
Demirel, C., Soylu, E. (2024). Analysis of Transfer Learning-Based Algorithms for Tumor Detection in Medical Imaging Data. The Black 

Sea Journal of Sciences, 14(3), 1322-1339. 

 

KFBD 
The Black Sea Journal of Sciences, 14(3), 1322-1339, 2024. DOI: 10.31466/kfbd.1455542 

 

Karadeniz Fen Bilimleri Dergisi 
The Black Sea Journal of Sciences 

ISSN (Online): 2564-7377     https://dergipark.org.tr/tr/pub/kfbd 

Araştırma Makalesi / Research Article 

1Samsun University Department of Neurosurgery Surgical Sciences, Faculty of Medicine, Samsun, Turkey, 

cem.demirel@samsun.edu.tr 
2*Samsun University, Department of Software Engineering, Faculty of Engineering, Samsun, Turkey,   emel.soylu@samsun.edu.tr 

 
*Sorumlu Yazar/Corresponding Author                        

Geliş/Received: 19.03.2024                         Kabul/Accepted: 11.09.2024                          Yayın/Published: 15.09.2024 

Analysis of Transfer Learning-Based Algorithms for Tumor Detection in 

Medical Imaging Data 

 

Cem DEMİREL1 , Emel SOYLU2*  

 

 
Abstract 

Magnetic Resonance Imaging (MRI) has become a vital tool in the diagnosis of brain tumors due to its non-invasive 

nature and high-resolution imaging capabilities. In this study, we compared the performances of deep learning algorithms. 

A comprehensive dataset of MRI scans was utilized to train and validate our model, ensuring robust performance across 

various tumor types and imaging conditions. The results demonstrate the effectiveness of our approach, achieving a high 

level of accuracy and sensitivity in tumor detection. Our work contributes to the development of efficient and reliable 

tools for early diagnosis and monitoring of brain tumors, ultimately enhancing patient care and outcomes in the field of 

neuroimaging. Our findings highlight the significance of selecting an appropriate deep neural network architecture when 

dealing with brain MRI image classification tasks. DenseNet-121 emerges as a robust choice for accurate and reliable 
classification, offering potential applications in clinical diagnostics and medical imaging. In conclusion, our study 

underscores the importance of MRI in brain tumor diagnosis and the potential of deep learning algorithms to enhance 

accuracy and sensitivity. Our approach, based on DenseNet-121, holds promise for clinical diagnostics and medical 

imaging applications, contributing to improved patient care and outcomes in neuroimaging. 

Keywords: Brain tumor, MRI scans, Artificial intelligence, Computer-assisted image analyses. 

 

 

MRI Verilerinde Tümör Tespiti için Transfer Tabanlı Derin Öğrenme 

Algoritması Karşılaştırması 

 

Öz 

Bu çalışmada, Manyetik Rezonans Görüntüleme (MRG), invazif olmayan doğası ve yüksek çözünürlüklü görüntüleme 

yetenekleri nedeniyle beyin tümörlerinin teşhisinde hayati bir araç haline gelmiştir. Bu çalışmada, derin öğrenme 

algoritmalarının performanslarını karşılaştırdık. Kapsamlı bir MRG taramaları veri kümesi, modelimizi eğitmek ve 

doğrulamak için kullanıldı, bu da çeşitli tümör tipleri ve görüntüleme koşulları için sağlam bir performans sağladı. 

Sonuçlar, yakalama konusunda yüksek bir doğruluk ve hassasiyet elde ederek yaklaşımımızın etkinliğini göstermektedir. 

Çalışmamız, nöro görüntüleme alanında erken teşhis ve takip için etkili ve güvenilir araçların geliştirilmesine katkıda 

bulunmaktadır. Bulgularımız, beyin MRG görüntü sınıflandırma görevleriyle uğraşırken uygun bir derin sinir ağı 

mimarisi seçmenin önemini vurgular. DenseNet-121, doğru ve güvenilir sınıflandırma için sağlam bir seçenek olarak 

ortaya çıkıyor ve klinik teşhis ve tıbbi görüntüleme alanlarında potansiyel uygulamalar sunuyor. Sonuç olarak, 

çalışmamız, MRG'nin beyin tümörü teşhisi açısından önemini ve derin öğrenme algoritmalarının doğruluğu ve hassasiyeti 

artırmadaki potansiyelini vurgular. DenseNet-121'e dayalı yaklaşımımız, nöro görüntüleme alanında hastaların bakımını 

ve sonuçlarını iyileştirmeye katkıda bulunarak klinik teşhis ve tıbbi görüntüleme uygulamaları için umut vaat etmektedir. 
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1. Introduction 

 

A brain tumor is an abnormal growth or mass of cells in the brain. It can be benign (non-

cancerous) or malignant (cancerous). Brain tumors can originate from brain tissue itself (primary 

brain tumors) or can be the result of cancer that has spread from other parts of the body (secondary 

or metastatic brain tumors) (DeAngelis, 2001). Primary brain tumors are further classified based on 

the type of cells involved and their location within the brain. Some common types of primary brain 

tumors include gliomas, meningiomas, pituitary adenomas, and medulloblastomas, among others 

(Ayadi et al., 2021; Chandana et al., 2008; Raza et al., 2022). 

