

*Sorumlu Yazar/Corresponding Author: Mehmet HACIBEYOĞLU e-posta/e-mail: hacibeyoglu@erbakan.edu.tr

Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi
Afyon Kocatepe University – Journal of Science and Engineering

https://dergipark.org.tr/tr/pub/akufemubid

Araştırma Makalesi / Research Article
DOI: https://doi.org/10.35414/akufemubid.1455995

AKÜ FEMÜBİD 24 (2024) 055104 (1165-1179) AKU J. Sci. Eng. 24 (2024) 055104 (1165-1179)

Intrusion Detection System Application with
Machine Learning

Makine Öğrenmesi ile Saldırı Tespit Sistemi Uygulaması

Mehmet HACIBEYOĞLU * , Ferda Nur ARICI , Muhammed KARAALTUN

Necmettin Erbakan Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü, Konya, Türkiye

© Afyon Kocatepe Üniversitesi

Abstract
Information security holds paramount importance for
organizations and users alike, safeguarding against
unauthorized access to sensitive data. Daily usage of the
internet amplifies the importance of security measures and the
detection of malicious activities. Cyber-attacks, as these
malicious activities are commonly known, are continually
evolving with advancements in hardware, software, and
complex network algorithms. Intrusion Detection Systems play
a crucial role in shielding data and information from
cyberattacks. The rapid progression in machine learning and
deep learning, two popular methodologies in data mining, has
found applications in various fields, including security. This study
focuses on the use of machine learning and deep learning
methods to design an intelligent intrusion detection system. For
the development of this smart intrusion detection system, two
well-established datasets, NSL-KDD and Kyoto 2006+, were
employed. Machine learning methods were implemented
utilizing the classification algorithms available in the WEKA data
mining tool. The results obtained from these classification
algorithms were compared with the deep learning model
designed within the scope of the study. Consequently, a detailed
analysis of machine learning and deep learning methods on the
NSL-KDD and Kyoto 2006+ datasets for an intelligent intrusion
detection system was conducted, and suggestions were
proposed for further research endeavors.

Keywords: Deep learning, Intrusion detection system, Kyoto 2006+,
Machine learning, NSL-KDD

Öz

Bilgi güvenliği, her organizasyon ve kullanıcı için bilgilere yetkisiz
erişime karşı koruma sağlamak açısından son derece önemlidir.
İnternet, her gün geniş bir alanda kullanılmaktadır. Bu kullanım
arttıkça, güvenlik ve kötü niyetli faaliyetleri tespit etmenin
önemi de artmaktadır. Bu kötü niyetli faaliyetler, siber saldırılar
olarak adlandırdığımız, donanım, yazılım ve karmaşık ağ
algoritmalarının gelişimiyle gün geçtikçe değişmekte ve
gelişmektedir. Saldırı tespit sistemleri, verileri veya bilgiyi siber
saldırılardan korumada önemli bir rol oynamaktadır. Makine
öğrenimi ve derin öğrenmedeki hızlı ilerlemeler, veri
madenciliğinde popüler olan bu iki yöntemin güvenlik dâhil
birçok alanda kullanılmasına neden olmaktadır. Bu çalışmada,
akıllı bir saldırı tespit sistemi tasarımı için makine öğrenimi ve
derin öğrenme yöntemleri üzerinde çalışılmıştır. Akıllı saldırı
tespit sistemi tasarımı için literatürde iyi bilinen NSL-KDD ve
Kyoto 2006+ olmak üzere iki veri seti kullanılmıştır. Makine
öğrenimi yöntemleri, WEKA veri madenciliği aracındaki
sınıflandırma algoritmaları kullanılarak gerçekleştirilmiştir.
Sınıflandırma algoritmalarından elde edilen sonuçlar, çalışmanın
kapsamında tasarlanan derin öğrenme modeli ile
karşılaştırılmıştır. Böylece, makine öğrenimi ve derin öğrenme
yöntemleri, akıllı bir saldırı tespit sistemi için NSL-KDD ve Kyoto
2006+ veri setleri üzerinde detaylı bir şekilde analiz edilmiş ve
ileri çalışmalar için önerilerde bulunulmuştur.

Anahtar Kelimeler: Derin öğrenme, Saldırı tespit sistemi, Kyoto 2006+,
Makine öğrenmesi, NSL-KDD

1. Introduction

Nowadays, ensuring a high level of security in information

and communications technology (ICT) systems and

networks is crucial. This ensures that users and

organizations can communicate in a safe and trustworthy

environment. ICT systems and networks are continually

susceptible to various security vulnerabilities, connection

attempts, penetration attacks, and other similar

intrusions by unauthorized and malicious users (Gurung

et al. 2019). Any breach or intrusion in the security of ICT

systems and networks poses a critical problem, as these

systems process a variety of sensitive user data. Internal

and external hacker attacks, which often advance in

obscurity to evade detection, can be executed manually

or through computer-based methods against ICT systems

and networks (Vinayakumar et al. 2019). Day by day,

cyberattacks are continually evolving alongside

advancements in hardware, software, and network

topologies featuring extremely complex algorithms.

Intrusion Detection Systems (IDS) are essential for

identifying and stopping constantly changing and

advancing hostile attacks. An IDS is a security tool that

analyzes network traffic to analyze the system for

detecting suspicious activity and notifying the system or

network administrator (Vasilomanolakis et al. 2015). IDS

*Makale Bilgisi / Article Info
Alındı/Received: 20.03.2024
Kabul/Accepted: 11.07.2024

Yayımlandı/Published: 01.10.2024

https://dergipark.org.tr/tr/pub/akufemubid
https://orcid.org/0000-0003-1830-8516
https://orcid.org/0000-0002-0300-976X
https://orcid.org/0000-0002-6093-6105

 Intrusion Detection System Application with Machine Learning, HACIBEYOĞLU et al.

1166

is divided into two classes: Host-Based Intrusion

Detection System (HIDS) and Network-Based Intrusion

Detection System (NIDS). HIDS monitors the host

computer for suspicious behaviors, including altering or

removing system files, executing unauthorized system

calls, or making undesirable configuration adjustments,

and notifies the user accordingly (Vinayakumar et al.

2019). HIDS uses log file data, including sensor logs,

system logs, software logs, file systems, disk assets, user

account information, and other pertinent data for each

system. NIDS is typically positioned at network points like

gateways, switches, and routers to identify attacks and

potential threats within network traffic (Puzis et al. 2008).

Network traffic analysis and attack detection are primarily

carried out through two methods: misuse detection and

anomaly detection. Misuse detection relies on predefined

signatures and attack models to identify attacks.

Information indicating that each pattern represents a

specific type of attack is stored in the signature database,

which is regularly updated with newly discovered attack

types. During attack detection, the system searches for

patterns similar to known attack patterns in the signature

database (Kim et al. 2014). As a result, while this method

excels at accurately detecting known attacks, identifying

new attacks proves challenging. Anomaly detection, on

the other hand, relies on heuristic mechanisms to identify

unknown malicious activities. These mechanisms learn

the normal behavior and properties of the network to

generate a learning model. Any traffic flow that

significantly deviates from the learning model is

considered an intrusion or attack (Qassim et al. 2016).

While such an intrusion detection system can identify

new and unknown attacks, it often comes with a high false

positive rate due to the challenge of distinguishing

between normal and abnormal network behavior. The

classification of IDS by deployment and detection

techniques is presented in Figure 1 (Ahmad et al. 2021).

Figure 1. The classification of IDS

This article's primary contribution is to assess the impact

of data preprocessing techniques on the effectiveness of

IDS and to compare the success of the proposed deep

learning (DL) model with existing machine learning (ML)

algorithms.

2. Related Works

This section provides a summary of studies on the ML and

DL approaches used in the development of NIDS and

HIDS. As sub-branches of artificial intelligence (AI), ML

and DL are effective methods utilized in the development

of IDS by learning from big data (Prasad and Rohokale

2020). In recent years, these techniques have gained

significant popularity in the field of network security,

particularly with the advent of powerful graphics

processing units. DL-based techniques, characterized by

deep structures, have proven to be more effective in

learning complex information from raw data compared to

ML-based techniques (Dong and Wang 2016). Diro and

Chilamkurti (2018) used DL as a novel intrusion detection

technique with promising outcomes for attacks on IoT

devices. According to the authors, the addition of various

protocols resulted in the emergence of thousands of zero-

day attacks, many of which were minor variants of

previously known cyberattacks. This situation highlighted

the difficulty even traditional ML systems face in

detecting these minor attacks over time (Diro and

Chilamkurti 2018). Khraisat et al. (2018) examined various

data mining techniques that may reduce the number of

false negatives and false positives in anomaly intrusion

detection systems. The study used the NSL_KDD dataset

and found that the intrusion detection system created

with the C5 decision tree classifier worked very well and

had few false alarms (Khraisat et al. 2018). Shone et al.

