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ABSTRACT  ARTICLE INFO 

The present study includes a detailed investigation of the effects of various pH 
conditions used in the synthesis on the structural properties of hydroxyapatite (HAp) 
co-doped with Er and Yb at a constant value. In this context, we changed the pH 
value from 8.5 to 11.0 with the steps of 0.5 in the synthesis. It was seen that the 
different pH causes significant variations in the crystallite size, lattice parameters, 
unit cell volume, and morphology. A biphasic structure composed of HAp and beta-
tricalcium phosphate (β-TCP) was seen for all the samples, and the minor phase of 
the β-TCP phase almost disappeared for the samples having pH values of 10.5 and 
11.0. The crystallite size (D), calculated using the Scherrer equation, varied between 
28.1 nm and 36.8 nm. The pH value plays a key role in the synthesis of Er/Yb co-
doped HAps. 
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1. INTRODUCTION 

 Hydroxyapatite (HAp) is a member of the calcium 
apatite family. Due to its chemical similarity to the mineral 
component of human bones (representing approximately 
65-70% of bone mass) and dental hard tissues, it is widely 
researched as a bioceramic [1-3]. HAp, with the chemical 
formula Ca10(PO4)6(OH)2, is the most stable calcium 
phosphate salt at normal temperatures and pH values 
between 4 and 12 [4]. There are two phases known as 
hexagonal and monoclinic phases of HAp crystals [5]. The 
most commonly found structure of HAp is a stoichiometric 
apatite phase with a Ca/P ratio of 1.67, belonging to the 
hexagonal system with space group P63/m [1, 4-6].  

There has been a remarkable increase in publications 
related to HAp in recent years, especially concerning its 
biomedical applications [7]. Owing to its superior 
properties such as high biocompatibility, bioactivity, 
osteoconductivity, osteointegration, osteoinductivity, 
thermal and chemical stability, non-toxic and non-
inflammatory nature, non-immunogenicity, porous 
structure, and low cost, HAp is a prominent biomaterial 
group for many fields [1, 4, 8-10]. Due to these 
advantageous properties, HAp is being researched and 

utilized in various fields such as orthopedics, maxillofacial 
surgery for implantation or prosthetics, repair or 
replacement of hard tissues, regeneration of diseased or 
damaged bones and teeth, scaffolds, bone fillers, 
controlled drug release, implant coatings, human body 
biomineralization, prevention of growth of many cancer 
cell types, dental enamel repair, desensitizing agents after 
tooth whitening, remineralization agents in toothpaste, 
treatment of early caries lesions, and many other areas [1, 
2, 4, 5, 8, 9]. Besides biomedical applications, HAp is also 
used in various other fields such as chromatography, 
fertilizer, and pharmaceutical industries, catalysis, gas 
sensing, environmental remediation, water purification 
processes, fluorescent lamps, and fuel cell materials [1, 2, 
6, 11, 12]. 

Despite offering excellent results in many areas, 
HAp has poor mechanical strength, low fracture 
toughness, brittleness, and low absorbability. The most 
suitable solution to overcome these disadvantages and 
further improve its properties is to modify the structure of 
HAp by doping with metal or non-metal ions. Various 
types of substitutions, especially anionic (PO4

3−) and 
cationic (Ca2+) substitutions, can address all the 
aforementioned drawbacks [10,13]. There are studies in 
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the literature regarding the doping of many elements such 
as Pr[14], Er[15], Dy[16], Y[17], Mg[18], Yb[19], Zn[20], 
Cd[21], Co[22], Ag[23], and Nb[24] into HAp. Pham et al. 
[25] demonstrated that effective near-infrared 
luminescence emission of HAp can be achieved through 
doping with the rare earth element erbium. Mondal et al. 
[26] confirmed the non-toxic properties of synthesized Er-
doped HAp nanoparticles through in vitro bioactivity 
analysis. They also stated that these samples exhibited 
good luminescence properties, thus potentially serving as a 
promising material for biomedical imaging applications. 
Tang et al. [27] reported that Yb doping in bone scaffolds 
is a promising strategy to enhance osteogenic and 
angiogenic abilities for bone defect healing. Nardi et al. 
[28] determined that the Nd3+-Yb3+ doped HAp 
nanoparticles could potentially be used not only as a 
diagnostic near-infrared down-shifting agent but also as a 
nanosystem for near-infrared photoactivated treatment. 