According to the latest data from the World Health Organization, brain tumors are one of the 

most common types of cancer deaths worldwide and can occur at any age (Abd El Kader et al., 2021). 

Central nervous system (CNS) tumors consist of a wide series of neoplasms that include primary and 

metastatic tumors. While these tumors constitute approximately 1-2% of all malignancies in cancer 

patients, primary CNS tumors constitute 85-90% of all brain tumors (Komori, 2017; Nibhoria et al., 

2015; Ostrom et al., 2015). Although they are quite rare, they have high morbidity and mortality rates. 

Especially in high-grade tumors such as anaplastic astrocytoma and glioblastoma, the five-year 

survival rate varies between 5.5–29.7% (Hernández-Hernández et al., 2018). Histopathological 

classification and grading of CNS tumors are very important in determining the clinical follow-up 

and treatment protocols of the cases and obtaining prognostic and predictive data (Cano-Valdez & 

Sevilla-Lizcano, 2021). 

Brain tumors can cause a wide range of symptoms, depending on their size, location, and 

whether they are benign or malignant. Common symptoms can include headaches, seizures, changes 

in vision, balance problems, cognitive changes, and more (Alentorn et al., 2016).  

The prognosis and treatment options for a brain tumor depend on its type, location, size, and 

the overall health of the patient. Treatment plans are typically developed by a multidisciplinary 

medical team, which may include neurosurgeons, oncologists, radiation therapists, and other 

specialists, to remove or control the tumor while preserving brain function and quality of life (Herholz 

et al., 2012). There are many more types of brain tumors, each with its unique characteristics, 

treatment approaches, and prognosis. The specific type of brain tumor a person has is determined 

through diagnostic tests such as imaging scans and biopsies, and treatment options depend on the 

tumor's type, location, and other factors (Sheline, 1977). 

Gliomas tumors originate in the glial cells, which provide support and protection for nerve cells 

in the brain. Gliomas can be further categorized into astrocytomas, oligodendrogliomas, and 

ependymomas. Meningiomas develop in the meninges, which are the membranes covering the brain 

and spinal cord. They are typically benign but can cause symptoms depending on their location 



The Black Sea Journal of Sciences 14(3), 1322-1339, 2024 1324 

(Black, 1991). Pituitary adenoma tumors form in the pituitary gland, which is a small gland at the 

base of the brain that regulates various hormones in the body (Theodros et al., 2015). 

Medulloblastomas are primarily found in the cerebellum, medulloblastomas are more common in 

children and are considered malignant (Baliga et al., 2021). Schwannomas tumors develop from 

Schwann cells, which produce the protective covering (myelin) for nerve fibers. Schwannomas can 

occur on nerves in the brain and spinal cord (Hilton & Hanemann, 2014). Craniopharyngiomas tumors 

are typically benign and develop near the pituitary gland and the hypothalamus (Momin et al., 2021). 

Primary Central Nervous System (CNS) Lymphomas are non-Hodgkin lymphomas that start in the 

brain, spinal cord, or the membranes covering the brain (Bühring et al., 2001). Metastatic Brain 

Tumors originate in other parts of the body and spread to the brain (Hayashida et al., 2006). 

Hemangioblastomas are rare tumors that usually occur in the cerebellum and are associated with a 

genetic condition called von Hippel-Lindau disease (Neumann et al., 1989). 

Brain tumor diagnosis involves several methods and techniques to determine the presence, type, 

location, and characteristics of the tumor. A thorough neurological examination is often the first step. 

It assesses the patient's mental status, coordination, reflexes, sensory perception, and muscle strength 

(Pawełczyk et al., 2012). Gathering the patient's medical history, including symptoms, their duration, 

and any risk factors or family history of brain tumors, is crucial. MRI scans provide detailed images 

of the brain and can help identify the location, size, and characteristics of a brain tumor (Siddiqui et 

al., 2015). CT (Computed Tomography) scans use X-rays to create cross-sectional images of the brain 

and are useful for detecting tumors and assessing their density (Bilal, 2023). A biopsy involves the 

removal of a small sample of tumor tissue for examination under a microscope. This helps determine 

whether the tumor is benign or malignant and its specific type. If a tumor is suspected to affect the 

brain's ventricles or meninges, a sample of cerebrospinal fluid may be collected through a lumbar 

puncture (spinal tap) and analyzed for tumor markers or abnormal cells (Shankar et al., 2017). 

Angiography test uses a contrast dye and X-rays to visualize the blood vessels in the brain. It can help 

identify abnormal blood vessels or blood flow patterns associated with certain brain tumors (Taylor 

et al., 2014). In cases where surgery is considered, functional MRI (fMRI) or other mapping 

techniques can help identify critical brain regions responsible for functions such as speech or motor 

control to minimize damage during surgery (Gore & others, 2003). Positron Emission Tomography 

(PET) scans can be used to determine the metabolic activity of brain tissue, which can help 

differentiate between tumor tissue and healthy brain tissue (Phelps & Mazziotta, 1985). Genetic 

analysis may be performed to identify specific genetic mutations or markers associated with certain 

types of brain tumors, which can inform treatment decisions (Dulac & Wagner, 2006). 