(2018) presented a novel DL technique for intrusion

detection. The authors proposed a nonsymmetric deep

auto-encoder for unsupervised feature learning and

stacked it with the random forest algorithm classifier. The

proposed model was implemented on a TensorFlow-

enabled graphics processing unit and evaluated using the

KDD Cup '99 and NSL-KDD cyberattack datasets (Shone,

Ngoc et al. 2018). Duan et al. (2019) proposed an IDS

based on the improved artificial bee colony with elite-

guided search equations. The authors employed an

enhanced artificial bee colony algorithm to optimize the

initial weights of the neural network, preventing the

model from converging to a local optimum and enhancing

training speed. The developed model demonstrated

strong classification capabilities, achieving a high

detection rate for attacks (Duan et al. 2019). In a study by

Sahu and Mehtre (2015), a multi-class classification model

was presented using the J48 Decision Tree algorithm on

the Kyoto 2006+ dataset. They demonstrated that their

proposed model achieved an accuracy of 97.2% (Sahu and

 Intrusion Detection System Application with Machine Learning, HACIBEYOĞLU et al.

1167

Mehtre 2015). Swathi and Rao (2019) compared various

Partial Distance Search-based (PDS) k nearest neighbor

classifiers on the Kyoto 2006+ dataset for attack

detection. The experimental studies indicated no

significant difference between the classifiers (Swathi and

Rao 2019). Park et al. (2018) analyzed the performance of

Random Forest on various datasets derived from the

Kyoto 2006+ dataset for attack detection. Chitrakar and

Huang (2014) proposed a Candidate Support Vector

based on Incremental SVM (CSV-ISVM) algorithm on the

Kyoto 2006+ dataset for attack detection and analyzed

the results. Kasongo (2023) proposed XGBoost long short-

term memory (XGBoost-LSTM) and XGBoost Simple

Recurrent Neural Networks (XGBoost-Simple-RNN)

algorithms based on neural network algorithm for NSL-

KDD and the UNSW-NB15 benchmark datasets. The

obtained results have been compared with different

types of Recurrent Neural Networks, as a result, the

XGBoost-LSTM algorithm obtained the best result in the

NSL-KDD on the other hand XGBoost-Simple-RNN

algorithm achieved competitive results in UNSW-NB15

benchmark dataset (Kasongo 2023). Du et al. (2023)

proposed a network intrusion detection classification

model based on a convolutional neural network and long

short-term memory algorithms (NIDS-CNNLSTM). The

proposed NIDS-CNNLSTM applied n KDD CUP99,

NSL_KDD, and UNSW_NB15 benchmark datasets, the

outcomes of the proposed NIDS-CNNLSTM show a high

detection rate and classification accuracy and a low false

rate (Du et al. 2023). Zakariah et al. (2023) proposed a

novel intrusion detection system based on an artificial

neural network (IDS-ANN), the proposed IDS has been

tested on the NSL_KDD dataset. The results of the

proposed IDS have been compared with ML classifiers like

k-nearest neighbors, DL, Support Vector Machine, Long

Short-Term Memory, and Deep Neural Network. The

performance of the proposed IDS consistently

outperformed each of these ML classifiers in all

evaluations (Zakariah et al. 2023). Bakro et al. (2024)

present an improved cloud IDS based on the synthetic

minority over-sampling technique (SMOTE), information

gain (IG), chi-square (CS), particle swarm optimization

(PSO), and random forest (RF). In the proposed IDS,

SMOTE has been utilized to address the imbalanced data

issue, IG, CS, and PSO have been used for feature

selection, and finally the RF is utilized for detecting and

classifying types of attacks. The proposed IDS has been

verified by the UNSW-NB15 and Kyoto benchmark

datasets, as a result, the proposed IDS significantly

outperforms other IDSs proposed in the related work

according to evaluation metrics (Bakro et al. 2024). The

list of related works are shown in Table 1.

Table 1. List of related works

Reference Algorithm Dataset
Evaluation Metrics Classification Type

TPR FPR AUC Binary Multi Class

Chitrakar and
Huang (2014)

Candidate Support Vector
based Incremental SVM

Kyoto
2006+

N/A N/A N/A + N/A

Sahu and Mehtre
(2015)

J48 Decision Tree
Kyoto
2006+

97.20% 47.00% 97.2% N/A

Normal

Attack

Unknown Attack

Park et al. (2018) Random Forest
Kyoto
2006+

N/A N/A 99% N/A

Normal

Attack

Unknown Attack

Shone et al.
(2018)

Non-symmetric Deep Auto-
Encoder + Random Forest

NSL-KDD

97.73% 20.62% N/A

N/A

Normal
94.58% 1.07% N/A Dos
3.82% 3.45% N/A R2L
2.70% 50.00% N/A U2R

94.67% 16.84% N/A Probe

Duan et al. (2019)
Artificial bee colony + BP
neural networks

NSL-KDD 97.23% N/A 98.12% + N/A

Swathi and Rao
(2019)

Partial Distance Search-
based (PDS) K-NN

Kyoto
2006+

N/A N/A 99.28% N/A
Normal
Attack
Unknown Attack

Rama Devi and
Abualkibash
(2019)

Logistic Regression

NSL-KDD

N/A 4.7% 97.4%

+ N/A

Random Forest N/A 3.2% 99.7%
Stochastic Gradient
Descent

N/A 4.8% 97.4%

Naive Bayes N/A 2.1% 89.5%
Adaboost N/A 4.5% 89.3%
Multi-Layer Perceptron N/A 3.9% 88.9%

 Intrusion Detection System Application with Machine Learning, HACIBEYOĞLU et al.

1168

Table 1. (continued) List of related works

Reference Algorithm Dataset Evaluation Metrics Classification Type

 TPR FPR AUC Binary Multi Class

Su et al. (2020) Deep Learning

NSL-KDD 98.45% 16.52% 90.13% + N/A

NSL-KDD

97.5% 25.7% N/A

N/A

Normal

87.55% 1.52% N/A Dos

44.25% 0.91% N/A R2L

20.95% 0.09% N/A U2R

85.76% 1.15% N/A Probe

Choudhary and

Kesswani (2020)
Deep Learning NSL-KDD 89.14% 0.91% 96.33% + N/A

Kasongo (2023) XGBoost-LSTM NSL-KDD N/A N/A 99.49% N/A

Normal

Dos

R2L

U2R

Probe

Du et al. (2023) NIDS-CNNLSTM NSL-KDD N/A 0.29% 99.9% +
Normal

Abnormal

Zakariah et al.

(2023)
IDS- ANN ANN NSL-KDD N/A N/A 97.5% +

Normal

Abnormal

Bakro et al.

(2024)
Modified RF

Kyoto

2006+
99.25% 0.008 99.25% N/A

Normal

Abnormal

TPR: True Positive Rate, FPR: False Positive Rate, AUC: Accuracy

3. Materials and Methods

3.1. Datasets

3.1.1. NSL-KDD Dataset

The KDD Cup 99 dataset, prepared by Stolfo et al. (2000),

is the best known and most widely used dataset in the

evaluation of anomaly detection methods in computer

networks. The KDD Cup 99 dataset was created in the

DARPA'98 IDS assessment program. The dataset contains

41 features in which each record is labeled as normal or

attack and redundant records that complicate the

classification task for ML algorithms (Revathi and Malathi

2013, Tavallaee et al. 2009). These undesirable features

of the KDD Cup 99 dataset have been found by

researchers to affect the detection accuracy of many IDSs,

and the NSL-KDD dataset was derived to overcome these

disadvantages (Tavallaee et al. 2009). The NSL-KDD

dataset, which is the revised and cleaned-up version of

KDD CUP 99 dataset has certain advantages. These are

(Tavallaee et al. 2009, Datti and Verma 2010);

• The training set does not have duplicate entries, which
aids in the learning process for classifiers.

• The test set is free of any duplicate records.

