 4.5 Let 𝑷 be a parafree Zinbiel algebra. Then, 

the weak Hopf algebra 𝑯(𝑷) constructed above is a weak 

Hopf algebra that satisfies the following properties: 

(𝑖) 𝐻(𝑃) is a self-dual weak Hopf algebra, meaning that 

its dual  𝐻(𝑃)*  is also a weak Hopf algebra. 

(𝒊𝒊) The regular representation of 𝑯(𝑷) is a left 𝑯(𝑷)-

module that satisfies the equation: 

 𝐻(𝑃) ≅ ∑ 𝐸𝑛𝑑𝐹

𝒋

(𝑉𝑗) 

 Where 𝑉𝑗’s are the irreducible representations of                            

𝐻(𝑃) and 𝐸𝑛𝑑𝑘(𝑉)  denotes the set of endomorphisms 

of a vector space 𝑉 over a field 𝐹. 

Proof.  

Using the definition of a weak Hopf algebra [7], and the 

construction of 𝐻(𝑃) above, we can show that 𝐻(𝑃) 

satisfies the required axioms: 

Multiplication: The direct sum of the algebra structures 

on 𝑃 and its dual 𝑃∗ defines a well-behaved 

multiplication on 𝐻(𝑃). 

Comultiplication: The direct sum of the coalgebra 

structures on 𝑃 and its dual 𝑃∗ defines a well-behaved 

comultiplication on 𝐻(𝑃). 

Antipode: The linear map defined above satisfies the 

required conditions for an antipode. 

Using the results from [7], we can show that the regular 

representation of 𝐻(𝑃) satisfies the equation: 

𝐻(𝑃) ≅ ∑ 𝐸𝑛𝑑𝐹

𝒋

(𝑉𝑗) 

In conclusion, we've provided the weak Hopf algebra 

𝐻(𝑃) constructed from a parafree Zinbiel algebra 𝑃.  

Corollary 4.6.  Let 𝑃 and 𝑄 be two Zinbiel algebras, and  

𝑅 be a parafree quotient algebra of 𝑃 ⊕ 𝑄 then, 𝑅 is a 

weak Hopf algebra that satisfies the following properties: 

(𝒊) 𝑹 is a self-dual weak Hopf algebra, meaning that its 

dual  𝑹*  is also a weak Hopf algebra. 

(𝒊𝒊) The regular representation of 𝑹 is a left 𝑹-module 

that satisfies the equation: 

 𝑅 ≅ ∑ 𝐸𝑛𝑑𝐹

𝒋

(𝑉𝑗) 

Where 𝑉𝑗’s are the irreducible representations of                            

𝑅 and 𝐸𝑛𝑑𝐹(𝑉)  denotes the set of endomorphisms of a 

vector space 𝑉 over a field 𝐹. 

5. Conclusion 

 

The study of PfZin algebras and related concepts offers a 

rich landscape for future research. Exploring the 

connections between PfZin algebras and other algebraic 

structures, such as category theory and homotopy theory, 

can lead to a deeper understanding of the underlying 

principles of algebra and its applications. 

In conclusion, PfZin algebras are an important area of 

research that offers a unique perspective on algebraic 

structures and their properties. 
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