Electroencephalogram (EEG) records the brain's electrical activity and may be used to evaluate 

seizures or abnormal brain patterns caused by tumors (Thakor & Tong, 2004). The study by Joshi and 
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Aziz presents a novel approach to brain tumor classification by combining Particle Swarm 

Optimization and Cuckoo Search with deep learning, demonstrating improved accuracy and offering 

valuable contributions to AI-driven tumor diagnosis and patient care (Joshi & Aziz, 2024). Kaplan et 

al. introduced an innovative approach for brain tumor classification using nLBP and αLBP feature 

extraction methods, achieving a notable classification accuracy of 95.56% with the nLBPd=1 method 

and K-Nearest Neighbor, contributing significantly to the automation of tumor diagnosis (Kaplan et 

al., 2020).  

The combination of these diagnostic methods allows healthcare professionals to accurately 

diagnose brain tumors, determine their characteristics, and develop a tailored treatment plan for 

patients. The choice of diagnostic tests depends on the patient's clinical presentation and the suspected 

type of brain tumor. 

MRI is a valuable medical imaging technique that provides detailed images of the internal 

structures of the body, including the brain, muscles, and organs (Katti et al., 2011). Machine learning 

plays a crucial role in MRI image processing for various reasons. Machine learning algorithms can 

enhance the quality of MRI images by reducing noise, improving contrast, and sharpening details. 

This results in clearer and more diagnostically valuable images. ML techniques can accelerate MRI 

image reconstruction, reducing the time patients spend in the scanner. Faster reconstruction is 

particularly important for pediatric and critically ill patients. ML models can segment MRI images 

into different regions or structures, such as tumors, organs, or blood vessels. This automated process 

saves time for radiologists and ensures accuracy in identifying specific areas of interest. Machine 

learning can aid in the detection of abnormalities or diseases in MRI images, such as tumors, lesions, 

or vascular issues. ML models can learn to recognize subtle patterns that might be missed by human 

observers. ML algorithms can provide quantitative measurements of various parameters in MRI 

images, such as tumor size, tissue density, or blood flow. This quantitative data is crucial for treatment 

planning and monitoring disease progression. ML can analyze historical MRI data and patient records 

to predict disease outcomes, treatment responses, or the likelihood of disease recurrence. This 

information can guide treatment decisions and improve patient care. Machine learning is essential in 

MRI image processing because it enhances image quality, automates time-consuming tasks, assists 

in disease detection, and contributes to research and innovation in medical imaging. These 

applications ultimately lead to more accurate diagnoses, better patient care, and advancements in the 

field of radiology (Ayadi et al., 2021; Deepak & Ameer, 2019). 

Brain tumor detection relies on various computer algorithms and image processing techniques 

to analyze and interpret medical images, particularly MRI and CT scans. Deep learning techniques 

have ushered in a remarkable era of progress in the realm of brain tumor diagnosis. These 

sophisticated algorithms, particularly Convolutional Neural Networks (CNNs), have exhibited an 
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extraordinary capacity to decipher intricate patterns within medical images, especially MRI and CT 

scans. Their ability to automatically extract and learn hierarchical features from vast datasets has led 

to unparalleled accuracy in identifying and characterizing brain tumors. Deep learning's prowess 

extends beyond mere detection; it enables precise segmentation, tumor volume estimation, and even 

prediction of treatment response. The amalgamation of deep learning's prowess with medical imaging 

has revolutionized the field, offering not only enhanced diagnostic capabilities but also the potential 

to improve patient outcomes by facilitating early detection and personalized treatment strategies. As 

these algorithms continue to evolve, the future of brain tumor diagnosis holds immense promise, with 

deep learning at its forefront, exemplifying the synergy between artificial intelligence and healthcare 

(Ayadi et al., 2021; Chattopadhyay & Maitra, 2022; Deepak & Ameer, 2019; Senan et al., 2022). 

Mahalty et al. present a novel deep learning model for MRI-based brain tumor classification that 

integrates a soft attention mechanism and multi-layer feature aggregation, demonstrating superior 

performance compared to state-of-the-art models in enhancing classification accuracy. 

In this study, we present a comprehensive comparative analysis of various deep neural network 

architectures for the classification of brain MRI images. The primary objective of this research is 

twofold: first, to classify images into two categories, "Tumor" and "No Tumor," and second, to further 

classify tumor images into four specific subcategories: "Glioma," "Meningioma," "No Tumor," and 

"Pituitary." Our evaluation focuses on the following deep learning architectures: DenseNet-121, 

DenseNet-201, Xception, EfficientNetV2B3, EfficientNetV2S, EfficientNetB0, InceptionV3, 

MobileNet, and ResNet-50. Through an extensive experimentation process, we have assessed the 

performance of these architectures using various evaluation metrics, including accuracy, precision, 

recall, F1 score, and overall accuracy. Remarkably, DenseNet-121 consistently outperforms the other 

architectures in both binary tumor classification and multi-class tumor subtype classification tasks. 

Its ability to capture intricate features within the MRI images results in superior classification 

accuracy. 