• There is an inverse relationship between the proportion
of records in the original KDD dataset and the number of
records selected from each difficulty level group.

• The quantity of records in both the training and test sets

is adequate.

Table 2 lists attack types of NSL-KDD datasets (Dhanabal,

and Shantharajah 2015).

Table 2. Attack types of NSL-KDD dataset

Category

of attack
Attack Name Total

DoS

apache2, back, land, neptune,

mailbomb, pod, processtable, smurf,

teardrop, upstorm, worm

11

Probe
ipsweep, mscan, nmap, portsweep,

saint, satan
6

R2L

ftp_write, guess_passwd, httptunnel,

imap, multihop, named, phf, sendmail,

snmpgetattack, spy, snmpguess, xclock,

warezclient, warezmaster, xsnoop

15

U2R
buffer_overflow, loadmodule, perl, ps,

rootkit, sqlattack, xterm
7

The detailed analysis of the NSL-KDD dataset shows the

number of records in four kinds of attacks and normal

traffic for training and testing is shown in Table 3.

Table 3. Number of records in NSL-KDD dataset

NSL-KDD
Number of Records

Dos Probe R2L U2R Normal Total

KDD

Train+
45927 11656 995 52 67343 125973

KDD Test+ 7460 2421 2885 67 9711 22544

Total 53387 14077 3880 119 77054 148517

3.1.2. Kyoto 2006+ Dataset

Kyoto 2006+ is a public dataset that consists of three

years of actual traffic data from November 2006 to August

2009 . The dataset has 24 features, with 14 of them being

extracted from the KDD CUP'99 dataset. Ten additional

elements have been included to enhance the analysis of

Network-based Intrusion Detection Systems (NIDSs).

 Intrusion Detection System Application with Machine Learning, HACIBEYOĞLU et al.

1169

Honeypots were used to generate the Kyoto 2006+

dataset, which informs IDS researchers on the latest

cyberattack trends and internet situations (Song et al.

2011). In this study, while using the Kyoto 2006+ dataset,

Source_IP_Address, Source_Port_Number,

Destination_IP_Address, Destination_Port_Number and

Start_Time properties have been removed. Kyoto 2006+

dataset doesn’t provide the attack type information. The

class attribute of the dataset indicates whether the

session is attack or not attack. To ensure data diversity,

three different days were selected from January and May

2015, and the used dataset was created by combining

them. Table 4 demonstrates the properties of the class

types of the Kyoto 2006+ dataset.

Table 4. The class types of the Kyoto 2006+ dataset

Kyoto 2006+

Number of Records

Normal

Session

Known

Attack

Unknown

Attack

Original Dataset 50,033,015 43,043,225 425,719

The Used Dataset 83,033 1,934,163 72

3.2. Feature Selection

Feature selection is the technique of selecting a subset of

features from the original features. The general purpose

of feature selection is to get rid of irrelevant, redundant

features in the dataset in order to build robust learning

models. Feature selection preserves important features,

thus making the learning algorithm run faster (Kabir et al.

2010, Ladha and Deepa 2011). Also, feature selection

helps visualize and understand data, reduces training

times, and requires less storage (Guyon and Elisseeff

2003). The advantages of feature selection are (Ladha and

Deepa 2011):

• Reduces the size of the feature set and increases the

speed of the ML classification algorithm.

• Improves data quality by eliminating irrelevant and

noisy data.

• Simplifies the data collection process and reduces the

amount of memory needed for data storage.

• Increases the success of the classification model.

Feature selection methods can be generally evaluated in

three categories. These are filter methods, wrapper

methods, and hybrid methods. In filter methods, feature

selection is done with functions based on statistical

criteria such as distance, dependency, knowledge, and

consistency measurements before any learning is studied

(Budak 2018). In wrapper methods, there must be a

predetermined learning model for feature selection. This

method has a higher computational cost than the filter

method (Guan, Liu et al. 2004). Forward selection,

backward selection, and stepwise selection are examples

of these methods. Hybrid methods combine filter

methods and spiral methods. Decision trees and support

vector machines are examples of hybrid methods (Budak

2018). In this study, wrapper methods were used as

feature selection methods.

3.2.1. Wrapper Methods

Wrapper methods use a specific learning algorithm to

generate a subset of features that get better solutions.

Wrapper methods generally outperform filter methods in

terms of prediction accuracy. However, wrapper methods

are difficult to implement in high-dimensional datasets

because the learning algorithms are computationally

expensive (Zhu et al. 2007, El Aboudi and Benhlima 2016).

3.2.1.1. Sequential Feature Selection

The Sequential Feature Selection (SFS) is a feature

selection method that initially starts with an empty set

and then adds the feature that provides the best

classification accuracy to the empty set. The second step

involves adding the remaining features to the existing

subset and evaluating the new feature subset. These

steps persist until we incorporate the remaining features

into the feature set and the accuracy of the classification

remains unchanged. This creates a subset of the features

(Whitney 1971, El Aboudi and Benhlima 2016, Yan et al.

2018). The weakness of this method is that a selected

feature cannot be removed from the cluster in later steps

(El Aboudi and Benhlima 2016).

3.2.1.2. Sequential Backward Selection (SBS)

The Sequential Backward Selection (SBS) method,

presented by Marill and Green (1963) (Pudil et al. 1994),

works in the opposite way to the SFS method. This

method starts with a set containing all the properties. The

method then eliminates the feature that enhances

classification accuracy by subtracting it from the feature

set. These steps persist until the removal of any feature in

the set fails to increase the classification accuracy. This

creates a subset of the features. Similar to SFS, SBS is not

guaranteed to find the optimal subset of features, but it

provides rapid convergence to a solution (Marill and

Green 1963, El Aboudi and Benhlima 2016).

3.3. Classification Algorithms

3.3.1. Artificial Neural Network

Artificial neural networks (ANN) are a type of supervised

ML model that mimics the neural processes of the human

brain. The system consists of neurons, which are

processing units, and their interconnections (Krose and

Smagt 1996). The threshold logic unit presented by

 Intrusion Detection System Application with Machine Learning, HACIBEYOĞLU et al.

1170

Warren McCulloch and Walter Pitts in 1943 and the

Perceptron designed by Frank Rosenblatt in 1957 can be

considered the basis of ANNs (Rojas 2013). The net input

of the cell is calculated by linearly combining the inputs as

a result of multiplying the n inputs applied as inputs to the

artificial neuron with the relevant weight value. Then, the

calculated input value is subjected to an activation

function, and the output of the cell is calculated.

Layers of artificial neurons combine to form artificial

neural networks. They usually consist of an input layer,

one or more hidden layers, and an output layer which are

called multilayer neural networks. Multi-layer neural

networks are the most commonly used neural network

architectures due to their simplicity. A fully connected

neural network occurs when each neuron transmits all

the values it generates to the subsequent neuron.

3.3.2. K-Nearest Neighbor

The K-Nearest Neighbor (K-NN) algorithm is one of the

simplest supervised ML algorithms that predicts the class

of the new sample based on feature similarity using all

samples in the training set (Ahmad et al. 2021). This

algorithm calculates the distance between the newly

arrived sample and each sample in the training set and

then estimates the newly arrived sample's class based on

the number of classes with the smallest distance.

Euclidean, Manhattan, and Minkowski distance equations

in K-NN are equations used to calculate distances

between two samples (Khan et al. 2002). In the K-NN

algorithm, the k parameter is one of the factors affecting

the model's performance. If the value of k is too small, the

model may overlearn. A large k value could lead to the

misclassification of the new sample (Zhang et al. 2019).

3.3.3. Decision Tree

Decision Tree (DTree) is one of the basic supervised ML

algorithms used for both classification and regression,

taking the rules from the class-labeled training sets

(Gorunescu 2011, Chary and Rama 2017). In DTree, a

pattern consists of nodes, branches, and leaves. Every

node symbolizes a feature. The branch symbolizes a

decision or regulation. Every leaf symbolizes a class label

(Chary and Rama 2017, Sahani et al. 2018). There are

different decision trees for the classification process, such

as CART, C4.5, and ID3. In this study, C4.5 decision tree

classifier is used. C4.5 is an entropy-based classifier that

measures the uncertainty of the dataset. C4.5 uses

entropy to calculate the information gain. The

information gain determines the degree and importance

of the attributes for generating a rule by constructing the

tree structure (Gorunescu 2011). After calculating the

information gain of all attributes in the dataset, the

attribute with the largest information gain value is placed

at the root of the tree. The remaining attributes are

placed on the branches from root to tip.