Different methods are used to synthesize HAps, and 
each method causes the preparation of HAps to have 
different particle sizes, shapes, morphologies, densities, 
and crystallinities, depending on various synthesis 
conditions. Therefore, the physical, chemical, mechanical, 
and biological properties of HAp largely depend on the 
processing methods and conditions [29]. There are various 
synthesis methods for HAp, such as sol-gel [30], 
hydrothermal [31], ultrasonic, microwave [32], 
microemulsion [33], wet chemical synthesis [34], double 
decomposition method [35], and chemical precipitation 
[36]. 

Experimental factors such as stoichiometry, pH, 
calcination temperature, and reactive addition rate affect 
the precipitation of HAp, so it is crucial to control these 
factors for producing HAp with optimum morphology and 
crystallinity [6,11]. Lopez-Ortiz et al. [37] observed the 
effect of pH on the microstructure and morphology of 
HAp synthesized by the hydrothermal method. They 
reported an increase in monoclinic phase formation and a 
decrease in hexagonal phase formation as pH decreased, 
along with a decrease in crystallite size. They explained 
the role of pH in influencing the properties of HAp, 
indicating its correlation with the amount of H+ and OH- 
ions present in the solution. Sánchez-Campos et al. [38] 
demonstrated the effect of pH on the main 
physicochemical properties of HAp synthesized by 
microwave-assisted hydrothermal method, observing an 
increase in monoclinic phase from 85% to 95% with pH 
increase and a decrease in hexagonal phase from 15% to 
5%, noting that the pH determined for synthesis adjusted 
the particle and crystallite sizes and shapes. Lee et al. [39] 
commented on the effect of pH, noting that as pH 
decreased, the concentration of H+ ions in the reacting 
solution increased, leading to an increase in the 
concentration of HPO4

2− due to combinations with PO4
3− 

ions, resulting in Ca-deficient HAp formation. However, 
an opposite effect was observed as pH increased, leading 
to stoichiometric HAp formation. Rodríguez-Lugo et al. 
[40] found that carbonate stretching modes decreased with 
increasing pH and that the H–O–H antisymmetric 
stretching mode was eliminated for powders sintered at 
900°C, confirming the formation of stable and porous HAp 
powders. Awan et al. [41] concluded that calcination has a 
significant effect on crystallite size, but conversely, the 
acidity and alkalinity (pH) of the solution have a more 
pronounced effect on particle size and morphology. Sun et 

al. [42] stated that morphology could be controlled by 
altering the pH of the reaction. Chuprunov et al. [43] 
investigated the effects of raising the pH level from 7 to 11 
on the structure and found that while at pH 7, biphasic 
structures such as CaPO3(OH) and Ca(OH)2 were detected, 
Ca9.04(PO4)6(OH)1.68 and CaHPO4 were observed at pH 9, 
and single-phase HAp was obtained at pH 11. 

In this study, Er and Yb co-doped hydroxyapatites 
were synthesized via the chemical precipitation method. 
Six different HAp samples synthesized at pH values of 8.5, 
9.0, 9.5, 10.0, 10.5, and 11.0 will be examined to 
investigate the effect of pH on crystal structure and 
morphology. 

2. MATERIAL AND METHOD 

As the starting chemicals, calcium nitrate 
tetrahydrate, ytterbium (III) nitrate pentahydrate, erbium 
(III) nitrate pentahydrate, and diammonium hydrogen 
phosphate were purchased from Sigma-Aldrich and used 
without any further purification. 100 mL of the solution of 
49.850 mmol calcium nitrate tetrahydrate, 0.075 mmol 
ytterbium (III) nitrate pentahydrate, and 0.075 mmol 
erbium (III) nitrate pentahydrate was prepared. 100 mL of 
30.0 mmol of diammonium hydrogen phosphate solution 
was prepared, then poured drop by drop into the first 
solution. For preparing each sample, in this step, the pH 
was adjusted to 8.5, 9.0, 9.5, 10.0, 10.5, and 11.0 by 
adding an ammonia solution (Sigma-Aldrich). The final 
solution was stirred for 2 h without heating and then 
filtered two times using distilled water. The as-filtered 
samples were dried in an oven at 110 °C for 52 h. As a 
final step, the as-dried samples were calcined in an 
electrical furnace at 880 °C for 3 h, and the HAp powders 
were obtained. 

The characterization of the crystal structure was 
conducted utilizing X-ray diffraction (XRD) technique 
employing the Bruker D8 Advance diffractometer. 
Fourier-transform infrared (FTIR) spectroscopy analyses 
were done using the Perkin Elmer Spectrum One 
spectrophotometer via the potassium bromide (KBr) 
method. Morphological observations were obtained using 
an FEI Quanta 450 FEG model scanning electron 
microscope. 