 

2. Relevant Work 

 

Over the last two decades, medical image analysis has gained significant attention due to its 

broad healthcare applications, particularly in patient investigation and diagnosis. Various studies have 

explored machine learning-based approaches for brain image classification and analysis, including 

the comparison of traditional machine learning and deep learning methods. Additionally, some 

studies have introduced innovative techniques for brain tumor segmentation and localization, 

achieving high precision in cancer detection from MRI scans. 
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Table 1. Relevant work 

Ref. Dataset Tumor Type Method Result 

(Abiwinanda 
et al., 2019) 

Cheng (Brain Tumor Dataset 
(Cheng, 2017) 

Glioma, Meningioma, and 
Pituitary 

CNN 

training accuracy of 98.51% 

and validation accuracy of 

84.19% at best 

(Seetha & 

Raja, 2018) 

tumor and nontumor MRI images 
collected from different online 

resources 

Tumor, Non-tumor SVM, DNN, CNN training accuracy of 97.5% 

(Deepak & 

Ameer, 2019) 

Cheng (Brain Tumor Dataset 

(Cheng, 2017) 

Glioma, Meningioma, and 

Pituitary 

Transfer learning 

based on CNN 

a mean classification accuracy 

of 98% 

(Ayadi et al., 
2021) 

Figshare (Cheng, 2017), 
Radiopaedia 

Glioma, Meningioma, and 
Pituitary 

CNN 
Overall accuracy between 
90.35% and 99.61% 

(Raza et al., 

2022) 
Figshare (Cheng, 2017) 

Glioma, Meningioma, and 

Pituitary 
Hybrid deep learning 99.67% accuracy 

(Abdusalomov 

et al., 2023) 

MRI scan images (Brain Tumor 

Classification (MRI), n.d.; Brain 
Tumor MRI Dataset, n.d.) 

Tumor, Non-tumor YOLOv7 99.5% accuracy 

(Afshar et al., 

2019) 

MRI scan images (Cheng et al., 

2016) 

Glioma, Meningioma, and 

Pituitary 
Capsule Network 90.8% accuracy 

 

Despite substantial progress in this field, there is still a need for novel methodologies to enhance 

feature extraction, tumor classification, and localization efficacy. These studies collectively 

emphasize the significant potential of deep learning in improving brain tumor diagnosis and analysis 

from medical images. Table 1 This table provides information about various references, datasets, 

tumor types, methods used, and the corresponding results in different studies related to brain tumor 

detection and classification. 

 

3. Dataset 

 

We utilized a publicly accessible MRI dataset acquired from Kaggle.com (Brain Tumor 

Classification (MRI), n.d.; Cheng et al., 2016). There are 926 instances of the 'Glioma' class, 937 

instances of the 'Meningioma' class, 901 instances of the 'Pituitary' class, and 500 instances 

categorized as 'Non-tumor.'  

The initial dataset preparation step involves cropping the brain from the images. We used 

Adrian Rosebrock’s source code for this progress (Finding Extreme Points in Contours with OpenCV, 

n.d.). Class-wise sample images from the dataset are given in Figure 1. 
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Glioma

Meningioma

Pituitary

No tumor

 

Figure 1. Class-wise sample images from the dataset 

We utilized this dataset in two ways. In the first approach, we classified the brain images into 

two categories: tumor and no tumor. In the second approach, we classified them into four categories: 

Glioma, Meningioma, Pituitary, and No tumor. We split the data into training, validation, and test 

sets.  

In the first approach, the training set comprises 1,990 Tumor samples and 360 No-tumor 

samples, while the validation set consists of 496 Tumor samples and 90 No-tumor samples. Finally, 

the test set is composed of 278 Tumor samples and 50 No-tumor samples. 

In the second approach, the training set contains 667 Glioma samples, 675 Meningioma 

samples, 648 Pituitary samples, and 360 No tumor samples. In the validation set, there are 166 Glioma 

samples, 168 Meningioma samples, 162 Pituitary samples, and 90 No tumor samples. Lastly, the test 

set includes 93 Glioma samples, 94 Meningioma samples, 91 Pituitary samples, and 50 No-tumor 

samples. 

 

4. Method 

 

We used transfer learning-based deep learning models in our study. Transfer Learning in the 

context of deep learning refers to the practice of leveraging a pre-trained neural network model for a 

new, related task. It's a technique where a model developed for a particular task is adapted for a 

second related task. Transfer learning can significantly speed up the training process and often leads 
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to better performance compared to training a model from scratch. Transfer learning typically involves 

starting with a pre-trained model that has been trained on a large dataset for a similar or related 

problem. These models are often trained on massive datasets and have learned useful features from 

them. After obtaining a pre-trained model, you fine-tune it for your specific task. Training deep neural 

networks from scratch can be computationally expensive and time-consuming, especially when 

dealing with large datasets and complex architectures. Transfer learning allows you to start with a 

pre-trained model, saving a significant amount of training time. 

We have leveraged a selection of pre-trained CNN architectures, including DenseNet121, 

DenseNet201, Xception, EfficientNetV2B3, EfficientNetV2S, EfficientNetB0, InceptionV3, 

MobileNet, and ResNet-50, for brain tumor classification. These models can be readily accessed in 

Keras, an open-source neural network library written in Python (Keras Applications, n.d.). 