3.3.4. Naïve Bayes

The Naive Bayes (NB) classification method is a

probabilistic classifier based on Bayes' theorem. Bayesian

classifiers determine the most likely class for a particular

occurrence based on its feature vector. The NB classifier,

𝑃(𝐶𝑖 ∣ 𝑋) determines the probability that the X instance

belongs to the class 𝐶𝑖. The sample to be classified is

assigned to the class with the highest probability. The NB

classifier makes learning easier by presuming that

features are unrelated to the classes that are provided.

Even though this assumption of independence is

frequently faulty, NB frequently outperforms more

sophisticated classifiers in real-world scenarios. The NB

method can run faster than other classifiers and may

provide higher classification accuracy when applied to

large datasets (Rish 2001, Gorunescu 2011).

3.3.5. Decision Table

The Decision Table (DTable) is a learning algorithm based

on schema-specific feature selection. This selection

process involves identifying the optimal subset of

features by evaluating the performance of learning

schemas using different feature subsets. Decision tables,

a type of classifier with schema-specific attribute

selection, are increasingly employed across various fields

(Witten and Frank 2002, Witlox et al. 2009). A decision

table comprises two main components: the schema and

the body. The schema represents a pre-selected set of

attributes that define the data, while the body is a table

of labeled data items. In this table, the attributes specified

by the schema constitute the rows, and the decisions

form the columns. When presented with an unlabeled

sample, a decision table classifier seeks matches in the

decision table using only the features in the schema. If the

instance is not located, the decision table's majority class

is returned. The most common class among all matching

instances will be returned if there is no other outcome

(Hodge et al. 2006).

3.3.6. Deep Learning

DL is one of the most popular ML techniques today. DL is

a ML algorithm inspired by the human brain that mimics

how neurons receive and process information through

interaction. DL is defined as the use of interconnected

deep networks with multiple layers to produce an output.

The layers use the results from the previous stage as input

 Intrusion Detection System Application with Machine Learning, HACIBEYOĞLU et al.

1171

and transfer them to the next layer so that they can

produce an output. Similar to the structure and depth of

the human brain, DL methods learn from the low-level

characteristic to the high-level concept. DL is a subset of

ML activities that includes many hidden layers with deep

web features. DL models are more efficient than ML

approaches due to their intricate architecture and

capacity to autonomously extract significant information

from the dataset to provide an output (Dong and Wang

2016, Wei et al. 2018, Ahmad et al. 2021). In DL, the

number of hidden layers is greater than in typical neural

networks, allowing for the creation of more complicated

and nonlinear interactions. Due to its good performance,

DL is used in many fields in the literature, such as

biomedicine, computer vision, manufacturing,

agriculture, image processing, and medicine (Mohsen et

al. 2018). There are many reasons behind the frequent

use of DL methods today. The main ones are:

• The increase in the amount of data: The widespread use

of the internet has led to the production and storage of

large amounts of data in digital media. DL methods

enabled the realization of this big data use.

• GPUs and increased processing power: Powerful and

efficient parallel calculations can be made using the GPU

(Graphics Processing Unit). GPUs are used to train DL

algorithms faster on large datasets.

• Increasing depth: With the increase in processing

power, DL methods can be used in practice.

Solving problems with DL is equivalent to designing the

multi-layer network structure in the best and most

appropriate way. While designing ML models that learn

with input data, there are some parameters that

designers need to decide for the algorithms and

techniques to be used in the model. Likewise, in DL

models, the designer decides on the dropout value, the

number of layers, and the number of neurons. Typically,

these parameters are not exact initially but change based

on the specific situation and dataset. Hyper-parameters

are parameters that vary based on the specific problem

and dataset. The hyper-parameters that determine the

performance of the DL that need to be adjusted in DL

training are as follows (Sarker 2021):

• Dataset Size: The size and variety of the dataset are one

of the most important factors in DL algorithms. The larger

and more diverse the dataset, the higher the learning rate

and time spent learning.

• Mini Batch Size: With the large data size in DL

applications, processing all data at the same time

consumes time and memory. Because in each iteration of

the learning, gradient descent is calculated on the

network with the backpropagation process, and the

weight values are updated. The larger the number of data,

the longer this process will take. For this reason, the data

is processed in parts. These pieces are called mini-

batches.

• Learning Rate and Momentum Coefficient: The updating

of parameters in DL algorithms is done during the

backpropagation process. During backpropagation, the

difference is calculated by computing backward

derivatives using the chain rule. This difference is then

scaled by the learning rate parameter and used to update

the weight values. The learning rate in this process can be

a constant, incremental, momentum-dependent, or

adaptively learned value.

• Optimization Applications: To determine the best value

in nonlinear issues, optimization techniques are applied.

The optimization techniques adam, adamax, adagrad,

adadelta, and stochastic gradient descent are commonly

employed in DL applications. These algorithms differ in

terms of speed and performance. The choice of these

algorithms is also hyper-parameter.

• Number of Training Rounds (Epoch): During the training

process, the model updates its weights using

backpropagation after each batch of data is processed.

Subsequently, the identical procedure is implemented for

additional training datasets. The best suitable weight

values are attempted to be calculated in each training

step. An epoch refers to the number of training steps.

Weight values are calculated incrementally in DL,

resulting in a low success rate in the initial epochs which

improves as weights are updated. Learning ceases after

reaching a specific stage.

• Activation Function: Activation functions convert the

output values to non-linear values after weight

calculation in multilayer artificial neural networks.

Nonlinearity, which is a feature of DL methods, is due to

the nonlinearity of the activation functions and is used in

solving nonlinear problems. Sigmoid, Tangent Hyperbolic,

Relu and Softmax are frequently used activation

functions.

• Dropout: In fully connected layer networks, dilution of

nodes below a certain threshold increases the success.

• Number of Layers and Hidden Layers: The most

important feature that distinguishes DL applications from

other artificial neural networks is the number of layers.

Layers and hidden layers create a depth, and as the depth

increases, the learning rate and rate increase. The

number of layers varies according to the design of the

 Intrusion Detection System Application with Machine Learning, HACIBEYOĞLU et al.

1172

model. The success rate in DL depends on both the

number of layers and hyper-parameters.

There are many DL architectures developed in the

literature until today. Examples are Convolutional Neural

Networks (CNN), Deep Neural Networks (DNN), Recurrent

Neural Networks (RNN), AutoEncoder (AE), and Deep

Belief Network (DBN). In this study, DNN architecture was

designed and used. A basic DL architecture known as DNN

allows the model to learn across several levels. For ML

tasks like regression and classification, DNNs work

incredibly well. There are numerous hidden layers in

addition to the input and output layers. Multiple hidden

layers in DNNs are used to transport the input data from

the input layer to the output layer. DNN is used to model

complex nonlinear functions. DNNs, unlike traditional

networks, contain multiple hidden layers that use

specially designed mathematical operations and

activation functions. Thus, the increasing number of

hidden layers increases the abstraction level of the model

to increase its capacity (Anuse and Vyas 2016, Dong

2018). There is a common problem in the training phase

of traditional networks: overfitting. In the overfitting

problem, the network learns too much of some examples

in the training set. Thus, the network may not learn from

other samples in the training set or samples that are not

seen in the test set. Dropout has been proposed to

overcome the overfitting problem. The dropout operation

randomly selects some of the nodes from the network

and does not use them in the training process (Srivastava,

Hinton et al. 2014).

3.4. Dataset Splitting

In this study, K-fold Cross-validation method is used to

split the dataset. The K-fold Cross validation technique is

one of the most used approaches for model selection,

model parameters, and error prediction for classifiers.

Cross-validation is used to evaluate the generalization

ability of models and to prevent overfitting. K-fold cross-

validation involves randomly dividing the dataset into k

subsets, where one subset is used as the test set and the

remaining k-1 subsets are used as the training set in each

iteration. These operations are repeated for the number

of sub-sets by changing the test set each time. Here "fold"

refers to the number of sub-sets. The performance of the

model is the average of the performances of k clusters. In

this method, fold selection is important. Figure 2 shows

an example of 10-fold cross-validation (Zhang and Liu

2023).