3. RESULTS AND DISCUSSIONS  

3.1. XRD analysis 

The XRD results of HAp samples prepared at 
different pH values are shown in Fig. 1. The crystal 
structure-related peaks are pointed out in these patterns. 
Two phases are observed. The major one is the HAp (PDF 
No: 09–0432) and its Miller indices are shown in black. 
The minor phase is the β-TCP (PDF No: 09–0169) and the 
peaks having blue color with the  symbols on the XRD 
patterns represent this minor phase. is observed. For this 
study, it is observed that the intensities of the peaks related 
to the β-TCP phase decrease continuously with increasing 
pH value. This phase almost disappears for the samples 
prepared at the pH values of 10.5 and 11.0. The formation 
of the single-phase of HAp at the pH of 11 was reported 
by Chuprunov et al. [43]. 
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Fig. 1. XRD patterns of the samples 

 
The crystallite size (D) was calculated by using the 

Scherrer equation [44], 
 

θ
λ

cos
9.0

2/1B
D =          (1) 

 
where λ is the wavelength, B1/2 is the full width at half 
maximum, and θ is the diffraction angle.  The details of 
the calculation of the lattice parameters (a and c) and unit 
cell volume (V) can be found elsewhere [45]. 
 
Table 1. XRD analysis results 
Sample D (nm) a (nm) c (nm) c/a V (nm)3 
HAp*  0.9418 0.6884 0.7309 0.5288 
PH8.5 34.6 0.9536 0.7008 0.7349 0.5519 
PH9.0 36.8 0.9449 0.6906 0.7309 0.5340 
PH9.5 29.1 0.9351 0.6817 0.7290 0.5162 
PH10.0 28.1 0.9553 0.7013 0.7341 0.5542 
PH10.5 34.2 0.9379 0.6849 0.7302 0.5218 
PH11.0 32.5 0.9428 0.6890 0.7308 0.5304 
* points out the standard data belonging to the JCPDS card with 
the number 09-0432. 
 

3.2. FTIR analysis 
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Fig. 2. FTIR spectra of the as-prepared HAp samples 

 
Fig. 2 illustrates the FTIR spectrum for each sample 

in the wavenumber range from 400 to 4000 cm–1. The as-
detected bands and their assignments are given as follows. 
The bands observed at 1086 and 1024 cm–1 are associated 
with the anti-symmetric stretching mode of the P–O bond 
[46]. The bands 945 and 962 cm–1 are assigned to the 
symmetric stretching mode of the P–O bond [47]. The 
bands detected at 600 and 567 cm–1 are related to the 
bending mode of the O–P–O bond [48]. The 473 cm–1 
band is assigned to the bending mode of the phosphate 
group [49]. The bands detected at 632 and 3574 cm–1 are 
related to the vibrational modes of the hydroxyl group 
[50]. Both groups observed in the FTIR spectra verify the 
formation of HAp structure [51]. 
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3.3. SEM and EDX results 

Fig. 3. SEM and EDX results 

The SEM micrographs of the samples are shown in 
Fig. 3. It can be seen that the morphology, especially the 
particle sizes, is affected by the pH conditions used in the 
synthesis. All the samples consist of nano-sized particles. 
The EDX results confirm that each sample includes the 
elements of Ca, P, O, Er, and Yb. The amount of Er and 
Yb is found to be so close to each other. Using the EDX 
results, the molar ratios of the (Ca+Er+Yb)/P are estimated 
to be 1.42, 1.63, 1.47, 1.47, 1.44 and 1.69 for PH8.5, 
PH9.0, PH10.0, PH10.5, and PH11.0, respectively. The pH 
affects the (Ca+Er+Yb)/P and may be used for controlling 
the particle size distribution of the sample.  

 

4. DISCUSSION 

In the present work, six HAp samples with the same 
composition were prepared by using different pH 
conditions ranging from 8.5 to 11.0. The experimental 
analysis techniques of the XRD, FTIR, SEM, and EDX 
were used to determine the effects of the different pH 
values on the structural properties and morphology of the 
Er/Yb co-doped HAp structure. It was observed that the 
unit cell volume, lattice parameters, crystallite size, 
morphology, and particle size distributions of the samples 
were affected by the pH conditions. The pH can be used to 
control the structural properties and morphology of the Er 
and Yb co-doped HAps. 
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