DenseNet, short for "Densely Connected Convolutional Network," is a deep learning 

architecture for image classification and computer vision tasks. It was introduced by Gao Huang, 

Zhuang Liu, and Laurens van der Maaten in their 2017 paper titled "Densely Connected 

Convolutional Networks." DenseNet builds on the concept of skip connections, also known as 

residual connections, used in ResNet architectures. In a DenseNet, each layer is connected not only 

to the layers immediately before and after it but also to all the previous layers in a dense and highly 

interconnected manner. This dense connectivity pattern enables feature reuse, reduces the number of 

parameters, and mitigates the vanishing gradient problem during training (Huang et al., 2017). 

DenseNet architectures come in various versions, including DenseNet-121, DenseNet-169, 

DenseNet-201, and others, each with a different number of layers. DenseNet has achieved state-of-

the-art results on various image classification tasks and is widely used in computer vision applications 

due to its efficiency and effectiveness in training deep neural networks. 

Inception, also known as GoogleNet, is a deep learning architecture for convolutional neural 

networks (CNNs) that was designed to address the challenges of training very deep networks while 

managing computational efficiency. Introduced by Google researchers, Inception employs a unique 

and innovative "Inception module" that incorporates multiple convolutional filter sizes and pooling 

operations within a single layer. This enables the network to capture features at various scales, 

facilitating more robust and accurate feature extraction. Inception has been influential in the field of 

computer vision, particularly in image classification and object detection tasks, and its ability to 

balance model depth with computational efficiency has made it a widely used architecture in deep 

learning (Szegedy et al., 2016). 

EfficientNet is a family of deep learning models specifically designed to achieve state-of-the-

art performance with high efficiency in terms of computational resources. These models use a novel 

scaling method that uniformly scales the network's depth, width, and resolution. This approach 
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ensures that the model adapts to different computational constraints while maintaining excellent 

performance on a wide range of computer vision tasks, such as image classification and object 

detection. EfficientNet's architecture efficiently balances model size and accuracy, making it a 

popular choice for various real-world applications where computational efficiency is a priority, such 

as edge devices and resource-constrained environments (Tan & Le, 2019). 

Xception, short for "Extreme Inception," is a deep learning model designed for computer vision 

tasks, particularly image classification and object detection. Developed by Google researchers, 

Xception is based on the Inception architecture and focuses on enhancing feature extraction through 

depthwise separable convolutions, which separate the convolution process into two stages: depthwise 

and pointwise convolutions. This separation of operations aims to capture complex patterns more 

effectively and efficiently, making the model more robust while reducing the number of parameters. 

Xception has proven to be highly effective in various visual recognition tasks, offering excellent 

accuracy and performance in deep learning applications (Chollet, 2017). 

ResNet, or Residual Neural Network, is a deep learning architecture that revolutionized the 

field of computer vision. It was introduced by Kaiming He et al. in 2016. What sets ResNet apart 

from previous architectures is its use of residual blocks, which allow for the training of very deep 

neural networks without the vanishing gradient problem. In a residual block, the input to a layer is 

combined with the output of the layer, allowing the network to learn residual functions. This approach 

enables the training of extremely deep networks, with hundreds or even thousands of layers, leading 

to improved accuracy in tasks like image classification and object detection. ResNet's architecture 

has become a fundamental building block for many state-of-the-art neural network architectures in 

various domains beyond computer vision (He et al., 2016). 

The general block diagram of the system is given in Figure 2. In the preprocessing stage, the 

dataset has been divided into training, validation, and test data sets after the data splitting process. 

Parameters have been configured for the preferred models for transfer learning. For all architectures, 

a batch size of 32 and an epoch count of 40 have been determined. This choice was made through 

trial and error, and it was deemed sufficient to achieve the best results after 40 epochs. In the second 

stage, pre-trained architectures were retrained using the training data. Prediction accuracy rates were 

obtained using both the training data and the validation data. In the third stage, completed training 

architectures were evaluated using the test data as input, and evaluation results were obtained based 

on performance metrics. Performance metrics utilized the True Positive, True Negative, False 

Negative (FN), and False Positive (FP) values obtained from the classification results on the test data. 
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Data collection Fine Tuning

Deep Learning Model
• Xception
• Inception (V3)
• DenseNet (121,201)
• EfficientNet (B0,V2L,V2B3)
• MobileNet
• ResNet-50

Preprocessing

Training Dataset
Model

Re-Training Process

Prediction

Testing Dataset
Re-trained Model

Testing Process

Evaulation

MRI Scans

Deep Learning Model
• Xception
• Inception (V3)
• DenseNet (121,201)
• EfficientNet (B0,V2L,V2B3)
• MobileNet
• ResNet-50

Deep Learning Model
• Xception
• Inception (V3)
• DenseNet (121,201)
• EfficientNet (B0,V2L,V2B3)
• MobileNet
• ResNet-50

 

Figure 2. Block diagram of the system 

 

In the context of classification True Positive (TP) refers to the number of cases correctly 

predicted as positive when they are actually positive. True Negative (TN) refers to the number of 

cases correctly predicted as negative when they are actually negative. False Negative (FN), also 

known as a type two error, represents the number of cases incorrectly predicted as negative when they 

are actually positive. False Positive (FP), also known as a type one error, denotes the number of cases 

incorrectly predicted as positive when they are actually negative. 