3.5. Data Normalization

Data normalization is data preprocessing techniques and

means converting all the variables in the data to the same

range. Data normalization can improve the accuracy and

efficiency of ML algorithms. Decimal Scaling, Min-Max

Normalization, and Z-Score Standardization are the

frequently used normalization techniques in the literature

(Al Shalabi and Shaaban 2006).

Figure 2. 10-fold cross-validation

In the study, the Min-Max normalization method is used.

The Min-Max normalization is a method that provides

linear conversion from a predefined range to a newly

defined range (Patro and Sahu 2015). The formula of the

Min-Max normalization for an attribute A is shown in

Equation 1.

𝑣′ =
𝑣 − 𝑚𝑖𝑛𝐴

𝑚𝑎𝑥𝐴 − 𝑚𝑖𝑛𝐴

(𝑛𝑒𝑤_𝑚𝑎𝑥𝐴 − 𝑛𝑒𝑤_𝑚𝑖𝑛𝐴) + 𝑛𝑒𝑤_𝑚𝑖𝑛𝐴 (1)

Here, 𝑣 is the value to normalize, 𝑣′ is the new normalized

value, 𝑚𝑖𝑛𝐴 is the minimum value of attribute A, 𝑚𝑎𝑥𝐴 is

the maximum value of attribute A, 𝑛𝑒𝑤_𝑚𝑖𝑛𝐴 and

𝑛𝑒𝑤_𝑚𝑎𝑥𝐴 are the new minimum and maximum limits of

attribute A to scale. The normalized features in the study

are scaled to the range of 0 and 1. In the study, the

features applied to the Min-Max normalization process in

the NSL-KDD dataset and the Kyoto 2006+ dataset are

shown in Tables 5 and 6.

Table 5. Normalized features in the NSL-KDD dataset

Feature Names

duration, src_bytes, dst_bytes, land, wrong_fragment,

urgent, num_failed_logins, logged_in, dst_host_count,

su_attempted, num_access_files, count, num_file_creations,

num_shells, num_compromised, num_root, hot,

num_outbound_cmds, dst_host_srv_count, is_host_login,

is_guest_login, srv_count, dst_host_count, root_shell

Table 6. Normalized features in the Kyoto 2006+ dataset

Feature Names

source_bytes, destination_bytes, IDS_detection, count,

dst_host_count, dst_host_srv_count, malware_detection,

ashula_detection

 Intrusion Detection System Application with Machine Learning, HACIBEYOĞLU et al.

1173

3.6. Encoding

For the machines to make modelling on the datasets, the

dataset must be of numerical type in a way that the

machine can understand. The conversion of non-digital

data into digital is called Encoding (Oğuzlar 2003). In this

study, coding process was applied by starting from scratch

while encoding process was being done. For example, the

protocol_type property in the NSL-KDD dataset takes the

values of "icmp, tcp, "udp" before encoding, and "0, 1, 2"

after encoding, respectively. In this study, encoding

process was applied to the properties named

protocol_type, service, flag, and class in the NSL-KDD

dataset. In the Kyoto 2006+ dataset, the coding process

has been applied to the features named protocol_type,

service, and flag.

3.7. Evaluation Criteria

The following performance evaluation criteria were used

to evaluate the performance of the DL model and ML

methods designed in this study; accuracy, precision,

recall, F-measure, and error rate. These metrics are

extracted from the two-dimensional confusion matrix,

which provides information about the Actual and

Predicted class (Ahmad et al. 2021) shown in Table 7.

Table 7. Confusion matrix

 Predicted Class

Actual

Class

 Attack Normal

Attack True Positive False Negative

Normal False Positive True Negative

In Table 7, True Positive (TP) values are attack samples

that are correctly classified by the classifier. True Negative

(TN) values are normal samples that are correctly

classified by the classifier. False Positive (FP) values are

normal samples that are misclassified by the classifier.

False Negative (FN) values are attack samples that are

misclassified by the classifier. Using all these values, the

performance evaluation metrics used in the study are

calculated as (2), (3), (4) and (5):

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 (2)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (3)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (4)

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = 2 (
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙
) (5)

Here, accuracy is the ratio of correctly predicted samples

to all samples. This value represents model prediction

accuracy. Precision shows how well the model predicts

attack patterns. Recall is the proportion of accurately

classified attack instances to all real attack cases. The F-

Measure is calculated as the harmonic mean of Precision

and Recall. This value measures the accuracy of a system,

taking into account both the precision and recall of the

system (Ahmad 2021).

3.8. WEKA

WEKA was developed in 1997 at the University of Waikato

for data mining and ML tasks. WEKA got its name from the

initials of the words Waikato Environment for Knowledge

Analysis. WEKA is a set of ML and data mining algorithms.

WEKA has a GUI interface and is programmed in JAVA. The

file format or extension used to store data in WEKA is

ARFF. WEKA has tools for visualization. Besides, it has the

ability to expand and include new algorithms (Meena and

Choudhary 2017). In this study, ML algorithms were

tested on WEKA.

4. Experimental Results

In this study, the datasets were tested with the frequently

used machine learning algorithms for classification

processes in the literature on the WEKA program after

applying the data preprocessing steps. The designed DL

approach is given in Figure 3. In Table 8, the parameters

of DL and the algorithms used are given.

Figure 3. Deep learning model structure

Table 8. Parameters of the algorithms used

Algorithm Parameters

ANN batch size=128, epoch=1000

K-NN K=5, batch size=128

DTree batch size=128

DTable batch size=128

DL batch size = 128, iteration = 1000

.

 Intrusion Detection System Application with Machine Learning, HACIBEYOĞLU et al.

1174

Table 9. Results for the original NSL-KDD and preprocessed NSL-KDD datasets

Method
Original NSL-KDD Dataset Preprocessed NSL-KDD Dataset

Accuracy Precision Recall F-measure Accuracy Precision Recall F-measure

ANN 0,976 0,977 0,977 0,977 0,988 0,988 0,988 0,988

K-NN 0,991 0,991 0,991 0,991 0,990 0,990 0,990 0,990

DTree 0,995 0,996 0,996 0,996 0,992 0,993 0,993 0,993

NB 0,872 0,875 0,873 0,872 0,864 0,865 0,865 0,865

DTable 0,987 0,987 0,987 0,987 0,975 0,975 0,975 0,975

DL 0,994 0,994 0,994 0,994 0,993 0,993 0,993 0,993

4.1. Results in the NSL-KDD Dataset

The NSL-KDD dataset was analyzed as four separate sets

as original, preprocessed, SFS feature selection applied

(NSL-KDD-SFS) and SBS) feature selection applied (NSL-

KDD-SBS). The results of four separate sets are given in

Table 9. When the original NLS-KDD results are analyzed,

The DTree outperforms others, achieving a remarkable

accuracy of 99.5% and precision, recall, and F-measure all

at 99.6%. On the other hand, the DL model displays high

performance across the board, with an accuracy of 99.4%

and precision, recall, and F-measure all at

99.4%.According to the results of preprocessed NSL-KDD;

ANN, K-NN, and DL models achieve exceptionally high

accuracy of 98.8%, 99.0%, and 99.3%, respectively.

Precision, recall, and F-measure values are consistently

strong for all models, with DTree leading with 99.3%

across these metrics. NB, while having a lower accuracy of

86.4%, maintains a balanced precision and recall around

86.5%. The DTable model also performs well, with an

accuracy of 97.5%. Overall, these results underscore the

effectiveness of the models in capturing patterns within

the data, and the choice among them should consider

specific task requirements and trade-offs between

precision and recall.

Table 10. Results for the NSL-KDD-SFS and NSL-KDD-SBS datasets

Method
NSL-KDD-SFS Dataset NSL-KDD-SBS Dataset

Accuracy Precision Recall F-measure Accuracy Precision Recall F-measure

ANN 0.987 0.988 0.988 0.988 0.988 0.988 0.988 0.988

K-NN 0.990 0.990 0.990 0.990 0.989 0.990 0.990 0.990

DTree 0.992 0.993 0.993 0.993 0.992 0.993 0.993 0.993

NB 0.864 0.865 0.865 0.864 0.857 0.858 0.857 0.857

DTable 0.975 0.975 0.975 0.975 0.975 0.975 0.975 0.975

DL 0.991 0.991 0.991 0.991 0.991 0.991 0.991 0.991

After SFS feature selection is made on the NSL-KDD

dataset; ANN, K-NN, DTree, NB, DTable, and DL models all

exhibit commendable performance. ANN, K-NN, and DL

showcase consistently high accuracy of 98.7%, 99.0%, and

99.1%, respectively, along with matching precision, recall,

and F-measure values around 98.8%, 99.0%, and 99.1%.

DTree performs exceptionally well with an accuracy of

99.2% and precision, recall, and F-measure all at 99.3%.

NB trails behind with an accuracy of 86.4%, while DTable

maintains a solid accuracy of 97.5%.

According to the results of NSL-KDD-SBS DTree, K-NN, and

DL models consistently achieve accuracy levels above

99%, showcasing their exceptional predictive capabilities.

Naive Bayes lags slightly behind with an accuracy of

85.7%, suggesting it may not perform as well on this task.

However, all models, including Naive Bayes, maintain

balanced precision, recall, and F-measure values.

4.2. Results in the Kyoto 2006+ Dataset

The Kyoto 2006+ dataset was analyzed as three separate

sets: original, preprocessed, and SBS feature selection

applied. Since all features were selected during feature

selection using the SFS method, no experimental study

was conducted with the Kyoto 2006+ SFS dataset. The

results are given in the table below. When the original

Kyoto2006+ results are examined ANN and K-NN achieve

high accuracy levels of 97.7% and 98.6%, respectively,

with balanced precision, recall, and F-measure values

around 97.5-98.6%. Decision Tree excels with an accuracy

of 99.5% and near-perfect precision, recall, and F-

measure scores at 99.6%. Naive Bayes, while displaying a

 Intrusion Detection System Application with Machine Learning, HACIBEYOĞLU et al.

1175

lower accuracy of 69.3%, exhibits remarkably high

precision at 95.1%, although with a lower recall and F-

measure. Decision Table performs well with an accuracy

of 98.9% and consistent precision, recall, and F-measure

values. Deep Learning stands out with an impressive

accuracy of 99.5% and balanced precision, recall, and F-

measure scores at 99.5%.

Table 11. Results for the Kyoto 2006+ original and preprocessed dataset

Method
Kyoto 2006+ Dataset Kyoto 2006+ Preprocessed Dataset

Accuracy Precision Recall F-measure Accuracy Precision Recall F-measure

ANN 0.977 0.975 0.977 0.975 0.975 - 0.975 -

K-NN 0.986 0.985 0.986 0.986 0.986 0.985 0.986 0.986

DTree 0.995 0.996 0.996 0.996 0.990 0.990 0.991 0.990

NB 0.693 0.951 0.694 0.786 0.695 0.947 0.695 0.787

DTable 0.989 0.989 0.989 0.989 0.979 0.978 0.980 0.978

DL 0.995 0.995 0.995 0.995 0.991 0.991 0.991 0.991

According to the preprocessed Kyoto2006+ results ANN

achieves an accuracy of 97.5% with recall at 97.5%,

suggesting that it captures a high proportion of actual

positive instances. However, precision and F-measure

values are not provided. K-NN demonstrates solid

performance with accuracy, precision, recall, and F-

measure all at 98.6%. Decision Tree also performs well

with an accuracy of 99.0% and balanced precision, recall,

and F-measure values at 99.0-99.1%. Naive Bayes shows

a lower accuracy of 69.5% but maintains a high precision

of 94.7%, suggesting it correctly identifies a substantial

portion of positive instances. Decision Table achieves an

accuracy of 97.9% with balanced precision, recall, and F-

measure values around 97.8-98.0%. Deep Learning stands

out with an accuracy of 99.1% and balanced precision,

recall, and F-measure scores at 99.1%

Table 12. Results for the Kyoto 2006+ SBS datasets

Method
Kyoto 2006+ SBS

Accuracy Precision Recall F-measure

ANN 0.884 0.885 0.884 0.884
K-NN 0.879 0.883 0.880 0.880
DTree 0.912 0.913 0.912 0.912
NB 0.824 0.823 0.824 0.823
DTable 0.833 0.836 0.833 0.830
DL 0.990 0.990 0.990 0.990

After the SBS feature selection is made on Kyoto 2006+

dataset; ANN achieves an accuracy of 88.4%, precision of

88.5%, recall of 88.4%, and an F-measure of 88.4%. K-NN

closely follows with an accuracy of 87.9%, precision of

88.3%, recall of 88.0%, and an F-measure of 88.0%.

Decision Tree performs slightly better with an accuracy of

91.2%, precision of 91.3%, recall of 91.2%, and an F-

measure of 91.2%. Naive Bayes lags with an accuracy of

82.4%, precision of 82.3%, recall of 82.4%, and an F-

measure of 82.3%. Decision Table exhibits an accuracy of

83.3%, precision of 83.6%, recall of 83.3%, and an F-

measure of 83.0%. Finally, Deep Learning stands out with

exceptional performance, achieving an accuracy,

precision, recall, and F-measure of 99.0%.

4.3. Discussion of Experimental Results

When all experimental studies are taken into account, it

can be seen that classification accuracy generally

decreases, especially after data preprocessing and

feature selection processes. Moreover, it seems that the

success of all machine learning algorithms except the K-

NN algorithm decreases after the normalization process

because, in the K-NN algorithm, each feature is expected

to have the same impact on the classification process. In

addition, the high number of features provides flexibility

to machine learning models. It has been observed that

selecting some features for these datasets deprives the

model of the unique information contained in that

feature, information that could be a critical determinant

of the outcome. As a result of the classification model

being deprived of some features required for prediction,

it was analyzed that the data was insufficient for high

success and thus the classification accuracy was

determined to decrease. According to the results, it has

been observed that the DL model gives better results on

the original dataset for both NSL-KDD and Kyoto 2006+

datasets. Thus, it was learned that the DL model is more

successful with more data.

Moreover, as an intrusion detection system, the best

results of the proposed intrusion detection system on

NSL-KDD and Kyoto datasets are compared with the

previous studies. When compared with the proposed DL

model and the study conducted by Kasongo in 2023, it is

seen that they achieve 99.5% and 99.49% success,

respectively, for the NSL-KDD dataset. In addition, when

the proposed DL model is compared with the study

conducted by Bakro in 2024, it is seen that they achieve

99.5% and 99.25% success, respectively, for the Kyoto

 Intrusion Detection System Application with Machine Learning, HACIBEYOĞLU et al.

1176

2006+ dataset. As a result, the proposed DL model is

successful for both datasets.

5. Conclusions

In this study, a machine learning-based approach has

been studied in the development of intelligent intrusion

detection systems. Within the scope of the study, NSLKDD

and Kyoto 2006+ datasets, which are frequently used in

the literature, were used. The datasets were given to the

ANN, K-NN, DTree, NB, DTable, and DL classification

algorithms used in the study, first in their original form

and then with discretization, feature selection, data

reduction, and normalization preprocessing techniques,

and experiments were carried out by cross-correcting. As

a result of the experimental studies, it was observed that

the DL model developed within the scope of the study and

the DTree algorithm were both successful. It was

observed that the ANN, KNN, and DTable algorithms used

in the study obtained similar results and the NB algorithm

showed the worst performance.

Another important analysis obtained from the study is

that, for intrusion detection datasets, the DL model

achieves more successful results with the original

datasets, that is, with more data, but its success decreases

especially as a result of the data preprocessing

operations.

To improve the performance of the developed model in

future studies, it is recommended to use it as a hybrid and

test the resulting model on the real system.

Declaration of Ethical Standards

The authors declare that they comply with all ethical standards.

Credit Authorship Contribution Statement
Author 1: Investigation, Methodology, Experimental study, Writing

Author 2: Investigation, Methodology, Experimental study, Writing

Author 3: Investigation, Methodology, Experimental study, Writing

Declaration of Competing Interest

The authors have no conflicts of interest to declare regarding the

content of this article.

Data Availability Statement
All data generated or analyzed during this study are included in this

published paper.