Precision, recall, F1 score, and accuracy are performance metrics that help evaluate the 

performance of a classification model. Eq.1-4 are the formulas for these metrics. Precision (P) 

measures the accuracy of positive predictions made by the model (Raschka, 2014) as given in Eq. 1. 

 

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (1) 

 

Recall, also known as True Positive Rate or Sensitivity, measures the ability of the model to 

identify all positive instances correctly. The equation of recall is given in Eq. 2. 
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𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (2) 

 

The F1 Score is the harmonic mean of precision and recall. It provides a balance between 

precision and recall and is particularly useful when dealing with imbalanced datasets. The equation 

of F1 is given in Eq.3.  

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∙
𝑃∙𝑅

𝑃+𝑅
 (3) 

 

Accuracy measures the overall correctness of predictions made by the model. The equation of 

accuracy is given in Eq. 4. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (4) 

 

5. Results 

 

For the first approach, DenseNet-121 provided the highest accuracy rate on the validation data. 

In Table 2, we present the training performance metrics for nine different base models used in the 

first approach. The table provides an overview of the training and validation performance of these 

base models, including their training accuracy, accuracy loss, validation accuracy, and validation loss. 

The models with the highest training accuracy are MobileNet, DenseNet-121, and DenseNet-201 

achieving a perfect training accuracy of 100%. This indicates that MobileNet, DenseNet-121, and 

DenseNet-201 have successfully learned and adapted to the training data, fitting it very closely. On 

the other hand, the model with the highest validation accuracy is DenseNet-121, with a validation 

accuracy of 98.81%. This suggests that DenseNet-121 performed exceptionally well on data it hasn't 

seen during training, demonstrating its robustness and effectiveness in generalizing to new, unseen 

examples. These results indicate that MobileNet excels in fitting the training data closely, while 

DenseNet-121 is particularly adept at achieving high accuracy on new, previously unseen data during 

validation. 
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Table 2. Training performance table for first approach 

Base Model 
Training 

Accuracy 
Acc-loss 

Validation 

accuracy 
Val-loss 

DenseNet-121 100% 6.62E-01 98.81% 0.1437 

Densenet-201 100% 1.37E+00 98.64% 0.0605 

Xception 99.96% 0.0017 97.31% 0.0653 

EfficientNetV2B3 99.49% 0.0142 97.27% 0.0701 

EfficientNetV2S 99.62% 0.0095 97.27% 0.1571 

EfficientNetB0 99.96% 0.002 98.13% 0.0794 

InceptionV3 99.74% 0.005 96.76% 0.1517 

MobileNet 100% 7.60E-02 97.61% 0.0918 

Resnet-50 99.11% 0.0275 96.76% 0.1393 

 

Figure 3 displays the confusion matrices obtained from the test data inputs for the nine re-

trained architectures. The performance metrics for re-trained models in the first approach can be 

found in Table 3. In this context, "n truth" represents the number of actual cases within a class, while 

"n classified" indicates the count of cases classified as belonging to that class. These performance 

metrics are derived from the confusion matrices presented in Figure 3.  

 

Table 3. Performance metrics of re-trained models for the first approach 

Method Class n truth 
n 

classified 
Precision Recall F1 Score 

Overall 

Accuracy 

MobileNet 
No Tumor 67 50 0.96 0.72 0.82 

93.56% 
Tumor 259 276 0.93 0.99 0.99 

DenseNet-121 
No Tumor 64 50 0.98 0.77 0.86 

95.09% 
Tumor 262 276 0.95 1.0 0.97 

DenseNet-201 
No Tumor 66 50 0.96 0.73 0.73 

93.87% 
Tumor 260 276 0.93 0.99 0.99 

Xception 
No Tumor 59 50 0.92 0.78 0.84 

94.79% 
Tumor 267 276 0.95 0.99 0.97 

Inception-V3 
No Tumor 61 50 0.92 0.75 0.83 

94.17% 
Tumor 265 276 0.95 0.98 0.96 

EfficientNet-

B0 

No Tumor 70 50 0.98 0.70 0.82 
93.25% 

Tumor 256 276 0.92 1.0 0.96 

EfficientNet-

V2B3 

No Tumor 68 50 0.98 0.72 0.83 
93.87% 

Tumor 258 276 0.93 1.0 0.96 

EfficientNet-

V2S 

No Tumor 64 50 0.92 0.72 0.81 
93.25% 

Tumor 262 276 0.93 0.98 0.96 

ResNet-50 
No Tumor 60 50 0.82 0.68 0.75 

91.41% 
Tumor 256 276 0.93 0.97 0.95 

 

Among the models, both MobileNet and DenseNet-201 achieved the highest F1 score for the 

"Tumor" class, while ResNet-50 recorded the lowest F1 score for this class. For the "No Tumor" 

class, DenseNet-121 secured the highest F1 score, while ResNet-50 again had the lowest F1 score. 

Notably, DenseNet-121 emerged as the model with the highest overall accuracy, showcasing its 

exceptional proficiency in correctly classifying "Tumor" cases with precision, recall, and overall 
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accuracy. Conversely, ResNet-50 exhibited the lowest overall accuracy among all models, 

particularly when classifying both "No Tumor" and "Tumor" cases, indicating a relatively higher rate 

of misclassifications in comparison to the other models. 

 

 

Figure 3. Confusion matrixes for the first approach 

 

DenseNet-121 architecture provided the highest accuracy rate on the validation data for the 

second approach. Table 4 provides an overview of the training and validation performance of nine 

base models for the second approach. It includes their training accuracy, accuracy loss, validation 

accuracy, and validation loss. These metrics help assess how well each model has been trained and 

how it generalizes to new data. The table provides an overview of the training and validation 

performance of these base models. It includes their training accuracy, accuracy loss, validation 

accuracy, and validation loss. These metrics help assess how well each model has been trained and 

how it generalizes to new data. 

 

Table 4. Training performance table for first approach 

Base Model 
Training 

Accuracy 
Acc-loss 

Validation 

accuracy 
Val-loss 

DenseNet121 99.49 0.0162 84.48 0.7303 

Densenet201 99.06 0.0231 69.45 23.455 

Xception 99.78 0.0081 89.93 0,5774 

EfficientNetV2B3 99.15 0.0309 90.61 0.3279 

EfficientNetV2S 99.49 0.0181 91.98 0.2974 

EfficientNetB0 98.89 0.0362 73.04 12.469 

InceptionV3 98.98 0.0272 78.67 14.649 

MobileNet 99.66 0.0119 88.4 0.6248 

Resnet-50 99.4 0.0248 85.15 0.7683 

 

Model Model Model

P/T P/T P/T

Class No Tumor Tumor Class No Tumor Tumor Class No Tumor Tumor

No Tumor 48 2 No Tumor 49 1 No Tumor 48 2

Tumor 19 257 Tumor 15 261 Tumor 18 258

Model Model Model

P/T P/T P/T

Class No Tumor Tumor Class No Tumor Tumor Class No Tumor Tumor

No Tumor 46 4 No Tumor 46 4 No Tumor 49 1

Tumor 13 263 Tumor 15 261 Tumor 21 255

Model Model Model

P/T P/T P/T

Class No Tumor Tumor Class No Tumor Tumor Class No Tumor Tumor

No Tumor 49 1 No Tumor 46 4 No Tumor 41 9

Tumor 19 257 Tumor 18 258 Tumor 19 257
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Figure 4 displays the confusion matrices obtained from the test data inputs for the nine re-

trained architectures. 

 

 

Figure 4. Confusion matrixes for the second approach 

 

The performance metrics for re-trained models in the second approach are provided in Table 5. 

These metrics were computed based on the confusion matrices presented in Figure 4. In the Glioma 

class, DenseNet-121 achieved the highest F1 Score and Overall Accuracy, while DenseNet-201 

recorded the lowest F1 score. For the Meningioma class, DenseNet-201 attained the highest F1 Score, 

while EfficientNet-V2B3 had the lowest F1 score. In the No Tumor class, EfficientNet-V2B3 secured 

the highest F1 Score, while EfficientNet-B0 had the lowest F1 score. Regarding the Pituitary class, 

Xception demonstrated the highest F1 Score, while Inception-V3 exhibited the lowest F1 score. 

Notably, the DenseNet-121 model achieved the best overall accuracy, whereas the EfficientNet-B0 

model recorded the lowest overall accuracy among all models. 

 

Table 5. Performance metrics of re-trained models for the second approach 

Method Class n truth 
n 

classified 
Acc. Precision Recall F1 Score 

Overall 

Acc. 

MobileNet 

Glioma 51 93 85.98% 0.53 0.96 0.68 

83.23% 
Meningioma 128 94 88.41% 0.98 0.72 0.83 

No Tumor 67 50 94.82% 1.0 0.75 0.85 

Pituitary 82 91 97.26% 0.9 1.0 0.95 

DenseNet-

121 

Glioma 59 93 89.63% 0.63 1.0 0.78 

83.84% 
Meningioma 113 94 93.6% 0.99 0.82 0.9 

No Tumor 83 50 89.94% 1.0 0.6 0.75 

Pituitary 73 91 94.51% 0.8 1.0 0.89 

DenseNet-

201 

Glioma 10 93 74.7% 0.11 1.0 0.19 
64.46% 

Meningioma 178 94 71.95% 0.96 0.51 1.0 

Model Model Model

P/T P/T P/T

Class Glioma Meningioma No Tumor Pituitary Class Glioma MeningiomaNo Tumor Pituitary Class Glioma MeningiomaNo Tumor Pituitary

Glioma 49 33 11 0 Glioma 59 17 17 0 Glioma 10 65 12 6

Meningioma 2 92 0 0 Meningioma 0 93 1 0 Meningioma 0 90 0 4

No Tumor 0 0 50 0 No Tumor 0 0 50 0 No Tumor 0 0 50 0

Pituitary 0 3 6 82 Pituitary 0 3 15 73 Pituitary 0 23 0 68

Model Model Model

P/T P/T P/T

Class Glioma Meningioma No Tumor Pituitary Class Glioma MeningiomaNo Tumor Pituitary Class Glioma MeningiomaNo Tumor Pituitary