Acknowledgement

This research was supported by Necmettin Erbakan

University Scientific Research Projects Coordination

(Project No: 201219009)

6. References

Ahmad, Z., Shahid Khan, A., Wai Shiang, C., Abdullah, J.
and Ahmad, F., 2021. Network intrusion detection
system: A systematic study of machine learning and

deep learning approaches. Transactions on Emerging
Telecommunications Technologies, 32(1), e4150

 https://doi.org/10.1002/ett.4150

Al Shalabi, L., and Shaaban, Z., 2006. Normalization as a
preprocessing engine for data mining and the
approach of preference matrix. In 2006 International
conference on dependability of computer systems,
207-214.
https://doi.org/10.1109/DEPCOS-RELCOMEX.2006.38

Anuse, A. and Vyas, V., 2016. A novel training algorithm
for convolutional neural network. Complex &
Intelligent Systems, 2(3), 221-234.

 https://doi.org/10.1007/s40747-016-0024-6

Bakro, M., Kumar, R. R., Husain, M., Ashraf, Z., Ali, A.,
Yaqoob, S. I., ... and Parveen, N., 2024. Building a
Cloud-IDS by Hybrid Bio-Inspired Feature Selection
Algorithms Along With Random Forest Model. IEEE
Access, 12, 8846 - 8874.

 https://doi.org/10.1109/ACCESS.2024.3353055

Budak, H., 2018. Özellik seçim yöntemleri ve yeni bir
yaklaşım. Süleyman Demirel Üniversitesi Fen Bilimleri
Enstitüsü Dergisi, 22, 21-31.

Chary, S. N. and Rama, B., 2017. A survey on comparative
analysis of decision tree algorithms in data mining.
International Journal of Advanced Scientific
Technologies, Engineering and Management Sciences,
3(1), 91-95.

Chitrakar, R. and Huang, C., 2014. Selection of candidate
support vectors in incremental SVM for network
intrusion detection. Computers & Security, 45, 231-
241.

 https://doi.org/10.1016/j.cose.2014.06.006

Datti, R. and Verma, B., 2010. Feature reduction for
intrusion detection using linear discriminant analysis.
International Journal on Engineering Science and
Technology, 2(4), 1072-1078.

Dhanabal, L. and Shantharajah, S. P. (2015). A study on
NSL-KDD dataset for intrusion detection system based
on classification algorithms. International Journal of
Advanced Research in Computer and Communication
Engineering, 4(6), 446-452.

Diro, A. A. and Chilamkurti, N., 2018. Distributed attack
detection scheme using deep learning approach for
Internet of Things. Future Generation Computer
Systems, 82, 761-768.

 https://doi.org/10.1016/j.future.2017.08.043

Dong, B. and Wang, X., 2016. Comparison deep learning
method to traditional methods using for network
intrusion detection. In 2016 8th IEEE international
conference on communication software and networks
(ICCSN), 581-585.

Dong, Y., 2018. An application of deep neural networks to
the in-flight parameter identification for detection

https://doi.org/10.1002/ett.4150
https://doi.org/10.1109/DEPCOS-RELCOMEX.2006.38
https://doi.org/10.1007/s40747-016-0024-6
https://doi.org/10.1109/ACCESS.2024.3353055
https://doi.org/10.1016/j.cose.2014.06.006
https://doi.org/10.1016/j.future.2017.08.043

 Intrusion Detection System Application with Machine Learning, HACIBEYOĞLU et al.

1177

and characterization of aircraft icing. Aerospace
Science and Technology, 77, 34-49.

 https://doi.org/10.1016/j.ast.2018.02.026

 Du, J., Yang, K., Hu, Y. and Jiang, L., 2023. NIDS-CNNLSTM:
Network intrusion detection classification model
based on deep learning. IEEE Access, 11, 24808-24821.

 https://doi.org/10.1109/ACCESS.2023.3254915

Duan, L., Han, D. and Tian, Q., 2019. Design of intrusion
detection system based on improved ABC_elite and
BP neural networks. Computer Science and
Information Systems, 16(3), 773-795.

 https://doi.org/10.2298/CSIS181001026D

El Aboudi, N. and Benhlima, L., 2016. Review on wrapper
feature selection approaches. In 2016 international
conference on engineering & MIS (ICEMIS), 1-5.

Gorunescu, F., 2011. Data Mining: Concepts, models and
techniques, 12, Springer Science & Business Media.

Guan, S. U., Liu, J. and Qi, Y., 2004. An incremental
approach to contribution-based feature selection.
Journal of Intelligent Systems, 13(1), 15-42.

 https://doi.org/10.1515/JISYS.2004.13.1.15

Gurung, S., Ghose, M. K. and Subedi, A., 2019. Deep
learning approach on network intrusion detection
system using NSL-KDD dataset. International Journal
of Computer Network and Information Security, 3, 8-
14.
htttps://doi.org/10.5815/ijcnis.2019.03.0

Guyon, I. and Elisseeff, A., 2003. An introduction to
variable and feature selection. Journal of machine
learning research, 3, 1157-1182.

Hodge, V. J., O’Keefe, S. and Austin, J., 2006. A binary
neural decision table classifier. Neurocomputing,
69(16), 1850-1859.
https://doi.org/10.1016/j.neucom.2005.11.012

Kabir, M. M., Islam, M. M. and Murase, K., 2010. A new
wrapper feature selection approach using neural
network. Neurocomputing, 73(16-18), 3273-3283.
https://doi.org/10.1016/j.neucom.2010.04.003

Kasongo, S. M., 2023. A deep learning technique for
intrusion detection system using a Recurrent Neural
Networks based framework. Computer
Communications, 199, 113-125.

 https://doi.org/10.1016/j.comcom.2022.12.010

Khan, M., Ding, Q. and Perrizo, W., 2002. K-nearest
neighbor classification on spatial data streams using P-
trees. In Pacific-Asia Conference on Knowledge
Discovery and Data Mining, 517-528.
https://doi.org/10.1007/3-540-47887-6_51

Khraisat, A., Gondal, I. and Vamplew, P., 2018. An
anomaly intrusion detection system using C5 decision
tree classifier. In Trends and Applications in

Knowledge Discovery and Data Mining: PAKDD 2018.
https://doi.org/10.1007/978-3-030-04503-6_14

Kim, G., Lee, S. and Kim, S., 2014. A novel hybrid intrusion
detection method integrating anomaly detection with
misuse detection. Expert Systems with Applications,
41(4), 1690-1700.
https://doi.org/10.1016/j.eswa.2013.08.066

Krose, B. and Smagt, P. V. D., 1996. An introduction to
neural networks. Journal of Computer Science, (48).

Ladha, L. and Deepa, T., 2011. Feature selection methods
and algorithms. International Journal on Computer
Science and Engineering, 3(5), 1787-1797.

Marill, T. and Green, D., 1963. On the effectiveness of
receptors in recognition systems. IEEE transactions on
Information Theory, 9(1), 11-17.

 https://doi.org/10.1109/TIT.1963.1057810

Meena, G. and Choudhary, R. R., 2017. A review paper on
IDS classification using KDD 99 and NSL KDD dataset in
WEKA. In 2017 International Conference on Computer,
Communications and Electronics, 553-558.

 https://doi.org/10.1109/COMPTELIX.2017.8004032

Mohsen, H., El-Dahshan, E. S. A., El-Horbaty, E. S. M. and
Salem, A. B. M., 2018. Classification using deep
learning neural networks for brain tumors. Future
Computing and Informatics Journal, 3(1), 68-71.

 https://doi.org/10.1016/j.fcij.2017.12.001

Oğuzlar, A., 2003. Veri ön işleme. Erciyes Üniversitesi
İktisadi ve İdari Bilimler Fakültesi Dergisi, (21).