Glioma 37 25 26 5 Glioma 33 33 27 0 Glioma 18 11 64 0

Meningioma 1 92 1 0 Meningioma 0 92 2 0 Meningioma 0 44 50 0

No Tumor 0 0 50 0 No Tumor 1 0 49 0 No Tumor 0 0 50 0

Pituitary 0 2 0 89 Pituitary 0 9 22 60 Pituitary 0 0 22 69

Model Model Model

P/T P/T P/T

Class Glioma Meningioma No Tumor Pituitary Class Glioma MeningiomaNo Tumor Pituitary Class Glioma MeningiomaNo Tumor Pituitary

Glioma 37 47 7 2 Glioma 30 24 34 5 Glioma 32 25 32 4

Meningioma 1 93 0 0 Meningioma 0 84 10 0 Meningioma 0 89 5 0

No Tumor 0 0 50 0 No Tumor 0 0 50 0 No Tumor 0 1 49 0

Pituitary 0 10 0 81 Pituitary 0 3 1 87 Pituitary 1 4 5 81
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No Tumor 62 50 96.54% 1.0 0.81 0.89 

Pituitary 78 91 89.94% 0.75 0.87 0.8 

Xception 

Glioma 38 93 82.62% 0.4 0.97 0.56 

81.71% 
Meningioma 119 94 91.16% 0.98 0.77 0.86 

No Tumor 77 50 91.77% 1.0 0.65 0.79 

Pituitary 94 91 97.87% 0.98 0.95 0.96 

Inception-V3 

Glioma 34 93 81.4% 0.35 0.97 0.52 

71.34% 
Meningioma 134 94 86.59% 0.98 0.69 0.81 

No Tumor 100 50 84.15% 0.98 0.49 0.65 

Pituitary 60 91 90.55% 0.66 1.0 0.79 

EfficientNet-

B0 

Glioma 18 93 77.13% 0.19 1.0 0.32 

55.18% 
Meningioma 55 94 81.4% 0.47 0.8 0.59 

No Tumor 186 50 58.54% 1.0 0.27 0.42 

Pituitary 69 91 93.29% 0.76 1.0 0.86 

EfficientNet-

V2B3 

Glioma 38 93 82.62% 0.4 0.97 0.56 

79.57% 
Meningioma 150 94 82.32% 0.99 0.62 0.76 

No Tumor 57 50 97.87% 1.0 0.88 0.93 

Pituitary 83 91 96.34% 0.89 0.98 0.93 

EfficientNet-

V2S 

Glioma 30 93 80.79% 0.32 1.0 0.49 

76.52% 
Meningioma 111 94 88.72% 0.89 0.76 0.82 

No Tumor 95 50 86.28% 1.0 0.53 0.69 

Pituitary 92 91 97.26% 0.96 0.99 0.95 

ResNet-50 

Glioma 33 93 81.1% 0.34 0.97 0.51 

76.52% 
Meningioma 119 94 89.33% 0.95 0.75 0.84 

No Tumor 91 50 86.89% 0.98 0.54 0.7 

Pituitary 85 91 95.73% 0.89 0.95 0.92 

 

 

6. Conclusions 

 

In conclusion, this study harnessed the capabilities of deep learning algorithms to advance the 

detection and diagnosis of brain tumors through MRI scans. By utilizing a comprehensive dataset that 

captured a wide range of tumor types and imaging conditions, our model demonstrated robustness 

and adaptability. The results highlighted the efficacy of the proposed approach, achieving high 

accuracy and sensitivity in tumor detection. This contribution is instrumental in developing reliable 

tools for the early diagnosis and monitoring of brain tumors, offering significant potential for 

improving patient care in neuroimaging. 

A key aspect of the study was the careful selection of deep neural network architectures for the 

brain MRI image classification task. DenseNet-121 emerged as a particularly effective model, 

consistently providing accurate and reliable classifications. In our binary classification approach, 

which categorized images as tumor and no tumor, MobileNet, DenseNet-121, and DenseNet-201 all 

achieved perfect training accuracy. However, DenseNet-121 excelled in generalization, with a 

validation accuracy of 98.81%. In the multi-class classification, which differentiated between four 

tumor categories, DenseNet-121 again outperformed the other models, recording the highest F1 

Scores and overall accuracy, especially in the Glioma and No Tumor classes. DenseNet-201 and 

EfficientNet-B0, in contrast, demonstrated lower F1 Scores, underscoring the critical importance of 

model architecture in deep learning applications. 
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This study underscores the transformative potential of deep learning in medical imaging, 

particularly in enhancing the precision of brain tumor detection and classification. Our findings 

highlight the importance of model selection for achieving optimal performance in clinical diagnostics, 

marking a step forward in the application of AI in healthcare. 

In the future, several avenues can be explored to extend the findings of this study and further 

enhance deep learning-based brain tumor diagnosis methods. Firstly, testing the model's performance 

on larger and more diverse datasets could improve its generalization ability, particularly in diagnosing 

rare tumor types. Additionally, the use of more complex deep learning architectures, especially hybrid 

models and Transformer-based approaches, can be investigated. Integrating explainable artificial 

intelligence (XAI) methods could support the clinical use of the model by allowing doctors to trust 

these tools more confidently in decision-making processes. Finally, training the model with 

multimodal data sources, such as combining different medical imaging modalities (CT, PET, etc.), 

could provide a more comprehensive perspective in brain tumor diagnosis and monitoring. Such 

improvements could broaden the application of deep learning in the medical field and offer more 

effective solutions in clinical practice. 
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