Park, K., Song, Y. and Cheong, Y. G., 2018. Classification of
attack types for intrusion detection systems using a
machine learning algorithm. In 2018 IEEE fourth
international conference on big data computing
service and applications, 282-286.
https://doi.org/10.1109/BigDataService.2018.00050

Patro, S. and Sahu, K. K., 2015. Normalization: A
preprocessing stage. arXiv preprint.

 https://doi.org/10.48550/arXiv.1503.06462

Prasad, R. and Rohokale, V., 2020. Artificial intelligence
and machine learning in cyber security. Cyber security:
the lifeline of information and communication
technology, 231-247.

 https://doi.org/10.1007/978-3-030-31703-4_16

Pudil, P., Novovičová, J. and Kittler, J., 1994. Floating
search methods in feature selection. Pattern
recognition letters, 15(11), 1119-1125.

 https://doi.org/10.1016/0167-8655(94)90127-9

Puzis, R., Klippel, M. D., Elovici, Y. and Dolev, S., 2008.
Optimization of NIDS placement for protection of
intercommunicating critical infrastructures. In
European Conference on Intelligence and Security
Informatics, 191-203.

 https://doi.org/10.1007/978-3-540-89900-6_20

https://doi.org/10.1016/j.ast.2018.02.026
https://doi.org/10.1109/ACCESS.2023.3254915
https://doi.org/10.2298/CSIS181001026D
https://doi.org/10.1515/JISYS.2004.13.1.15
htttps://doi.org/10.5815/ijcnis.2019.03.0
https://doi.org/10.1016/j.neucom.2005.11.012
https://doi.org/10.1016/j.neucom.2010.04.003
https://doi.org/10.1016/j.comcom.2022.12.010
https://doi.org/10.1007/3-540-47887-6_51
https://doi.org/10.1007/978-3-030-04503-6_14
https://doi.org/10.1016/j.eswa.2013.08.066
https://doi.org/10.1109/TIT.1963.1057810
https://doi.org/10.1109/COMPTELIX.2017.8004032
https://doi.org/10.1016/j.fcij.2017.12.001
https://doi.org/10.1109/BigDataService.2018.00050
https://doi.org/10.48550/arXiv.1503.06462
https://doi.org/10.1007/978-3-030-31703-4_16
https://doi.org/10.1016/0167-8655(94)90127-9
https://doi.org/10.1007/978-3-540-89900-6_20

 Intrusion Detection System Application with Machine Learning, HACIBEYOĞLU et al.

1178

Qassim, Q., Zin, A. M. and Ab Aziz, M. J., 2016. Anomalies
Classification Approach for Network-based Intrusion
Detection System. International Journal of Network
Security, 18(6), 1159-1172.

Revathi, S. and Malathi, A., 2013. A detailed analysis on
NSL-KDD dataset using various machine learning
techniques for intrusion detection. International
Journal of Engineering Research & Technology (IJERT),
2(12), 1848-1853.

Rish, I., 2001. An empirical study of the naive Bayes
classifier. In IJCAI 2001 workshop on empirical
methods in artificial intelligence, 3(22), 41-46.

Rojas, R., 2013. Neural networks: a systematic
introduction. Springer Science & Business Media.

Sahani, R., Shatabdinalini, Rout, C., Chandrakanta
Badajena, J., Jena, A. K. and Das, H., 2018.
Classification of intrusion detection using data mining
techniques. In Progress in Computing, Analytics and
Networking: Proceedings of ICCAN 2017, 753-764.

 https://doi.org/10.1007/978-981-10-7871-2_72

Sahu, S. and Mehtre, B. M., 2015. Network intrusion
detection system using J48 Decision Tree. In 2015
International Conference on Advances in Computing,
Communications and Informatics (ICACCI), 2023-2026.

 https://doi.org/10.1109/ICACCI.2015.7275914

Sarker, I. H. (2021). Deep cybersecurity: a comprehensive
overview from neural network and deep learning
perspective. SN Computer Science, 2(3), 154.
https://doi.org/10.1007/s42979-021-00535-6

Shone, N., Ngoc, T. N., Phai, V. D. and Shi, Q., 2018. A deep
learning approach to network intrusion detection.
IEEE transactions on emerging topics in computational
intelligence, 2(1), 41-50.

 https://doi.org/10.1109/TETCI.2017.2772792

Song, J., Takakura, H., Okabe, Y., Eto, M., Inoue, D. and
Nakao, K., 2011. Statistical analysis of honeypot data
and building of Kyoto 2006+ dataset for NIDS
evaluation. In Proceedings of the first workshop on
building analysis datasets and gathering experience
returns for security, 29-36.

 https://doi.org/10.1145/1978672.1978676

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. and
Salakhutdinov, R., 2014. Dropout: a simple way to
prevent neural networks from overfitting. The journal
of machine learning research, 15, 1929-1958.

Stolfo, S. J., Fan, W., Lee, W., Prodromidis, A. and Chan, P.
K., 2000. Cost-based modeling for fraud and intrusion
detection: Results from the JAM project. In
Proceedings DARPA Information Survivability
Conference and Exposition, 130-144.

 https://doi.org/10.1109/DISCEX.2000.821515

Swathi, K. and Rao, B. B., 2019. Impact of PDS based kNN
classifiers on Kyoto dataset. International Journal of
Rough Sets and Data Analysis (IJRSDA), 6(2), 61-72.

 http://dx.doi.org/10.4018/IJRSDA.2019040105

Tavallaee, M., Bagheri, E., Lu, W. and Ghorbani, A. A.,
2009. A detailed analysis of the KDD CUP 99 data set.
In 2009 IEEE symposium on computational intelligence
for security and defense applications, 1-6.

 https://doi.org/10.1109/CISDA.2009.5356528

Vasilomanolakis, E., Karuppayah, S., Mühlhäuser, M. and
Fischer, M., 2015. Taxonomy and survey of
collaborative intrusion detection. ACM computing
surveys, 47(4), 1-33.

 https://doi.org/10.1145/2716260

Vinayakumar, R., Alazab, M., Soman, K. P.,
Poornachandran, P., Al-Nemrat, A. and Venkatraman,
S., 2019. Deep learning approach for intelligent
intrusion detection system. IEEE Access, 7, 41525-
41550.
https://doi.org/10.1109/ACCESS.2019.2895334

Wei, L., Ding, Y., Su, R., Tang, J. and Zou, Q., 2018.
Prediction of human protein subcellular localization
using deep learning. Journal of Parallel and Distributed
Computing, 117, 212-217.

 https://doi.org/10.1016/j.jpdc.2017.08.009

Whitney, A. W., 1971. A direct method of nonparametric
measurement selection. IEEE transactions on
computers, 100(9), 1100-1103.

 https://doi.org/10.1109/T-C.1971.223410

Witlox, F., Antrop, M., Bogaert, P., De Maeyer, P.,
Derudder, B., Neutens, T., ... and Van de Weghe, N. ,
2009. Introducing functional classification theory to
land use planning by means of decision tables.
Decision Support Systems, 46(4), 875-881.
https://doi.org/10.1016/j.dss.2008.12.001

Yan, K., Ma, L., Dai, Y., Shen, W., Ji, Z. and Xie, D., 2018.
Cost-sensitive and sequential feature selection for
chiller fault detection and diagnosis. International
Journal of Refrigeration, 86, 401-409.

 https://doi.org/10.1016/j.ijrefrig.2017.11.003

Zakariah, M., AlQahtani, S. A., Alawwad, A. M. and
Alotaibi, A. A., 2023. Intrusion Detection System with
Customized Machine Learning Techniques for NSL-
KDD Dataset. Computers, Materials & Continua, 77(3).
4025-4054

 https://doi.org/10.32604/cmc.2023.043752

Zhang, X. and Liu, C. A. (2023). Model averaging prediction
by K-fold cross-validation. Journal of Econometrics,
235(1), 280-301.
https://doi.org/10.1016/j.jeconom.2022.04.007

Zhang, Y., Cao, G., Wang, B. and Li, X., 2019. A novel
ensemble method for k-nearest neighbor. Pattern
Recognition, 85, 13-25.

https://doi.org/10.1007/978-981-10-7871-2_72
https://doi.org/10.1109/ICACCI.2015.7275914
https://doi.org/10.1007/s42979-021-00535-6
https://doi.org/10.1109/TETCI.2017.2772792
https://doi.org/10.1145/1978672.1978676
https://doi.org/10.1109/DISCEX.2000.821515
http://dx.doi.org/10.4018/IJRSDA.2019040105
https://doi.org/10.1109/CISDA.2009.5356528
https://doi.org/10.1145/2716260
https://doi.org/10.1109/ACCESS.2019.2895334
https://doi.org/10.1016/j.jpdc.2017.08.009
https://doi.org/10.1109/T-C.1971.223410
https://doi.org/10.1016/j.dss.2008.12.001
https://doi.org/10.1016/j.ijrefrig.2017.11.003
https://doi.org/10.32604/cmc.2023.043752
https://doi.org/10.1016/j.jeconom.2022.04.007

 Intrusion Detection System Application with Machine Learning, HACIBEYOĞLU et al.

1179

https://doi.org/10.1016/j.patcog.2018.08.003

Zhu, Z., Ong, Y. S. and Dash, M., 2007. Wrapper–filter
feature selection algorithm using a memetic
framework. IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), 37(1), 70-76.

 https://doi.org/10.1109/TSMCB.2006.883267

https://doi.org/10.1016/j.patcog.2018.08.003
https://doi.org/10.1109/TSMCB.2006.883267

